Evaluation of Efficient and Noble-Metal-Free NiTiO3 Nanofibers Sensitized with Porous gC3N4 Sheets for Photocatalytic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Field-Emission Scanning Electron Microscopy (FE-SEM)
2.2. Transmission Electron Microscopy (TEM) Analysis
2.3. X-ray Diffraction Analysis
2.4. Fourier Transform Infrared (FT-IR) Spectroscopy Analysis
2.5. Surface Area and Pore Size Distribution
2.6. X-ray Photoelectron Spectroscopy (XPS) Analysis
2.7. Optical Absorbance
2.8. Photoluminescence (PL) Analysis
2.9. Photoelectrochemical Performance
2.10. Removal of MB Dye
2.11. Photocatalytic hydrogen evolution
3. Possible Photocatalytic Mechanism
4. Materials and Methods
4.1. Materials
4.2. Synthesis of NiTiO3 NFs
4.3. Preparation of gC3N4
4.4. Preparation of AAs-gC3N4
4.5. Preparation of NiTiO3/AAs-gC3N4 Hybrids
4.6. Photoelectrochemical Performance
4.7. MB Removal Test
4.8. Hydrogen Evolution
4.9. Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katal, R.; Masudy-Panah, S.; Tanhaei, M.; Farahani, M.H.D.A.; Jiangyong, H. A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chem. Eng. J. 2020, 384, 123384. [Google Scholar] [CrossRef]
- Vallejo, W.; Cantillo, A.; Díaz-Uribe, C. Methylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Films. Int. J. Photoenergy 2020, 2020, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Marcelino, R.B.P.; Amorim, C.C. Towards visible-light photocatalysis for environmental applications: Band-gap engineering versus photons absorption—a review. Environ. Sci. Pollut. Res. 2018, 26, 4155–4170. [Google Scholar] [CrossRef] [PubMed]
- Perween, S.; Ranjan, A. Improved visible-light photocatalytic activity in ZnTiO3 nanopowder prepared by sol-electrospinning. Sol. Energy Mater. Sol. Cells 2017, 163, 148–156. [Google Scholar] [CrossRef]
- Subramanian, S.; Ganapathy, S.; Subramanian, S.; Rajaram, M.; Thangaraj, R.; Ramasamy, J. Effect of photocatalytic activity on cobalt titanate (CoTiO3) nanostructures. Mater. Today: Proc. 2020, 33, 2274–2278. [Google Scholar] [CrossRef]
- Konstas, P.-S.; Konstantinou, I.; Petrakis, D.; Albanis, T. Development of SrTiO3 Photocatalysts with Visible Light Response Using Amino Acids as Dopant Sources for the Degradation of Organic Pollutants in Aqueous Systems. Catal. 2018, 8, 528. [Google Scholar] [CrossRef] [Green Version]
- Lakhera, S.K.; Hafeez, H.Y.; Veluswamy, P.; Ganesh, V.; Khan, A.; Ikeda, H.; Neppolian, B. Enhanced photocatalytic degradation and hydrogen production activity of in situ grown TiO2 coupled NiTiO3 nanocomposites. Appl. Surf. Sci. 2018, 449, 790–798. [Google Scholar] [CrossRef]
- Kumar, B.S.; Shanmugharaj, A.; Kalpathy, S.K.; Anandhan, S. Some new observations on the structural and phase evolution of nickel titanate nanofibers. Ceram. Int. 2017, 43, 6845–6857. [Google Scholar] [CrossRef]
- Yuan, P.-H.; Fan, C.-M.; Ding, G.-Y.; Wang, Y.-F.; Zhang, X.-C. Preparation and photocatalytic properties of ilmenite NiTiO3 powders for degradation of humic acid in water. Int. J. Miner. Met. Mater. 2012, 19, 372–376. [Google Scholar] [CrossRef]
- Huang, Z.; Zeng, X.; Li, K.; Gao, S.; Wang, Q.; Lu, J. Z-Scheme NiTiO3/g-C3N4 Heterojunctions with Enhanced Photoelectrochemical and Photocatalytic Performances under Visible LED Light Irradiation. ACS Appl. Mater. Interfaces 2017, 9, 41120–41125. [Google Scholar] [CrossRef]
- Rono, N.; Kibet, J.K.; Martincigh, B.S.; Nyamori, V.O. A review of the current status of graphitic carbon nitride. Crit. Rev. Solid State Mater. Sci. 2020, 1–29. [Google Scholar] [CrossRef]
- Tahir, M.; Sagir, M.; Shahzad, K. Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3-TiO2 @g-C3N4 composite. J. Hazard. Mater. 2019, 363, 205–213. [Google Scholar] [CrossRef]
- Opoku, F.; Govender, K.K.; Van Sittert, C.G.C.E.; Govender, P.P. Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study. Appl. Surf. Sci. 2018, 427, 487–498. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, J.; Feng, X.; Ding, Z.; Li, Z. Wide spectrum responsive CdS/NiTiO3/CoS with superior photocatalytic performance for hydrogen evolution. Catal. Sci. Technol. 2017, 7, 2524–2530. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.; Wu, H.; Xu, G.; Zhang, X.; Shu, X.; Lv, J.; Wu, Y. Synthesis of Ni−MoS x /g-C3N4 for Photocatalytic Hydrogen Evolution under Visible Light. ChemCatChem 2020, 12, 911–916. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Peng, M.; Liu, Z.; Li, X.; Zhao, S. MoS2/NiTiO3 Heterojunctions as Photocatalysts: Improved Charge Separation for Promoting Photocatalytic Hydrogen Production Activity. Catal. Surv. Asia 2019, 23, 277–289. [Google Scholar] [CrossRef]
- Qu, X.; Liu, M.; Zhang, W.; Sun, Z.; Meng, W.; Shi, L.; Du, F. A facile route to construct NiTiO3/Bi4NbO8Cl heterostructures for enhanced photocatalytic water purification. J. Mater. Sci. 2020, 55, 1–13. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Guo, Y.; Shen, M.; Wang, M.; Li, B.; Shi, J. Multifunctional 2D porous g-C3N4 nanosheets hybridized with 3D hierarchical TiO2 microflowers for selective dye adsorption, antibiotic degradation and CO2 reduction. Chem. Eng. J. 2020, 396, 125347. [Google Scholar] [CrossRef]
- Israr, M.; Raza, F.; Nazar, N.; Ahmad, T.; Khan, M.F.; Park, T.J.; Basit, M.A. Rapid conjunction of 1D carbon nanotubes and 2D graphitic carbon nitride with ZnO for improved optoelectronic properties. Appl. Nanosci. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Yang, B.; Bai, X.; Wang, J.; Fang, M.; Wu, X.; Liu, Y.; Huang, Z.; Lao, C.-Y.; Min, X. Photocatalytic Performance of NiO/NiTiO3 Composite Nanofiber Films. Catalysts 2019, 9, 561. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Du, P.; Pan, H.; Fu, L.; Zhang, Y.; Chen, J.; Du, Y.; Tang, N.; Liu, G. Increasing Solar Absorption of Atomically Thin 2D Carbon Nitride Sheets for Enhanced Visible-Light Photocatalysis. Adv. Mater. 2019, 31, e1807540. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; He, J.; Chen, D. Visible-Light-Induced Photocatalyst Based on Nickel Titanate Nanoparticles. Ind. Eng. Chem. Res. 2008, 47, 4750–4753. [Google Scholar] [CrossRef]
- Li, M.-W.; Yuan, J.-P.; Gao, X.-M.; Liang, E.-Q.; Wang, C.-Y. Structure and optical absorption properties of NiTiO3 nanocrystallites. Appl. Phys. A 2016, 122, 1–7. [Google Scholar] [CrossRef]
- Dharmaraj, N.; Park, H.; Kim, C.; Kim, H.Y.; Lee, D. Nickel titanate nanofibers by electrospinning. Mater. Chem. Phys. 2004, 87, 5–9. [Google Scholar] [CrossRef]
- Kumar, S.; Karthikeyan, S.; Lee, A.F. g-C3N4-Based Nanomaterials for Visible Light-Driven Photocatalysis. Catalysts 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Pawar, R.C.; Kang, S.; Park, J.H.; Kim, J.-H.; Ahn, S.; Lee, C.S. Evaluation of a multi-dimensional hybrid photocatalyst for enrichment of H2 evolution and elimination of dye/non-dye pollutants. Catal. Sci. Technol. 2017, 7, 2579–2590. [Google Scholar] [CrossRef]
- Pham, T.-T.; Shin, E.W. Thermal formation effect of g-C3N4 structure on the visible light driven photocatalysis of g-C3N4/NiTiO3 Z-scheme composite photocatalysts. Appl. Surf. Sci. 2018, 447, 757–766. [Google Scholar] [CrossRef]
- Dao, D.Q.; Nguyen, T.K.A.; Pham, T.-T.; Shin, E.W. Synergistic Effect on Photocatalytic Activity of Co-Doped NiTiO3/g-C3N4 Composites under Visible Light Irradiation. Catalysts 2020, 10, 1332. [Google Scholar] [CrossRef]
- Pham, T.-T.; Shin, E.W. Inhibition of charge recombination of NiTiO3 photocatalyst by the combination of Mo-doped impurity state and Z-scheme charge transfer. Appl. Surf. Sci. 2020, 501, 143992. [Google Scholar] [CrossRef]
- Zhang, S.; Song, S.; Gu, P.; Ma, R.; Wei, D.; Zhao, G.; Wen, T.; Jehan, R.; Hu, B.; Wang, X. Visible-light-driven activation of persulfate over cyano and hydroxyl group co-modified mesoporous g-C3N4 for boosting bisphenol A degradation. J. Mater. Chem. A 2019, 7, 5552–5560. [Google Scholar] [CrossRef]
- Chang, F.; Li, C.; Luo, J.; Xie, Y.; Deng, B.; Hu, X. Enhanced visible-light-driven photocatalytic performance of porous graphitic carbon nitride. Appl. Surf. Sci. 2015, 358, 270–277. [Google Scholar] [CrossRef]
- Pham, T.-T.; Shin, E.W. Influence of g-C3N4 Precursors in g-C3N4/NiTiO3 Composites on Photocatalytic Behavior and the Interconnection between g-C3N4 and NiTiO3. Langmuir 2018, 34, 13144–13154. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, H.; Kang, S.; Lee, C.S. Evaluation of Efficient and Noble-Metal-Free NiTiO3 Nanofibers Sensitized with Porous gC3N4 Sheets for Photocatalytic Applications. Catalysts 2021, 11, 385. https://doi.org/10.3390/catal11030385
Khan H, Kang S, Lee CS. Evaluation of Efficient and Noble-Metal-Free NiTiO3 Nanofibers Sensitized with Porous gC3N4 Sheets for Photocatalytic Applications. Catalysts. 2021; 11(3):385. https://doi.org/10.3390/catal11030385
Chicago/Turabian StyleKhan, Haritham, Suhee Kang, and Caroline Sunyong Lee. 2021. "Evaluation of Efficient and Noble-Metal-Free NiTiO3 Nanofibers Sensitized with Porous gC3N4 Sheets for Photocatalytic Applications" Catalysts 11, no. 3: 385. https://doi.org/10.3390/catal11030385
APA StyleKhan, H., Kang, S., & Lee, C. S. (2021). Evaluation of Efficient and Noble-Metal-Free NiTiO3 Nanofibers Sensitized with Porous gC3N4 Sheets for Photocatalytic Applications. Catalysts, 11(3), 385. https://doi.org/10.3390/catal11030385