Nonthermal Plasma Induced Fabrication of Solid Acid Catalysts for Glycerol Dehydration to Acrolein
Abstract
:1. Introduction
2. Results and Discussion
2.1. BET Surface Area
2.2. XRD Patterns
2.3. TPD-NH3 for Acid Strength
2.4. Py-FTIR for Acid Types
2.5. Catalyst Performance in Glycerol Dehydration
2.6. Possible Mechanisms and Further Research Needs
3. Materials and Methods
3.1. NTP Apparatus
3.2. Procedure of Catalyst Fabrication with NTP
3.3. Catalyst Characterization
3.4. Glycerol Dehydration to Acrolein
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, C.J.; Vissokov, G.P.; Jang, B.W.L. Catalyst preparation using plasma technologies. Catal. Today 2002, 72, 173–184. [Google Scholar] [CrossRef]
- Kizling, M.B.; Jaras, S.G. A review of the use of plasma techniques in catalyst preparation and catalytic reactions. Appl. Catal. A Gen. 1996, 147, 1–21. [Google Scholar] [CrossRef]
- Palma, V.; Cortese, M.; Renda, S.; Ruocco, C.; Martino, M.; Meloni, E. A Review about the Recent Advances in Selected NonThermal Plasma Assisted Solid-Gas Phase Chemical Processes. Nanomaterials 2020, 10, 1596. [Google Scholar] [CrossRef]
- Halverson, D.E.; Cocke, D.L. Ruthenium impregnation of plasma grown alumina films. J. Vac. Sci. Technol. A 1989, 7, 40–49. [Google Scholar] [CrossRef]
- Khan, H.R.; Frey, H. RF plasma spray deposition of LaMOx (M-equivalent-to-Co, Mn, Ni) films and the investigations of structure, morphology and the catalytic-oxidation of CO and C3H8. J. Alloy. Compd. 1993, 190, 209–217. [Google Scholar] [CrossRef]
- Vissokov, G.P. On the plasma-chemical synthesis and/or regeneration of ultradispersed catalysts for ammonia production. Catal. Today 2002, 72, 197–203. [Google Scholar] [CrossRef]
- Sugiyama, K.; Anan, G.; Shimada, T.; Ohkoshi, T.; Ushikubo, T. Catalytic ability of plasma heat-treated metal oxides on vapor-phase Beckmann rearrangement. Surf. Coat. Technol. 1999, 112, 76–79. [Google Scholar] [CrossRef]
- Sugiyama, K.; Nakano, Y.; Aoki, H.; Takeuchi, Y.; Matsuda, T. High-speed preparation of metal oxide fine powders by microwave cold plasma heating. J. Mater. Chem. 1994, 4, 1497–1501. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, W.; Cao, W.; Luo, C.; Wen, X.; Zhou, K. A plasma-activated Ni/α-Al2O3 catalyst for the conversion of CH4 to syngas. Plasma Chem. Plasma Process. 2000, 20, 137–144. [Google Scholar] [CrossRef]
- Maesen, T.L.M.; Bruinsma, D.S.L.; Kouwenhoven, H.W.; Van Bekkum, H. Use of radiofrequency plasma for low-temperature calcination of zeolites. J. Chem. Soc. Chem. Commun. 1987, 17, 1284–1285. [Google Scholar] [CrossRef]
- Yagodovskaya, T.V.; Lunin, V.V. Surface modification of cements and zeolite catalysts by glow discharge. Zhurnal Fizicheskoi Khimii 1997, 71, 775–786. [Google Scholar]
- Davis, R.J.; Boudart, M. Structure of Supported PdAu Clusters Determined by X-ray Absorption Spectroscopy. J. Phys. Chem. 1994, 98, 5471–5477. [Google Scholar] [CrossRef]
- Diamy, A.-M.; Randriamanantenasoa, Z.; Legrand, J.-C.; Polisset-Thfoin, M.; Fraissard, J. Use of a dihydrogen plasma afterglow for the reduction of zeolite-supported gold-based metallic catalysts. Chem. Phys. Lett. 1997, 269, 327–332. [Google Scholar] [CrossRef]
- Guo, Y.F.; Ye, D.Q.; Chen, K.F.; He, J.C.; Chen, W.L. Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. J. Mol. Catal. A Chem. 2006, 245, 93–100. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N.; Verschuren, J.; De Clerck, K.; Kiekens, P.; Leys, C. Non-thermal plasma treatment of textiles. Surf. Coat. Technol. 2008, 202, 3427–3449. [Google Scholar] [CrossRef]
- Veprek, S. Preparation of inorganic materials, surface treatment, etching in low pressure plasmas: Present status and future trends. Plasma Chem. Plasma Process. 1989, 9 (Suppl. 1), 29S–54S. [Google Scholar] [CrossRef]
- Ogata, A.; Kim, H.-H.; Futamura, S. Direct activation of catalyst-surface by nonthermal plasma. Catal. Catal. 2005, 47, 491–493. [Google Scholar]
- Amouroux, J. Interaction between a condensed target and a non-equilibrium plasma: Acid-base reactions at the interface. Scanning Electron Microsc. 1987, 1, 1575–1592. [Google Scholar]
- Yu, K.-L.; Xia, Q.; Liu, C.-J.; Li, G.; Eliasson, B.; Xue, B. On the plasma enhanced Bronsted acidity of solid acids. In Proceedings of 4th International Symposium On Green Chemistry In China (Part 1), Jinan, China, 14 July 2001. [Google Scholar]
- Liu, C.J.; Yu, K.L.; Zhang, Y.P.; Zhu, X.L.; He, F.; Eliasson, B. Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion. Appl. Catal. B Environ. 2004, 47, 95–100. [Google Scholar] [CrossRef]
- Katryniok, B.; Paul, S.; Dumeignil, F. Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein. ACS Catal. 2013, 3, 1819–1834. [Google Scholar] [CrossRef]
- Liu, L.; Ye, X.P.; Bozell, J.J. A Comparative Review of Petroleum-Based and Bio-Based Acrolein Production. ChemSusChem 2012, 5, 1162–1180. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, L.; Ye, X.P. Acrolein Production from Crude Glycerol in Sub- and Super-Critical Water. J. Am. Oil Chem. Soc. 2013, 90, 601–610. [Google Scholar] [CrossRef]
- Cheng, L.; Ye, X.P. A DRIFTS Study of Catalyzed Dehydration of Alcohols by Alumina-supported Heteropoly Acid. Catal. Lett. 2009, 130, 100–107. [Google Scholar] [CrossRef]
- Liu, L.; Ye, X.P.; Katryniok, B.; Capron, M.; Paul, S.; Dumeignil, F. Extending Catalyst Life in Glycerol-to-Acrolein Conversion Using Non-thermal Plasma. Front. Chem. 2019, 7, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katryniok, B.; Paul, S.; Belliere-Baca, V.; Rey, P.; Dumeignil, F.; Abdullah, A.Z. Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chem. 2010, 12, 2079–2098. [Google Scholar] [CrossRef]
- Tsukuda, E.; Sato, S.; Takahashi, R.; Sodesawa, T. Production of acrolein from glycerol over silica-supported heteropoly acids. Catal. Commun. 2007, 8, 1349–1353. [Google Scholar] [CrossRef]
- Chai, S.-H.; Wang, H.-P.; Liang, Y.; Xu, B.-Q. Sustainable production of acrolein: Gas-phase dehydration of glycerol over 12-tungstophosphoric acid supported on ZrO2 and SiO2. Green Chem. 2008, 10, 1087–1093. [Google Scholar] [CrossRef]
- Katryniok, B.; Paul, S.; Capron, M.; Lancelot, C.; Bellière-Baca, V.; Rey, P.; Dumeignil, F. A long-life catalyst for glycerol dehydration to acrolein. Green Chem. 2010, 12, 1922–1925. [Google Scholar] [CrossRef]
- Lauriol-Garbay, P.; Millet, J.M.M.; Loridant, S.; Bellière-Baca, V.; Rey, P. New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein. J. Catal. 2011, 280, 68–76. [Google Scholar] [CrossRef]
- Atia, H.; Armbruster, U.; Martin, A. Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J. Catal. 2008, 258, 71–82. [Google Scholar] [CrossRef]
- Varisli, D.; Dogu, T.; Dogu, G. Novel mesoporous nanocomposite WOx-silicate acidic catalysts: Ethylene and diethylether from ethanol. Ind. Eng. Chem. Res. 2009, 48, 9394–9401. [Google Scholar] [CrossRef]
- Baca, M.; Rochefoucauld, E.d.l.; Ambroise, E.; Krafft, J.-M.; Hajjar, R.; Man, P.P.; Carrier, X.; Blanchard, J. Characterization of mesoporous alumina prepared by surface alumination of SBA-15. Microporous Mesoporous Mater. 2007, 110, 232–241. [Google Scholar] [CrossRef]
- Yan, X.-M.; Lei, J.H.; Liu, D.; Wu, Y.C.; Liu, W. Synthesis and catalytic properties of mesoporous phosphotungstic acid/SiO2 in a self-generated acidic environment by evaporation-induced self-assembly. Mater. Res. Bull. 2007, 42, 1905–1913. [Google Scholar] [CrossRef]
- Tanable, K.; Misono, M.; Ono, M.; Hattori, H. New Solid Acids and Bases: Their Catalytic Properties, Studies in Surface Science and Catalysis; Delmon, B., Yates, J.T., Eds.; Elsevier: Tokyo, Japan, 1989. [Google Scholar]
- Chakraborty, B.; Viswanathan, B. Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption. Catal. Today 1999, 49, 253–260. [Google Scholar] [CrossRef]
- Sakthivel, R.; Prescotta, H.; Kemnitz, E. WO3/ZrO2: A potential catalyst for the acetylation of anisole. J. Mol. Catal. A Chem. 2004, 223, 137–142. [Google Scholar] [CrossRef]
- Musthofa, M.; Karim, A.H.; Fadzlillaah, N.A.; Annuar, N.H.R.; Jalil, A.A.; Triwahyono, S. Determination of Lewis and Brönsted acid sites by gas flow-injection technique. J. Fundam. Sci. 2010, 6, 127–131. [Google Scholar] [CrossRef]
- Wu, Y.; Ye, X.K.; Yang, X.G.; Wang, X.P.; Chu, W.L.; Hu, Y.C. Heterogenization of heteropolyacids: A general discussion on the preparation of supported acid catalysts. Ind. Eng. Chem. Res. 1996, 35, 2546–2560. [Google Scholar] [CrossRef]
- Wang, X.; Ye, X.; Wu, Y. Interaction between 12-Silicotungstic acid (SiW_(12)) and γ-Al2O3 surface. Chin. J. Catal. 1996, 17, 149–152. [Google Scholar]
- Gieshoff, J.; Lang, J. Process for The Plasma-Catalytic Production of Ammonia. U.S. Patent 6471932B1, 29 October 2002. [Google Scholar]
- Kameoka, S.; Kuroda, M.; Aoyagi, K.; Ito, S.; Kunimori, K. Formation of novel Al2O3 surface (Al-O-star) by plasma-excited nitrogen and its catalytic application—Production of ammonia and oxygen from nitrogen and water. Appl. Surf. Sci. 1997, 121, 351–354. [Google Scholar] [CrossRef]
- Atia, H.; Armbruster, U.; Martin, A. Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. In Proceedings of the DGMK-Conference “Future Feedstocks for Fuels and Chemicals”, Berlin, Germany, 29 September–1 October 2008; pp. 177–184. [Google Scholar]
- Quantachrome. User Manual for ChemBET Pulsar TPR/TPD; Quantachrome Instrument: Boynton Beach, FL, USA, 2008; pp. 94–96. [Google Scholar]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Particle Technology Series; Scarlett, B., Ed.; Springer: Dordrecht, The Netherland, 2004. [Google Scholar]
- Talebian-Kiakalaieh, A.; Saidina Amin, N.A. Gas phase glycerol dehydration to acrolein using supported silicotungstic acid catalyst. Malays. J. Anal. Sci. 2017, 21, 849–859. [Google Scholar]
- Katryniok, B.; Paul, S.; Capron, M.; Bellière-Baca, V.; Rey, P.; Dumeignil, F. Regeneration of Silica-Supported Silicotungstic Acid as a Catalyst for the Dehydration of Glycerol. ChemSusChem 2012, 5, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
Support (m2/g) | Supported HSiW (m2/g) | |||||
---|---|---|---|---|---|---|
Original | NTP-argon | NTP-air | Regular | NTP-argon | NTP-air | |
Al | 148 ± 4 * | 155 ± 1 | 153 ± 4 | 140 ± 3 | 150 ± 2 | 145 ± 5 |
Si | 393 ± 4 | 405 ± 6 | 405 ± 1 | 300 ± 10 | 325 ± 9 | 310 ± 7 |
Conversion (mol%) | Selectivity (mol%) | Coke b (wt.%) | |||||
---|---|---|---|---|---|---|---|
Acrolein | Acetaldehyde | Propionaldehyde | Acetol | ||||
HSiW-Al | Regular | 96.2 ± 0.3 a | 77.0 ± 0.9 | 1.9 ± 0.1 | 1.4 ± 0.1 | 10.6 ± 0.9 | 8.65 ± 0.92 |
NTP-Argon | 98.9 ± 1.8 | 80.3 ± 1.1 | 1.9 ± 0.4 | 1.5 ± 0.1 | 10.2 ± 0.7 | 8.48 ± 0.35 | |
NTP-Air | 96.8 ± 0.9 | 76.8 ± 1.5 | 1.7 ± 0.2 | 1.2 ± 0.1 | 11.4 ± 1.2 | 8.06 ± 0.89 | |
HSiW-Si | Regular | 92.9 ± 0.6 | 79.5 ± 0.2 | 1.1 ± 0.2 | 1.1 ± 0.0 | 7.6 ± 0.3 | 14.27 ± 0.50 |
NTP-Argon | 93.5 ± 1.8 | 84.1 ± 0.9 | 1.2 ± 0.2 | 1.1 ± 0.1 | 6.9 ± 0.9 | 11.67 ± 1.13 | |
NTP-Air | 94.8 ± 1.2 | 78.7 ± 1.4 | 1.1 ± 0.3 | 0.9 ± 0.1 | 7.5 ± 0.4 | 11.23 ± 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Ye, X.P. Nonthermal Plasma Induced Fabrication of Solid Acid Catalysts for Glycerol Dehydration to Acrolein. Catalysts 2021, 11, 391. https://doi.org/10.3390/catal11030391
Liu L, Ye XP. Nonthermal Plasma Induced Fabrication of Solid Acid Catalysts for Glycerol Dehydration to Acrolein. Catalysts. 2021; 11(3):391. https://doi.org/10.3390/catal11030391
Chicago/Turabian StyleLiu, Lu, and Xiaofei Philip Ye. 2021. "Nonthermal Plasma Induced Fabrication of Solid Acid Catalysts for Glycerol Dehydration to Acrolein" Catalysts 11, no. 3: 391. https://doi.org/10.3390/catal11030391
APA StyleLiu, L., & Ye, X. P. (2021). Nonthermal Plasma Induced Fabrication of Solid Acid Catalysts for Glycerol Dehydration to Acrolein. Catalysts, 11(3), 391. https://doi.org/10.3390/catal11030391