Mutagenesis of the l-Amino Acid Ligase RizA Increased the Production of Bioactive Dipeptides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Mutations
2.2. Biocatalytic Performance of RizA Variants with Different Substrates
2.2.1. Recombinant Production of RizA Variants and Biocatalysis Setup
2.2.2. Arginine Only
2.2.3. Arginine + Aspartic Acic
2.2.4. Arginine + Serine
2.2.5. Arginine + Alanine
2.2.6. Arginine + Phenylalanine
2.3. Effects of Mutations on the Substrate Specificity and Biocatalytic Productivity of RizA
3. Materials and Methods
3.1. Chemicals, Reagents and Strains
3.2. Mutagenesis of RizA
3.3. Cultivation and Purification
3.4. Biocatalysis
3.5. Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fürst, P. New Developments in Glutamine Delivery. J. Nutr. 2001, 131, 2562S–2568S. [Google Scholar] [CrossRef] [Green Version]
- Yagasaki, M.; Hashimoto, S. Synthesis and application of dipeptides; current status and perspectives. Appl. Microbiol. Biotechnol. 2008, 81, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Kopaliani, I.; Jannasch, A.; Mund, C.; Todorov, V.; Henle, T.; Deussen, A. Antihypertensive and cardioprotective effects of the dipeptide isoleucine–tryptophan and whey protein hydrolysate. Acta Physiol. 2015, 215, 167–176. [Google Scholar] [CrossRef]
- Kagebayashi, T.; Kontani, N.; Yamada, Y.; Mizushige, T.; Arai, T.; Kino, K.; Ohinata, K. Novel CCK-dependent vasorelaxing dipeptide, Arg-Phe, decreases blood pressure and food intake in rodents. Mol. Nutr. Food Res. 2012, 56, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.D.; Fraser, S.; Boer, J.C.; Plebanski, M.; de Courten, B.; Apostolopoulos, V. Anti-Cancer Effects of Carnosine—A Dipeptide Molecule. Molecules 2021, 26, 1644. [Google Scholar] [CrossRef] [PubMed]
- Ano, Y.; Ayabe, T.; Ohya, R.; Kondo, K.; Kitaoka, S.; Furuyashiki, T. Tryptophan-Tyrosine Dipeptide, the Core Sequence of β-Lactolin, Improves Memory by Modulating the Dopamine System. Nutrients 2019, 11, 348. [Google Scholar] [CrossRef] [Green Version]
- Ano, Y.; Kita, M.; Kitaoka, S.; Furuyashiki, T. Leucine–Histidine Dipeptide Attenuates Microglial Activation and Emotional Disturbances Induced by Brain Inflammation and Repeated Social Defeat Stress. Nutrients 2019, 11, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ano, Y.; Yoshino, Y.; Uchida, K.; Nakayama, H. Preventive Effects of Tryptophan–Methionine Dipeptide on Neural Inflammation and Alzheimer’s Pathology. Int. J. Mol. Sci. 2019, 20, 3206. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.; Torcato, I.; Castanho, M.A.R.B. Biomedical applications of dipeptides and tripeptides. Pept. Sci. 2012, 98, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Yokozeki, K.; Abe, I. A novel route for aspartame production by combining enzymatic and chemical reactions for industrial use. Biosci. Biotechnol. Biochem. 2020, 85, 464–466. [Google Scholar] [CrossRef]
- Schindler, A.; Dunkel, A.; Stähler, F.; Backes, M.; Ley, J.; Meyerhof, W.; Hofmann, T. Discovery of Salt Taste Enhancing Arginyl Dipeptides in Protein Digests and Fermented Fish Sauces by Means of a Sensomics Approach. J. Agric. Food Chem. 2011, 59, 12578–12588. [Google Scholar] [CrossRef]
- Kino, H.; Kino, K. Alteration of the substrate specificity of l-amino acid ligase and selective synthesis of Met-Gly as a salt taste enhancer. Biosci. Biotechnol. Biochem. 2015, 79, 1827–1832. [Google Scholar] [CrossRef]
- Harth, L.; Krah, U.; Linke, D.; Dunkel, A.; Hofmann, T.; Berger, R.G. Salt Taste Enhancing L-Arginyl Dipeptides from Casein and Lysozyme Released by Peptidases of Basidiomycota. J. Agric. Food Chem. 2018, 66, 2344–2353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.; Liu, W.; Zhao, L. Novel Umami Ingredients: Umami Peptides and Their Taste. J. Food. Sci. 2017, 82, 16–23. [Google Scholar] [CrossRef]
- Yan, F.; Cui, H.; Zhang, Q.; Hayat, K.; Yu, J.; Hussain, S.; Tahir, M.U.; Zhang, X.; Ho, C.-T. Small Peptides Hydrolyzed from Pea Protein and Their Maillard Reaction Products as Taste Modifiers: Saltiness, Umami, and Kokumi Enhancement. Food Bioprocess. Technol. 2021, 14, 1132–1141. [Google Scholar] [CrossRef]
- Gill, I.; López-Fandiño, R.; Jorba, X.; Vulfson, E.N. Biologically active peptides and enzymatic approaches to their production. Enzym. Microb. Technol. 1996, 18, 162–183. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Woodley, J.M. Role of Biocatalysis in Sustainable Chemistry. Chem. Rev. 2018, 118, 801–838. [Google Scholar] [CrossRef] [PubMed]
- Behrens, G.A.; Hummel, A.; Padhi, S.K.; Schätzle, S.; Bornscheuer, U.T. Discovery and Protein Engineering of Biocatalysts for Organic Synthesis. Adv. Syn. Catal. 2011, 353, 2191–2215. [Google Scholar] [CrossRef]
- Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Tabata, K.; Ikeda, H.; Hashimoto, S.-I. ywfE in Bacillus subtilis Codes for a Novel Enzyme L-Amino Acid Ligase. J. Bacteriol. 2005, 187, 5195–5202. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Takahashi, Y.; Noguchi, A.; Arai, T.; Yagasaki, M.; Kino, K.; Saito, J.-I. The structure of l-amino-acid ligase from Bacillus licheniformis. Acta Cryst. D 2012, 68, 1535–1540. [Google Scholar] [CrossRef]
- Kino, K.; Nakazawa, Y.; Yagasaki, M. Dipeptide synthesis by L-amino acid ligase from Ralstonia solanacearum. Biochem. Biophys. Res. Commun. 2008, 371, 536–540. [Google Scholar] [CrossRef]
- Kino, K.; Noguchi, A.; Nakazawa, Y.; Yagasaki, M. A novel L-amino acid ligase from Bacillus Licheniformis. J. Biosci. Bioeng. 2008, 106, 313–315. [Google Scholar] [CrossRef]
- Kino, H.; Nakajima, S.; Arai, T.; Kino, K. Effective production of Pro–Gly by mutagenesis of l-amino acid ligase. J. Biosci. Bioeng. 2016, 122, 155–159. [Google Scholar] [CrossRef]
- Kino, K.; Kotanaka, Y.; Arai, T.; Yagasaki, M. A Novel L-Amino Acid Ligase from Bacillus subtilis NBRC3134, a Microorganism Producing Peptide-Antibiotic Rhizocticin. Biosci. Biotechnol. Biochem. 2009, 73, 901–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordewick, S.; Mast, T.A.; Berger, R.G.; Ersoy, F. Recombinant Production of Arginyl Dipeptides by l-Amino Acid Ligase RizA Coupled with ATP Regeneration. Catalysts 2021, 11, 1290. [Google Scholar] [CrossRef]
- Arai, T.; Arimura, Y.; Ishikura, S.; Kino, K. L-Amino Acid Ligase from Pseudomonas syringae Producing Tabtoxin Can Be Used for Enzymatic Synthesis of Various Functional Peptides. Appl. Environ. Microbiol. 2013, 79, 5023–5029. [Google Scholar] [CrossRef] [Green Version]
- Kagawa, W.; Arai, T.; Ishikura, S.; Kino, K.; Kurumizaka, H. Structure of RizA, an L-amino-acid ligase from Bacillus subtilis. Acta Cryst. F 2015, 71, 1125–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The PyMOL Molecular Graphics System; Version 2.4.0; Schrödinger, LLC: New York, NY, USA, 2020.
- Shomura, Y.; Hinokuchi, E.; Ikeda, H.; Senoo, A.; Takahashi, Y.; Saito, J.; Komori, H.; Shibata, N.; Yonetani, Y.; Higuchi, Y. Structural and enzymatic characterization of BacD, an L-amino acid dipeptide ligase from Bacillus subtilis. Prot. Sci. 2012, 21, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ning, L.; Zhang, Y.; Wang, Y.; Lu, Z.; Wang, T. Rational engineering of BaLal_16 from a novel Bacillus amyloliquefaciens strain to improve catalytic performance. Enzym. Microb. Technol. 2021, 146, 109781. [Google Scholar] [CrossRef]
- Tsuda, T.; Asami, M.; Koguchi, Y.; Kojima, S. Single Mutation Alters the Substrate Specificity of L-Amino Acid Ligase. Biochemistry 2014, 53, 2650–2660. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.N. Tailoring Multipurpose Biocatalysts via Protein Engineering Approaches: A Review. Catal. Lett. 2019, 149, 2204–2217. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Naismith, J.H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 2008, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Rottmann, E.; Hauke, K.F.; Krings, U.; Berger, R.G. Enzymatic acrylamide mitigation in French fries—An industrial-scale case study. Food Control. 2021, 123, 107739. [Google Scholar] [CrossRef]
Amino Acid X | Variant | c (Arg-X) (mM) | c (Arg-Arg) (mM) | Arg-X/Arg-Arg | Yield (Arg-X) (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Arginine | Wild type | 5.6 | ± | 0.7 | - | - | 19 | ||
S156F | 10.5 | ± | 0.5 | - | - | 35 | |||
K83F | 10.2 | ± | 1.1 | - | - | 34 | |||
Aspartic acid | Wild type | 2.0 | ± | 0.2 | 1.6 | ± | 0.2 | 1.3 | 7 |
T81F | 5.0 | ± | 0.5 | 1.8 | ± | 0.2 | 2.8 | 17 | |
S84F | 5.1 | ± | 0.6 | 2.1 | ± | 0.2 | 2.4 | 17 | |
Serine | Wild type | 10.0 | ± | 0.4 | 1.3 | ± | 0.1 | 7.8 | 33 |
T81F | 14.1 | ± | 0.1 | 1.6 | ± | 0.0 | 8.6 | 47 | |
S84F | 12.5 | ± | 0.7 | 1.1 | ± | 0.1 | 11.6 | 42 | |
Alanine | Wild type | 3.7 | ± | 0.1 | 2.1 | ± | 0.1 | 1.8 | 12 |
D376E | 5.6 | ± | 0.3 | 2.6 | ± | 0.2 | 2.1 | 19 | |
T81F | 5.2 | ± | 0.6 | 2.5 | ± | 0.3 | 2.1 | 17 | |
Phenylalanine | Wild type | 3.3 | ± | 0.3 | 2.4 | ± | 0.2 | 1.4 | 11 |
S156A | 12.1 | ± | 0.7 | 1.2 | ± | 0.1 | 9.7 | 40 | |
D376E | 7.8 | ± | 0.4 | 2.0 | ± | 0.1 | 3.9 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordewick, S.; Berger, R.G.; Ersoy, F. Mutagenesis of the l-Amino Acid Ligase RizA Increased the Production of Bioactive Dipeptides. Catalysts 2021, 11, 1385. https://doi.org/10.3390/catal11111385
Bordewick S, Berger RG, Ersoy F. Mutagenesis of the l-Amino Acid Ligase RizA Increased the Production of Bioactive Dipeptides. Catalysts. 2021; 11(11):1385. https://doi.org/10.3390/catal11111385
Chicago/Turabian StyleBordewick, Sven, Ralf G. Berger, and Franziska Ersoy. 2021. "Mutagenesis of the l-Amino Acid Ligase RizA Increased the Production of Bioactive Dipeptides" Catalysts 11, no. 11: 1385. https://doi.org/10.3390/catal11111385
APA StyleBordewick, S., Berger, R. G., & Ersoy, F. (2021). Mutagenesis of the l-Amino Acid Ligase RizA Increased the Production of Bioactive Dipeptides. Catalysts, 11(11), 1385. https://doi.org/10.3390/catal11111385