Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Morphology and Structure of the Catalysts
2.1.1. ZnO Catalysts
2.1.2. xZnO@yCu2O Catalyst
2.2. ECR Performance of ZnO Catalysts on the Catalyst
2.2.1. ZnO Catalysts
2.2.2. ZnO-400, Cu2O, and ZnO@4Cu2O Catalysts
2.2.3. xZnO@yCu2O Catalysts
2.3. Electrochemical Characterization on xZnO@yCu2O Catalysts
3. Materials and Methods
3.1. Materials
3.2. Preparation of Catalysts
3.2.1. Synthesis of ZnO Catalysts
3.2.2. Preparation of the ZnO@Cu2O Catalyst
3.2.3. Synthesis of Cu2O Catalyst
3.2.4. Preparation of Gas Diffusion Electrode
3.3. Characterizations
3.4. Electrochemical CO2 Reduction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Goeppert, A.; Czaun, M.; Jones, J.P.; Prakash, G.K.S.; Olah, G.A. Recycling of carbon dioxide to methanol and derived products-closing the loop. Chem. Soc. Rev. 2014, 43, 7995–8048. [Google Scholar]
- Zhang, H.C.; Chang, X.X.; Chen, J.G.G.; Goddard, W.A.; Xu, B.J.; Cheng, M.J.; Lu, Q. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 2019, 10, 3340. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.D.; Liu, J.L.; Qiao, S.Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452. [Google Scholar] [CrossRef]
- Liu, Y.M.; Fan, X.F.; Nayak, A.; Wang, Y.; Shan, B.; Quan, X.; Meyer, T.J. Steering CO2 electroreduction toward ethanol production by a surface-bound Ru polypyridyl carbene catalyst on N-doped porous carbon. Proc. Natl. Acad. Sci. USA 2019, 116, 26353–26358. [Google Scholar] [CrossRef]
- Li, D.; Liu, T.T.; Huang, L.L.; Wu, J.J.; Li, N.; Zhen, L.; Feng, Y.J. Selective CO2–to–formate electrochemical conversion with core–shell structured Cu2O/Cu@C composites immobilized on nitrogen-doped graphene sheets. J. Mater. Chem. A 2020, 8, 18302–18309. [Google Scholar] [CrossRef]
- Li, J.C.; Kuang, Y.; Meng, Y.T.; Tian, X.; Hung, W.H.; Zhang, X.; Li, A.W.; Xu, M.Q.; Zhou, W.; Ku, C.S.; et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J. Am. Chem. Soc. 2020, 142, 7276–7282. [Google Scholar] [CrossRef]
- Tan, Z.H.; Peng, T.Y.; Tian, X.J.; Wang, W.H.; Wang, X.S.; Yang, Z.X.; Ning, H.; Zhao, Q.S.; Wu, M.B. Controllable Synthesis of Leaf-Like CuO Nanosheets for Selective CO2 Electroreduction to Ethylene. ChemElectroChem 2020, 7, 2020–2025. [Google Scholar] [CrossRef]
- Raciti, D.; Livi, K.J.; Wang, C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 2015, 15, 6829–6835. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Sun, X.F.; Lu, L.; Yang, D.X.; Ma, J.; Zhu, Q.G.; Qian, Q.L.; Han, B.X. Efficient electroreduction of CO2 to C2 products over B-doped oxide-derived copper. Green Chem. 2018, 20, 4579–4583. [Google Scholar] [CrossRef]
- Wang, M.; Ren, X.N.; Yuan, G.; Niu, X.P.; Xu, Q.L.; Gao, W.L.; Zhu, S.K.; Wang, Q.F. Selective electroreduction of CO2 to CO over co-electrodeposited dendritic core-shell indium-doped Cu@Cu2O catalyst. J. CO2 Util. 2020, 37, 204–212. [Google Scholar] [CrossRef]
- Bai, X.W.; Li, Q.; Shi, L.; Niu, X.H.; Ling, C.Y.; Wang, J.L. Hybrid Cu0 and Cu x+ as atomic interfaces promote high-selectivity conversion of CO2 to C2H5OH at low potential. Small 2020, 16, 1901981. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Noh, Y.; Kim, Y.; Park, S.; Yoon, W.; Jang, D.; Choi, S.M.; Kim, W.B. Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-suported Cu catalysts. Green Chem. 2020, 22, 71–84. [Google Scholar] [CrossRef]
- Zhuang, T.T.; Liang, Z.Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F.L.; Meng, F.; Min, Y.M.; Quintero-Bermudez, R. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.; Ocon, J.D.; Jeong, B.; Lee, J.K.; Lee, J. Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2. Phys. Chem. Chem. Phys. 2015, 17, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Jung, H.; Kim, N.K.; Oh, H.S.; Min, B.K.; Hwang, Y.J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 2018, 140, 8681–8689. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Matios, E.; Wang, C.L.; Luo, J.M.; Lu, X.; Hu, X.F.; Li, W.Y. Rapid and scalable synthesis of cuprous halide-derived copper nano-architectures for selective electrochemical reduction of carbon dioxide. Nano Lett. 2019, 19, 3925–3932. [Google Scholar] [CrossRef] [PubMed]
- Loiudice, A.; Lobaccaro, P.; Kamali, E.A.; Thao, T.; Huang, B.H.; Ager, J.W.; Buonsanti, R. Tailoring copper nanocrystals towards C-2 Products in electrochemical CO2 Reduction. Angew. Chem. Int. Ed. 2016, 55, 5789–5792. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.; Deng, Y.L.; Handoko, A.D.; Chen, C.S.; Malkhandi, S.; Yeo, B.S. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 2015, 5, 2814–2821. [Google Scholar] [CrossRef]
- Li, C.W.; Kanan, M.W. CO2 Reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234. [Google Scholar] [CrossRef]
- Wang, W.H.; Ning, H.; Yang, Z.X.; Feng, Z.X.; Wang, J.L.; Wang, X.S.; Mao, Q.H.; Wu, W.T.; Zhao, Q.S.; Hu, H.; et al. Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4. Electrochim. Acta. 2019, 306, 360–365. [Google Scholar] [CrossRef]
- Su, X.S.; Sun, Y.M.; Jin, L.; Zhang, L.; Yang, Y.; Kerns, P.; Liu, B.; Li, S.Z.; He, J. Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Appl. Catal. B Environ. 2020, 269, 118800. [Google Scholar] [CrossRef]
- Jimenez, C.; Garcia, J.; Martinez, F.; Camarillo, R.; Rincon, J. Cu nanoparticles deposited on CNT by supercritical fluid deposition for electrochemical reduction of CO2 in a gas phase GDE cell. Electrochim. Acta 2020, 337, 135663. [Google Scholar] [CrossRef]
- Ning, H.; Mao, Q.H.; Wang, W.H.; Yang, Z.X.; Wang, X.S.; Zhao, Q.S.; Song, Y.; Wu, M.B. N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4. J. Alloys Compd. 2019, 785, 7–12. [Google Scholar] [CrossRef]
- Feng, Y.H.; An, W.; Wang, Z.M.; Wang, Y.Q.; Men, Y.; Du, Y.Y. Electrochemical CO2 reduction reaction on M@Cu (211) bimetallic single-atom surface alloys: Mechanism, kinetics, and catalyst screening. ACS Sustain. Chem. Eng. 2020, 8, 210–222. [Google Scholar] [CrossRef]
- Gao, J.; Ren, D.; Guo, X.Y.; Zakeeruddin, S.M.; Gratzel, M. Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: A study on bifunctional Cu/Au electrocatalysts. Faraday Discuss 2019, 215, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Ren, D.; Guo, X.Y.; Zakeeruddin, S.M.; Gratzel, M. Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Faraday Discuss 2019, 215, 282–296. [Google Scholar] [CrossRef]
- Ren, D.; Gao, J.; Pan, L.F.; Wang, Z.W.; Luo, J.S.; Zakeeruddin, S.M.; Hagfeldt, A.; Gratzel, M. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels. Angew. Chem. Int. Ed. 2019, 58, 15036–15040. [Google Scholar] [CrossRef]
- Merino-Garcia, I.; Albo, J.; Solla-Gullon, J.; Montiel, V.; Lrabien, A. Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. J. CO2 Util. 2019, 31, 135–142. [Google Scholar] [CrossRef]
- Payra, S.; Shenoy, S.; Chakraborty, C.; Tarafder, K.; Roy, S. Structure-sensitive electrocatalytic reduction of CO2 to methanol over carbon-supported intermetallic PtZn nano-alloys. ACS Appl. Mater. Inter. 2020, 12, 19402–19414. [Google Scholar] [CrossRef]
- Han, J.; Li, S.S.; Chen, J.Y.; Liu, Y.Q.; Geng, D.S.; Wang, D.W.; Zhang, L.C. Dendritic Ag/Pd Alloy Nanostructure Arrays for Electrochemical CO2 Reduction. ChemElectroChem 2020, 7, 2608–2613. [Google Scholar] [CrossRef]
- Zhi, X.; Jiao, Y.; Zheng, Y.; Vasileff, A.; Qiao, S.Z. Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts. Nano Today 2020, 71, 104601. [Google Scholar] [CrossRef]
- Tsuji, M.; Yamaguchi, D.; Mstsunaga, M.; Alam, M.J. Epitaxial growth of Au@Cu core-shell nanocrystals prepared using the PVP-assisted polyol reduction method. Cryst. Growth DES 2010, 10, 5129–5135. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Chanda, K.; Chu, Y.T.; Chiu, C.Y.; Huang, M.H. Direct formation of small Cu2O nanocubes, octahedra, and octapods for efficient synthesis of triazoles. Nanoscale 2014, 6, 8704–8709. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Yan, X.P.; Liu, S.J.; Wu, Y.H.; Wan, Q.; Sun, X.F.; Zhu, Q.G.; Liu, H.Z.; Ma, J.; Zheng, L.R.; et al. Highly efficient electroreduction of CO2 to C2+ alcohols on heterogeneous dual active sites. Angew. Chem. Int. Ed. 2020, 59, 16459–16464. [Google Scholar] [CrossRef] [PubMed]
- Schouten, K.J.P.; Qin, Z.S.; Gallent, E.P.; Koper, M.T.M. Two Pathways for the Formation of Ethylene in CO Reduction on Single-Crystal Copper Electrodes. J. Am. Chem. Soc. 2012, 134, 9864–9867. [Google Scholar] [CrossRef]
- Xu, H.P.; Rebollar, D.; He, H.Y.; Chong, L.N.; Liu, Y.Z.; Liu, C.; Sun, C.J.; Li, T.; Muntean, J.V.; Winans, R.E.; et al. Highly selective electrocatalytic CO(2) reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632. [Google Scholar] [CrossRef]
- Song, H.; Song, J.T.; Kim, B.; Tan, Y.C.; Oh, J. Activation of C2H4 reaction pathways in electrochemical CO2 reduction under low CO2 partial pressure. Appl. Catal. B Environ. 2020, 272, 119049. [Google Scholar] [CrossRef]
- Shao, Q.; Wang, P.T.; Liu, S.H.; Huang, X.Q. Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction. J. Mater. Chem. A. 2019, 7, 20478–20493. [Google Scholar] [CrossRef]
- Liu, K.H.; Wang, J.Z.; Shi, M.M.; Yan, J.M.; Jiang, Q. Simultaneous Achieving of High Faradaic Efficiency and CO Partial Current Density for CO2 Reduction via Robust, Noble-Metal-Free Zn Nanosheets with Favorable Adsorption Energy. Adv. Energy Mater. 2019, 9, 1900276. [Google Scholar] [CrossRef]
- Birdja, Y.Y.; Perez-Gallent, E.; Figueiredo, M.C.; Gottle, A.J.; Calle-Vallejo, F.; Koper, M.T.M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy. 2019, 4, 732–745. [Google Scholar] [CrossRef]
- Tan, X.Y.; Yu, C.; Zhao, C.T.; Huang, H.W.; Yao, X.C.; Han, X.T.; Guo, W.; Cui, S.; Huang, H.L.; Qiu, J.S. Restructuring of Cu2O to Cu2O@Cu-Metal-Organic Frameworks for Selective Electrochemical Reduction of CO2. ACS Appl. Mater. Inter. 2019, 11, 9904–9910. [Google Scholar] [CrossRef]
- Suen, N.T.; Kong, Z.R.; Hsu, C.S.; Chen, H.C.; Tung, C.W.; Lu, Y.R.; Dong, C.L.; Shen, C.C.; Chung, J.C.; Chen, H.M. Morphology Manipulation of Copper Nanocrystals and Product Selectivity in the Electrocatalytic Reduction of Carbon Dioxide. ACS Catal. 2019, 9, 5217–5222. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, W.; Zuttel, A. Self-supported copper-based gas diffusion electrodes for CO2 electrochemical reduction. J. Mater. Chem. A 2019, 7, 26285–26292. [Google Scholar] [CrossRef]
- Reller, C.; Krause, R.; Volkova, E.; Schmid, B.; Neubauer, S.; Rucki, A.; Schuster, M.; Schmid, G. Selective Electroreduction of CO2 toward Ethylene on Nano Dendritic Copper Catalysts at High Current Density. Adv. Energy Mater. 2017, 7, 1602114. [Google Scholar] [CrossRef]
- Shen, S.B.; Peng, X.Y.; Song, L.D.; Qin, Y.; Li, C.; Zhuo, L.C.; He, J.; Ren, J.Q.; Liu, X.J.; Luo, J. AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective Conversion of CO2 to Ethanol. Small 2019, 15, 1902229. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Peng, R.; Hensley, D.K.; Bonnesen, P.V.; Liang, L.B.; Wu, Z.L.; Meyer, H.M.; Chi, M.F.; Ma, C.; Sumpter, B.G.; et al. High-Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode. Chemistryselect 2016, 1, 6055–6061. [Google Scholar] [CrossRef] [Green Version]
- Balamurugan, M.; Jeong, H.Y.; Choutipalli, V.S.K.; Hong, J.S.; Sao, H.; Saravanan, N.; Jang, J.H.; Lee, K.G.; Lee, Y.H.; Im, S.W.; et al. Electrocatalytic Reduction of CO2 to Ethylene by Molecular Cu-Complex Immobilized on Graphitized Mesoporous Carbon. Small 2020, 16, 2000955. [Google Scholar] [CrossRef]
- Wang, S.; Kou, T.; Baker, S.E.; Duoss, E.B.; Li, Y. Recent progress in electrochemical reduction of CO2 by oxide-derived copper catalysts. Mater. Today Nano 2020, 12, 100096. [Google Scholar] [CrossRef]
- Liu, Y.M.; Chen, S.; Quan, X.; Yu, H.T. Efficient Electrochemical Reduction of Carbon Dioxide to Acetate on Nitrogen-Doped Nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636. [Google Scholar] [CrossRef]
- Gao, Y.G.; Wu, Q.; Liang, X.Z.; Wang, Z.Y.; Zheng, Z.K.; Wang, P.; Liu, Y.Y.; Dai, Y.; Whangbo, M.H.; Huang, B.B. Cu2O Nanoparticles with Both {100} and {111} Facets for Enhancing the Selectivity and Activity of CO2 Electroreduction to Ethylene. Adv. Sci. 2020, 7, 1902820. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.F.; Jin, Z.G.; Li, W.; Qiu, J.J. Preparation of ZnO porous thin films by sol-gel method using PEG template. Mater. Lett. 2005, 59, 3620–3625. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, H.; Boisvert, G.; He, J.Z.; Wang, H. Geometry Control and Optical Tunability of Metal-Cuprous Oxide Core-Shell Nanoparticles. ACS Nano 2012, 6, 3514–3527. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.C.; Sadakiyo, M.; Luo, R.; Heima, M.; Yamauchi, M.; Kenis, P.J.A. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 2016, 301, 219–228. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Ren, X.; Li, X.; Niu, X.; Wang, M.; Xu, S.; Wang, Z.; Han, Y.; Wang, Q. Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products. Catalysts 2021, 11, 535. https://doi.org/10.3390/catal11050535
Zhu S, Ren X, Li X, Niu X, Wang M, Xu S, Wang Z, Han Y, Wang Q. Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products. Catalysts. 2021; 11(5):535. https://doi.org/10.3390/catal11050535
Chicago/Turabian StyleZhu, Shuaikang, Xiaona Ren, Xiaoxue Li, Xiaopo Niu, Miao Wang, Shuang Xu, Zheyuan Wang, Yunxi Han, and Qingfa Wang. 2021. "Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products" Catalysts 11, no. 5: 535. https://doi.org/10.3390/catal11050535
APA StyleZhu, S., Ren, X., Li, X., Niu, X., Wang, M., Xu, S., Wang, Z., Han, Y., & Wang, Q. (2021). Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products. Catalysts, 11(5), 535. https://doi.org/10.3390/catal11050535