Green Synthesis of N/Zr Co-Doped TiO2 for Photocatalytic Degradation of p-Nitrophenol in Wastewater
Abstract
:1. Introduction
2. Results
2.1. Crystallographic Properties of Samples
2.2. Composition of Samples
2.3. Textural Properties of Samples
2.4. Morphology of Samples
2.5. Optical Properties of Samples
2.6. XPS Analysis
2.7. Photocatalytic Activity
2.7.1. Experiments under UV–Visible Light
2.7.2. Experiments under Visible Light
2.7.3. Recyclability under Visible Light
2.8. Photoluminescence Study
3. Materials and Methods
3.1. Pure TiO2 Synthesis
3.2. Urea-TiO2 Powder Synthesis
3.3. Triethylamine-TiO2 Doped Powder Synthesis
3.4. Zr-TiO2 Powder Syntheses
3.5. Urea/Zr/TiO2 Co-Doped Powder Synthesis
3.6. Triethylamine/Zr/TiO2 Co-Doped Powder Synthesis
3.7. Material Characterization
3.8. Photocatalytic Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hieu, C.; Nguyen, H.; Fu, C.; Lu, Y.; Juang, R. Roles of adsorption and photocatalysis in removing organic pollutants from water by activated carbon À supported titania composites: Kinetic aspects. J. Taiwan Inst. Chem. Eng. 2020, 109, 51–61. [Google Scholar]
- Helali, S.; Puzenat, E.; Perol, N.; Safi, M.; Guillard, C. Methylamine and dimethylamine photocatalytic degradation—Adsorption isotherms and kinetics. Appl. Catal. A Gen. 2011, 402, 201–207. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Raghava, K.; Raghu, A.V.; Venkata, C. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energy 2020, 45, 7764–7778. [Google Scholar] [CrossRef]
- Mahy, J.G.; Hermans, S.; Lambert, D. Influence of nucleating agent addition on the textural and photo-Fenton properties of Fe(III)/SiO2 catalysts. J. Phys. Chem. Solids 2020, 144, 109502. [Google Scholar] [CrossRef]
- Oturan, M.A.; Aaron, J.J. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Belet, A.; Wolfs, C.; Mahy, J.G.; Poelman, D.; Vreuls, C. Sol-gel Syntheses of Photocatalysts for the Removal of Pharmaceutical Products in Water. Nanomaterials 2019, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Levchuk, I.; Fern, P.; Sillanp, M.; Jos, J. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 2020, 258, 120694. [Google Scholar]
- Zaleska, A. Doped-TiO2: A Review. Recent Patents Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Gohin, M.; Allain, E.; Chemin, N.; Maurin, I.; Gacoin, T.; Boilot, J. Sol—Gel nanoparticulate mesoporous films with enhanced self-cleaning properties. J. Photochem. Photobiol. A Chem. 2010, 216, 142–148. [Google Scholar] [CrossRef]
- Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photocatalysis: Fundamentals and Applications; Bkc: Tokyo, Japan, 1999. [Google Scholar]
- Mahy, J.G.; Lambert, S.D.; Léonard, G.L.-M.; Zubiaur, A.; Olu, P.-Y.; Mahmoud, A.; Boschini, F.; Heinrichs, B. Towards a large scale aqueous sol-gel synthesis of doped TiO2: Study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. J. Photochem. Photobiol. A Chem. 2016, 329, 189–202. [Google Scholar] [CrossRef]
- Yao, X.; Wang, X.; Su, L.; Yan, H.; Yao, M. Band structure and photocatalytic properties of N/Zr co-doped anatase TiO2 from first-principles study. J. Mol. Catal. A Chem. 2011, 351, 11–16. [Google Scholar] [CrossRef]
- Luciani, G.; Imparato, C.; Vitiello, G. Photosensitive Hybrid Nanostructured Materials: The Big Challenges for Sunlight Capture. Materials 2020, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Mahy, J.G.; Lambert, S.D.; Tilkin, R.G.; Poelman, D.; Wolfs, C.; Devred, F.; Gaigneaux, E.M.; Douven, S. Ambient temperature ZrO2-doped TiO2 crystalline photocatalysts: Highly efficient powders and films for water depollution. Mater. Today Energy 2019, 13, 312–322. [Google Scholar] [CrossRef]
- Garzon-Roman, A.; Zuñiga-islas, C.; Quiroga-gonzález, E. Immobilization of doped TiO2 nanostructures with Cu or In inside of macroporous silicon using the solvothermal method: Morphological, structural, optical and functional properties. Ceram. Int. 2020, 46, 1137–1147. [Google Scholar] [CrossRef]
- Siddiqa, A.; Masih, D.; Anjum, D.; Siddiq, M. Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol. J. Environ. Sci. 2015, 37, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Surendra, B.; Raju, B.M.; Noel, K.; Onesimus, S.; Choudhary, G.L.; Paul, P.F.; Vangalapati, M. Synthesis and characterization of Ni doped TiO2 nanoparticles and its application for the degradation of malathion. Mater. Today Proc. 2020, 26, 1091–1095. [Google Scholar] [CrossRef]
- Jemaa, I.B.; Chaabouni, F.; Ranguis, A. Cr doping effect on the structural, optoelectrical and photocatalytic properties of RF sputtered TiO2 thin fi lms from a powder target. J. Alloys Compd. 2020, 825, 153988. [Google Scholar] [CrossRef]
- Bharati, B.; Mishra, N.C.; Sinha, A.S.K.; Rath, C. Unusual structural transformation and photocatalytic activity of Mn doped TiO2 nanoparticles under sunlight. Mater. Res. Bull. 2020, 123, 110710. [Google Scholar] [CrossRef]
- Manojkumar, P.; Lokeshkumar, E.; Saikiran, A.; Govardhanan, B.; Ashok, M. Visible light photocatalytic activity of metal (Mo/V/W) doped porous TiO2 coating fabricated on Cp-Ti by plasma electrolytic oxidation. J. Alloys Compd. 2020, 825, 154092. [Google Scholar] [CrossRef]
- Saito, K.; Yi, E.; Laine, R.M.; Sugahara, Y. Preparation of Nb-doped TiO2 nanopowder by liquid-feed spray pyrolysis followed by ammonia annealing for tunable visible-light absorption and inhibition of photocatalytic activity. Ceram. Int. 2020, 46, 1314–1322. [Google Scholar] [CrossRef]
- Ravishankar, T.N.; Vaz, M.D.O.; Ramakrishnappa, T.; Teixeira, S.R.; Dupont, J. Ionic liquid e assisted hydrothermal synthesis of Nb/ TiO2 nanocomposites for efficient photocatalytic hydrogen production and photodecolorization of Rhodamine B under UV-visible and visible light illuminations. Mater. Today Chem. 2019, 12, 373–385. [Google Scholar] [CrossRef]
- Thakur, I.; Örmeci, B. Inactivation of E. coli in water employing Fe-TiO2 composite incorporating in-situ dual process of photocatalysis and photo-Fenton in fixed-mode. J. Water Process Eng. 2020, 33, 101085. [Google Scholar] [CrossRef]
- Jiang, G.; Geng, K.; Wu, Y.; Han, Y.; Shen, X. High photocatalytic performance of ruthenium complexes sensitizing g-C3N4/TiO2 hybrid in visible light irradiation. Appl. Catal. B Environ. 2018, 227, 366–375. [Google Scholar] [CrossRef]
- Li, Y.; Cao, S.; Zhang, A.; Zhang, C.; Qu, T.; Zhao, Y.; Chen, A. Carbon and nitrogen co-doped bowl-like Au/TiO2 nanostructures with tunable size for enhanced visible-light-driven photocatalysis. Appl. Surf. Sci. 2018, 445, 350–358. [Google Scholar] [CrossRef]
- Onkani, S.P.; Diagboya, P.N.; Mtunzi, F.M.; Klink, M.J.; Olu-owolabi, B.I.; Pakade, V. Comparative study of the photocatalytic degradation of 2–chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts. J. Environ. Manag. 2020, 260, 110145. [Google Scholar] [CrossRef]
- Mahy, J.G.; Cerfontaine, V.; Poelman, D.; Devred, F.; Gaigneaux, E.M.; Heinrichs, B.; Lambert, S.D. Highly efficient low-temperature N-doped TiO2 catalysts for visible light photocatalytic applications. Materials 2018, 11, 584. [Google Scholar] [CrossRef] [Green Version]
- Ohno, T.; Mitsui, Ã.T.; Matsumura, M. Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light. Chem. Lett. 2003, 32, 364–365. [Google Scholar] [CrossRef] [Green Version]
- Payormhorm, J.; Idem, R. Synthesis of C-doped TiO2 by sol-microwave method for photocatalytic conversion of glycerol to value-added chemicals under visible light. Appl. Catal. A Gen. 2020, 590, 117362. [Google Scholar] [CrossRef]
- Yadav, V.; Verma, P.; Sharma, H.; Tripathy, S.; Saini, V.K. Photodegradation of 4-nitrophenol over B-doped TiO2 nanostructure: Effect of dopant concentration, kinetics, and mechanism. Environ. Sci. Pollut. Res. 2020, 27, 10966–10980. [Google Scholar] [CrossRef] [PubMed]
- Bodson, C.J.; Heinrichs, B.; Tasseroul, L.; Bied, C.; Mahy, J.G.; Man, M.W.C.; Lambert, S.D. Efficient P- and Ag-doped titania for the photocatalytic degradation of waste water organic pollutants. J. Alloys Compd. 2016, 682, 144–153. [Google Scholar] [CrossRef]
- Tian, L.; Xing, L.; Shen, X.; Li, Q.; Ge, S.; Liu, B.; Jie, L. Visible light enhanced Fe–I–TiO2 photocatalysts for the degradation of gaseous benzene. Atmos. Pollut. Res. 2020, 11, 179–185. [Google Scholar] [CrossRef]
- Bayan, E.M.; Lupeiko, T.G.; Pustovaya, L.E.; Volkova, M.G.; Butova, V.V.; Guda, A.A. Zn-F co-doped TiO2 nanomaterials: Synthesis, structure and photocatalytic activity. J. Alloys Compd. 2020, 822, 153662. [Google Scholar] [CrossRef]
- Qin, Y.; Li, H.; Lu, J.; Meng, F.; Ma, C.; Yan, Y. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 384, 123275. [Google Scholar] [CrossRef]
- Mahy, J.G.; Paez, C.A.; Carcel, C.; Bied, C.; Tatton, A.S.; Damblon, C.; Heinrichs, B.; Man, M.W.C.; Lambert, S.D. Porphyrin-based hybrid silica-titania as a visible-light photocatalyst. J. Photochem. Photobiol. A Chem. 2019, 373, 66–76. [Google Scholar] [CrossRef]
- Abbad, S.; Guergouri, K.; Gazaout, S.; Djebabra, S.; Zertal, A.; Barille, R.; Zaabat, M. Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route. J. Environ. Chem. Eng. 2020, 8, 103718. [Google Scholar] [CrossRef]
- Rathore, N.; Kulshreshtha, A.; Kumar, R.; Sharma, D. Study on morphological, structural and dielectric properties of sol-gel derived TiO2 nanocrystals annealed at different temperatures. Phys. B Phys. Condens. Matter. 2020, 582, 411969. [Google Scholar] [CrossRef]
- Mahy, J.G.; Claude, V.; Sacco, L.; Lambert, S.D. Ethylene polymerization and hydrodechlorination of 1,2-dichloroethane mediated by nickel (II) covalently anchored to silica xerogels. J. Sol-Gel Sci. Technol. 2017, 81, 59–68. [Google Scholar] [CrossRef]
- Sato, S. Photocatalytic Activity of NOx-doped TiO2 in the Visible Light Region. Chem. Phys. Lett. 1986, 123, 126–128. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Pouretedal, H.R. Visible photocatalytic activity of co-doped TiO2/Zr, N nanoparticles in wastewater treatment of nitrotoluene samples. J. Alloys Compd. 2018, 735, 2507–2511. [Google Scholar] [CrossRef]
- Park, J.-Y.; Lee, K.-H.; Kim, B.-S.; Kim, C.S.; Lee, S.-E.; Okuyama, K.; Jang, H.-D.; Kim, T.-O. Enhancement of dye-sensitized solar cells using Zr/N-doped TiO2 composites as photoelectrodes. RSC Adv. 2014, 4, 9946–9952. [Google Scholar] [CrossRef]
- Liu, H.; Liu, G.; Shi, X. N/Zr-codoped TiO2 nanotube arrays: Fabrication, characterization, and enhanced photocatalytic activity. Colloids Surf. A Physicochem. Eng. Asp. 2010, 363, 35–40. [Google Scholar] [CrossRef]
- Cha, J.; An, S.; Jang, H.; Kim, C.; Song, D.; Kim, T. Synthesis and photocatalytic activity of N-doped TiO2/ZrO2 visible-light photocatalysts. Adv. Powder Technol. 2012, 23, 717–723. [Google Scholar] [CrossRef]
- Bineesh, K.V.; Kim, D.-K.; Park, D.-W. Synthesis and characterization of zirconium-doped mesoporous nano-crystalline TiO2. Nanoscale 2010, 2, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Rubasinghege, G.; Grassian, V.H. Role(s) of adsorbed water in the surface chemistry of environmental interfaces. Chem. Commun. 2013, 49, 3071–3094. [Google Scholar] [CrossRef]
- Luo, S.X.; Wang, F.M.; Shi, Z.S.; Xin, F. Preparation and photocatalytic activity of Zr doped TiO2. Mater. Res. Innov. 2009, 13, 64–69. [Google Scholar] [CrossRef]
- Nishino, N.; Finlayson-pitts, B.J. Thermal and photochemical reactions of NO2 on chromium (III) oxide surfaces at atmospheric pressure. Phys. Chem. Chem. Phys. 2012, 14, 15840–15848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burch, R.; Breen, J.P.; Meunier, F.C. A review of the selective reduction of NO x with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Appl. Catal. B Environ. 2002, 39, 283–303. [Google Scholar] [CrossRef]
- Bollino, F.; Tranquillo, E. Zirconia/Hydroxyapatite Composites Synthesized Via Sol-Gel: Influence of Hydroxyapatite Content and. Materials 2017, 10, 757. [Google Scholar] [CrossRef] [Green Version]
- Lecloux, A.J. Texture of catalysts. Catal. Sci. Technol. 1981, 2, 171. [Google Scholar]
- Maver, K.; Štangar, U.L.; Černigoj, U.; Gross, S.; Cerc Korošec, R. Low-temperature synthesis and characterization of TiO2 and TiO2-ZrO2 photocatalytically active thin films. Photochem. Photobiol. Sci. 2009, 8, 657–662. [Google Scholar] [CrossRef]
- Thejaswini, T.V.L.; Prabhakaran, D.; Maheswari, M.A. Synthesis of mesoporous worm-like ZrO2–TiO2 monoliths and their photocatalytic applications towards organic dye degradation. J. Photochem. Photobiol. A Chem. 2017, 344, 212–222. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Jiang, G.; He, G. Hierarchically macro—Mesoporous ZrO2—TiO2 composites with enhanced photocatalytic activity. Ceram. Int. 2015, 41, 5749–5757. [Google Scholar] [CrossRef]
- Azouani, R.; Tieng, S.; Chhor, K.; Bocquet, J.F.; Eloy, P.; Gaigneaux, E.M.; Klementiev, K.; Kanaev, A. V TiO2 doping by hydroxyurea at the nucleation stage: Towards a new photocatalyst in the visible spectral range. Phys. Chem. Chem. Phys. 2010, 12, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bittencourt, C.; Rutar, M.; Umek, P.; Mrzel, A.; Vozel, K.; Arcon, D.; Henzler, K.; Krüger, P.; Guttmann, P. Molecular nitrogen in N-doped TiO2 nanoribbons. RSC Adv. 2015, 5, 23350–23356. [Google Scholar] [CrossRef] [Green Version]
- Mbiri, A.; Ta, D.H.; Gatebe, E.; Wark, M. Zirconium doped mesoporous TiO2 multilayer thin films: Influence of the zirconium content on the photodegradation of organic pollutants. Catal. Today 2019, 238, 71–78. [Google Scholar] [CrossRef]
- Qian, J.; Hu, Q.; Hou, X.; Qian, F.; Dong, L.; Li, B. Study of Different Ti/Zr Ratios on the Physicochemical Properties and Catalytic Activities for CuO/Ti−Zr−O Composites. Ind. Eng. Chem. Res. 2018, 57, 12792–12800. [Google Scholar] [CrossRef]
- Tian, J.; Shao, Q.; Zhao, J.; Pan, D.; Dong, M.; Jia, C.; Ding, T. Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine, B.J. Colloid Interface Sci. 2019, 541, 18–29. [Google Scholar] [CrossRef]
- Livraghi, S.; Chierotti, M.R.; Giamello, E.; Magnacca, G.; Paganini, M.C.; Cappelletti, G.; Bianchi, C.L. Nitrogen-Doped Titanium Dioxide Active in Photocatalytic Reactions with Visible Light: A Multi-Technique Characterization of Differently Prepared Materials. J. Phys. Chem. C 2008, 112, 17244–17252. [Google Scholar] [CrossRef]
- Douven, S.; Mahy, J.G.; Wolfs, C.; Reyserhove, C.; Poelman, D.; Devred, F.; Gaigneaux, E.M.; Lambert, S.D. Efficient N, Fe Co-Doped TiO2 Active under Cost-Effective Visible LED Light: From Powders to Films. Catalysts 2020, 10, 547. [Google Scholar] [CrossRef]
- Vitiello, G.; Pezzella, A.; Calcagno, V.; Silvestri, B.; Raiola, L.; Errico, G.D.; Costantini, A.; Branda, F.; Luciani, G. 5,6-Dihydroxyindole-2-carboxylic Acid−TiO2 Charge Transfer Complexes in the Radical Polymerization of Melanogenic Precursor(s). J. Phys. Chem. C 2016, 120, 6262–6268. [Google Scholar] [CrossRef]
- Pallotti, D.K.; Passoni, L.; Maddalena, P.; Di Fonzo, F.; Lettieri, S. Photoluminescence Mechanisms in Anatase and Rutile TiO2. J. Phys. Chem. C 2017, 121, 9011–9021. [Google Scholar] [CrossRef]
- Komaraiah, D.; Radha, E.; Kalarikkal, N.; Sivakumar, J.; Reddy, M.V.R.; Sayanna, R. Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceram. Int. 2019, 45, 25060–25068. [Google Scholar] [CrossRef]
- Cheary, B.Y.R.W.; Coelho, A. A Fundamental Parameters Approach to X-ray Line-Profile Fitting. J. Appl. Crystallogr. 1992, 25, 109–121. [Google Scholar] [CrossRef]
- Malengreaux, C.M.; Douven, S.; Poelman, D.; Heinrichs, B.; Bartlett, J.R. An ambient temperature aqueous sol–gel processing of efficient nanocrystalline doped TiO2-based photocatalysts for the degradation of organic pollutants. J. Sol-Gel Sci. Technol. 2014, 71, 557–570. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef] [Green Version]
- Kubelka, P. Ein Beitrag zur Optik der Farban striche. Z. Tech. Phys. 1931, 12, 593–603. [Google Scholar]
- Kubelka, P. New contributions to the optics of intensely light-scattering materials. J. Opt. Soc. Am. 1948, 38, 448–457. [Google Scholar] [CrossRef] [PubMed]
Sample | Anatase Content (%) ±5 | Brookite Content (%) ±5 | Amorphous Content (%) ±5 | Rutile Content (%) ±5 | Theoretical Zr Content (mol.%) | Actual Zr Content (mol.%) |
---|---|---|---|---|---|---|
P25 | 80 | - | - | 20 | -1 | -1 |
Pure TiO2 | 30 | 25 | 45 | - | -1 | -1 |
TiO2/Zr0.7 | 30 | 20 | 50 | - | 0.70 | 0.70 |
TiO2/Zr1.4 | 30 | 20 | 50 | - | 1.40 | 1.53 |
TiO2/Zr2 | 25 | 20 | 55 | - | 2.00 | 1.64 |
TiO2/Zr2.8 | 25 | 15 | 60 | - | 2.80 | 2.68 |
TiO2/U4 | 35 | 10 | 55 | - | -1 | -1 |
TiO2/U4/Zr0.7 | 40 | 30 | 30 | - | 0.70 | 0.89 |
TiO2/U4/Zr1.4 | 35 | 30 | 35 | - | 1.40 | 1.50 |
TiO2/U4/Zr2 | 40 | 25 | 35 | - | 2.00 | 2.32 |
TiO2/U4/Zr2.8 | 40 | 25 | 35 | - | 2.80 | 2.97 |
TiO2/N42 | 35 | 20 | 45 | - | -1 | -1 |
TiO2/N42/Zr0.7 | 40 | 30 | 30 | - | 0.70 | 1.36 |
TiO2/N42/Zr1.4 | 35 | 20 | 45 | - | 1.40 | 1.69 |
TiO2/N42/Zr2 | 35 | 20 | 45 | - | 2.00 | 2.09 |
TiO2/N42/Zr2.8 | 35 | 20 | 45 | - | 2.80 | 3.38 |
Sample | SBET (m2g −1) ±5 | Vp (cm3g−1) ±0.01 | VDR (cm3g−1) ±0.01 | dBET (nm) ±1 | dXRD (nm) ±1 | dTEM (nm) ±1 | Eg.direct (eV) ±0.01 | Eg.indirect (eV) ±0.01 |
---|---|---|---|---|---|---|---|---|
P25 | 50 | -1 | 0.03 | 31 | 18 2–8 3 | -1 | 3.45 | 3.05 |
TiO2 pure | 195 | 0.10 | 0.1 | 8 | 5 | 5 | 3.35 | 2.98 |
TiO2/Zr0.7 | 205 | 0.11 | 0.11 | 8 | 4 | 6 | 3.36 | 3.03 |
TiO2/Zr1.4 | 205 | 0.11 | 0.11 | 8 | 6 | 6 | 3.29 | 2.98 |
TiO2/Zr2 | 210 | 0.12 | 0.11 | 7 | 6 | 5 | 3.26 | 2.90 |
TiO2/Zr2.8 | 195 | 0.12 | 0.11 | 8 | 6 | 6 | 3.32 | 2.97 |
TiO2/U4 | 270 | 0.24 | 0.16 | 6 | 6 | 6 | 3.34 | 3.05 |
TiO2/U4/Zr0.7 | 260 | 0.28 | 0.15 | 6 | 7 | 6 | 3.35 | 3.07 |
TiO2/U4/Zr1.4 | 280 | 0.27 | 0.17 | 5 | 4 | 5 | 3.26 | 2.98 |
TiO2/U4/Zr2 | 280 | 0.34 | 0.17 | 5 | 6 | 6 | 3.32 | 3.04 |
TiO2/U4/Zr2.8 | 200 | 0.28 | 0.12 | 8 | 6 | 7 | 3.32 | 3.07 |
TiO2/N42 | 240 | 0.24 | 0.15 | 6 | 6 | 6 | 3.25 | 3.00 |
TiO2/N42/Zr0.7 | 185 | 0.23 | 0.12 | 8 | 6 | 6 | 3.26 | 2.97 |
TiO2/N42/Zr1.4 | 230 | 0.26 | 0.14 | 7 | 6 | 6 | 3.27 | 2.99 |
TiO2/N42/Zr2 | 200 | 0.26 | 0.12 | 8 | 6 | 5 | 3.31 | 3.03 |
TiO2/N42/Zr2.8 | 220 | 0.26 | 0.13 | 7 | 6 | 6 | 3.31 | 2.99 |
Sample | N/TiXPS | Zr/TiXPS | Zr/TiICP |
---|---|---|---|
TiO2/N42/Zr1.4 | 0.043 | 0.028 | 0.017 |
TiO2/N42/Zr2 | 0.034 | 0.035 | 0.021 |
TiO2/N42/Zr2.8 | 0.037 | 0.051 | 0.034 |
TiO2/U4/Zr2.8 | 0.044 | 0.048 | 0.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benkhennouche-Bouchene, H.; Mahy, J.G.; Wolfs, C.; Vertruyen, B.; Poelman, D.; Eloy, P.; Hermans, S.; Bouhali, M.; Souici, A.; Bourouina-Bacha, S.; et al. Green Synthesis of N/Zr Co-Doped TiO2 for Photocatalytic Degradation of p-Nitrophenol in Wastewater. Catalysts 2021, 11, 235. https://doi.org/10.3390/catal11020235
Benkhennouche-Bouchene H, Mahy JG, Wolfs C, Vertruyen B, Poelman D, Eloy P, Hermans S, Bouhali M, Souici A, Bourouina-Bacha S, et al. Green Synthesis of N/Zr Co-Doped TiO2 for Photocatalytic Degradation of p-Nitrophenol in Wastewater. Catalysts. 2021; 11(2):235. https://doi.org/10.3390/catal11020235
Chicago/Turabian StyleBenkhennouche-Bouchene, Hayette, Julien G. Mahy, Cédric Wolfs, Bénédicte Vertruyen, Dirk Poelman, Pierre Eloy, Sophie Hermans, Mekki Bouhali, Abdelhafid Souici, Saliha Bourouina-Bacha, and et al. 2021. "Green Synthesis of N/Zr Co-Doped TiO2 for Photocatalytic Degradation of p-Nitrophenol in Wastewater" Catalysts 11, no. 2: 235. https://doi.org/10.3390/catal11020235
APA StyleBenkhennouche-Bouchene, H., Mahy, J. G., Wolfs, C., Vertruyen, B., Poelman, D., Eloy, P., Hermans, S., Bouhali, M., Souici, A., Bourouina-Bacha, S., & Lambert, S. D. (2021). Green Synthesis of N/Zr Co-Doped TiO2 for Photocatalytic Degradation of p-Nitrophenol in Wastewater. Catalysts, 11(2), 235. https://doi.org/10.3390/catal11020235