Rational Design and Synthesis of ZnWO4 Nanorods Decorated with SnS Nanodots with Enhanced Visible-Light Photocatalytic Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of As-Prepared Catalysts
2.2. Photocatalytic Performance
2.3. Possible Enhancement Mechanism
3. Materials and Methods
3.1. Materials
3.2. Synthesis of SnS/ZnWO4 Composite
3.3. Characterization
3.4. Photoelectrochemical Measurements
3.5. Photocatalytic Experiments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; Von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef]
- Sharma, V.K.; Feng, M. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review. J. Hazard. Mater. 2019, 372, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.Y.; Qiao, S.Z. Acid–base bifunctional periodic mesoporous metal phosphonates for synergistically and heterogeneously catalyzing CO2 conversion. ACS Catal. 2014, 4, 3847–3855. [Google Scholar] [CrossRef]
- Tang, J.; Zou, Z.; Ye, J. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed. 2004, 43, 4463–4466. [Google Scholar] [CrossRef] [PubMed]
- Oi, T.; Takagi, K.; Fukazawa, T. Scintillation study of ZnWO4 single crystals. Appl. Phys. Lett. 1980, 36, 278–279. [Google Scholar] [CrossRef]
- Fu, H.; Lin, J.; Zhang, L.; Zhu, Y. Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process. Appl. Catal. A 2006, 306, 58–67. [Google Scholar] [CrossRef]
- Li, D.; Shi, R.; Pan, C.S.; Zhu, Y.F.; Zhao, H.J. Influence of ZnWO4 nanorod aspect ratio on the photocatalytic activity. CrystEngComm 2011, 13, 4695. [Google Scholar] [CrossRef]
- Sivaganesh, D.; Saravanakumar, S.; Sivakumar, V.; Rajajeyaganthan, R.; Arunpandian, M.; Nandh, G.J.; Thirumalaisamy, T.K. Surfactants-assisted synthesis of ZnWO4 nanostructures: A view on photocatalysis, photoluminescence and electron density distribution analysis. Mater. Charact. 2020, 159, 110035. [Google Scholar] [CrossRef]
- Wang, M.; Xin, Y.; Tian, S.; Guo, Y.; Sun, T.; Wang, M.; Tang, Y.F. Constructing novel hierarchical porous hydrangea-like ZnWO4 microspheres with enhanced photocatalytic performance. Mater. Lett. 2020, 264, 127417. [Google Scholar] [CrossRef]
- Brijesh, K.; Bindu, K.; Shanbhag, D.; Nagaraja, H.S. Chemically prepared Polypyrrole/ZnWO4 nanocomposite electrodes for electrocatalytic water splitting. Int. J. Hydrog. Energy 2019, 44, 757–767. [Google Scholar] [CrossRef]
- Huo, P.W.; Tang, Y.; Zhou, M.; Li, J.; Ye, Z.; Ma, C.; Yu, L.; Yan, Y. Fabrication of ZnWO4-CdS heterostructure photocatalysts for visible light induced degradation of ciprofloxacin antibiotics. J. Ind. Eng. Chem. 2016, 37, 340–346. [Google Scholar] [CrossRef]
- Rathi, V.; Panneerselvam, A.; Sathiyapriya, R. Graphitic carbon nitride (g-C3N4) decorated ZnWO4 heterojunctions architecture synthesis, characterization and photocatalytic activity evaluation. Diam. Relat. Mater. 2020, 108, 107981. [Google Scholar] [CrossRef]
- Wang, X.; Yu, S.; Li, Z.H.; He, L.; Liu, Q.; Hu, M.; Xu, L.; Wang, X.; Xiang, Z. Fabrication Z-scheme heterojunction of Ag2O/ZnWO4 with enhanced sonocatalytic performances for meloxicam decomposition: Increasing adsorption and generation of reactive species. Chem. Eng. J. 2021, 405, 126922. [Google Scholar] [CrossRef]
- Ma, D.D.; Shi, J.W.; Zou, Y.J.; Fan, Z.Y.; Ji, X.; Niu, C.M. Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting. ACS Appl. Mater. Interfaces 2017, 9, 25377–25386. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.K.; Liu, M.; Yu, D.Y.; Long, F.; Mo, S.; Deng, Z.; Wang, W. A facile approach for the synthesis of Zn2SnO4/BiOBr nanocomposites with improved visible light photocatalytic performance. Nanomaterials 2018, 8, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, T.K.; Fu, F.; Li, J.; Wang, W.; Hu, X. Constructing a novel Zn2SnO4/C/AgBr nanocomposite with extended spectral Response and improved photocatalytic performance. J. Alloy. Compd. 2019, 783, 687–696. [Google Scholar] [CrossRef]
- Jia, T.K.; An, J.C.; Yu, D.; Li, J.; Fu, F.; Wang, K.; Wang, W. Continuously improved photocatalytic performanceof Zn2SnO4/SnO2/Cu2O composites by structural modulation and band alignment modification. Nanomaterials 2019, 9, 1390. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.Y.; Zhao, Z.H.; Hu, Z.F.; Liu, L.Q.; Ji, H.M.; Shen, Z.R.; Ma, T.Y. 0D/2D heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis. Angew. Chem. Int. Ed. 2017, 56, 8407–8411. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhang, G.K.; Li, J.; Li, Y.; Wu, X.Y. 0D/2D Z-scheme heterojunctions of bismuth tantalate quantum dots/ultrathin g-C3N4 nanosheets for highly efficient visible light photocatalytic degradation of antibiotics. ACS Appl. Mater. Interfaces 2017, 9, 43704–43715. [Google Scholar] [CrossRef]
- Biacchi, A.J.; Vaughn, D.D.; Schaak, R.E. Synthesis and crystallographic analysis of shape-controlled SnS nanocrystal photocatalysts: Evidence for a pseudotetragonal structural modification. J. Am. Chem. Soc. 2013, 135, 11634–11644. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, J.; Zhang, M.; Yuan, Q.; Dong, B. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal. B Environ. 2015, 163, 298–305. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Shao, C.L.; Li, X.; Wang, C.; Zhang, M.; Liu, Y.C. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with Enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2010, 2, 2915–2923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Shao, C.L.; Li, X.; Sun, Y.; Zhang, M.; Mu, J.; Zhang, P.; Guo, Z.; Liu, Y.C. Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: Enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 2013, 5, 606–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.H.; Xu, H.Y.; Zhang, X.T.; Liu, Y.C.; Sun, J.W.; Lu, Y.M. Local chemical states and thermal stabilities of nitrogen dopants in ZnO film studied by temperature-dependent X-ray photoelectron spectroscopy. Appl. Phys. Lett. 2009, 95, 191903. [Google Scholar] [CrossRef]
- Zhu, A.; Zhao, Q.; Li, X.; Shi, Y. BiFeO3/TiO2 nanotube arrays composite electrode: Construction, characterization, and enhanced photoelectrochemical properties. ACS Appl. Mater. Interfaces 2014, 6, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.T.; Song, Y.H.; Ji, H.J.; Xu, Y.G.; Song, Y.X.; Xia, J.X.; Yin, S.Y.; Li, Y.; Xu, H.; Zhang, Q.; et al. Synthesis of g-C3N4/Ag3VO4 composites with enhanced photocatalytic activity under visible light irradiation. Chem. Eng. J. 2015, 271, 96–105. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C.W.; Choi, W. Platinized WO3 as an environmental photocatalyst that generates ·OH radicals under visible light. Environ. Sci. Technol. 2010, 44, 6849–6854. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Yu, H.; Yu, J. In situ anion-exchange synthesis and photocatalytic activity of Ag8W4O16/AgCl nanoparticle core-shell nanorods. J. Mol. Catal. A Chem. 2011, 334, 52–59. [Google Scholar] [CrossRef]
- Yu, H.; Liu, R.; Wang, X.; Wang, P.; Yu, J. Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst. Appl. Catal. B Environ. 2012, 111–112, 326–333. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Yang, Y.; Zhang, Y.; He, D.; An, Q.; Cao, G.Z. Seed-induced growing various TiO2 on nanostructures on g-C3N4 nanosheets with much enhanced photocatalytic activity under visible light. J. Hazard. Mater. 2015, 292, 79–89. [Google Scholar] [CrossRef]
- Jia, T.K.; Fu, F.; Li, J.L.; Deng, D.; Long, F.; Yu, D.; Cui, Q.; Wang, W.M. Rational construction of direct Z-scheme SnS-g-C3N4 hybrid photocatalyst for significant enhancement of visible-light photocatalyticactivity. Appl. Surf. Sci. 2020, 499, 143941. [Google Scholar] [CrossRef]
- Jia, T.K.; Liu, M.; Zheng, C.Y.; Long, F.; Min, Z.; Fu, F.; Yu, D.S.; Li, J.L.; Lee, J.H.; Kim, N.H. One-Pot hydrothermal synthesis of La-Doped ZnIn2S4 microspheres with improved visible-light photocatalytic performance. Nanomaterials 2020, 10, 2026. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, X.; Jia, T.; Fu, F. Rational Design and Synthesis of ZnWO4 Nanorods Decorated with SnS Nanodots with Enhanced Visible-Light Photocatalytic Performance. Catalysts 2021, 11, 1345. https://doi.org/10.3390/catal11111345
Shan X, Jia T, Fu F. Rational Design and Synthesis of ZnWO4 Nanorods Decorated with SnS Nanodots with Enhanced Visible-Light Photocatalytic Performance. Catalysts. 2021; 11(11):1345. https://doi.org/10.3390/catal11111345
Chicago/Turabian StyleShan, Xiaoyi, Tiekun Jia, and Fang Fu. 2021. "Rational Design and Synthesis of ZnWO4 Nanorods Decorated with SnS Nanodots with Enhanced Visible-Light Photocatalytic Performance" Catalysts 11, no. 11: 1345. https://doi.org/10.3390/catal11111345
APA StyleShan, X., Jia, T., & Fu, F. (2021). Rational Design and Synthesis of ZnWO4 Nanorods Decorated with SnS Nanodots with Enhanced Visible-Light Photocatalytic Performance. Catalysts, 11(11), 1345. https://doi.org/10.3390/catal11111345