Highly Enhanced Electrocatalytic Performances with Dendritic Bimetallic Palladium-Based Nanocrystals
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of Pd–Pt NDs
4.3. Characterization
4.4. Electrochemical Performance
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hong, J.W.; Kang, S.W.; Choi, B.S.; Kim, D.; Lee, S.B.; Han, S.W. Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 2012, 6, 2410–2419. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Qi, L.; You, H.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880–11883. [Google Scholar] [CrossRef]
- Lv, H.; Chen, X.; Xu, D.; Hu, Y.; Zheng, H.; Suib, S.L.; Liu, B. Ultrathin PdPt bimetallic nanowires with enhanced electrocatalytic performance for hydrogen evolution reaction. Appl. Catal. B Environ. 2018, 238, 525–532. [Google Scholar] [CrossRef]
- Wang, S.; Yang, G.; Yang, S. Pt-Frame@ Ni quasi core–shell concave octahedral PtNi3 bimetallic nanocrystals for electrocatalytic methanol oxidation and hydrogen evolution. J. Phys. Chem. C 2015, 119, 27938–27945. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, D.; Niu, Z.; Chen, P.; Zhou, G.; Li, Y. Heterogeneous catalysis for green chemistry based on nanocrystals. Angew. Chem. Int. Ed. Engl. 2012, 51, 12524–12528. [Google Scholar] [CrossRef]
- Guo, T.; Xiang, H.; Li, W.; Li, H.; Chen, H.; Liu, S.; Yu, G. Synthesis of Ultrathin and Composition-Tunable PdPt Porous Nanowires with Enhanced Electrocatalytic Performance. ACS Sustain. Chem. Eng. 2020, 8, 2901–2909. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Wang, L. Autoprogrammed synthesis of triple-layered Au@ Pd@ Pt core− shell nanoparticles consisting of a Au@ Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 2010, 132, 13636–13638. [Google Scholar]
- Lee, Y.W.; Im, M.; Hong, J.W.; Han, S.W. Dendritic ternary alloy nanocrystals for enhanced electrocatalytic oxidation reactions. ACS Appl. Mater. Interfaces 2017, 9, 44018–44026. [Google Scholar] [CrossRef]
- Shi, Q.; Zhu, C.; Li, Y.; Xia, H.; Engelhard, M.H.; Fu, S.; Du, D.; Lin, Y. A facile method for synthesizing dendritic core–shell structured ternary metallic aerogels and their enhanced electrochemical performances. Chem. Mater. 2016, 28, 7928–7934. [Google Scholar] [CrossRef]
- Ye, Y.; Joo, J.; Lee, S.; Lee, J. A direct one-step synthetic route to Pd–Pt nanostructures with controllable shape, size, and composition for electrocatalytic applications. J. Mater. Chem. A 2014, 2, 19239–19246. [Google Scholar] [CrossRef] [Green Version]
- Lim, B.; Jiang, M.; Pedro, H.C.; Cho, C.; Xia, Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Li, X.; Liu, C.; Huang, H.; Gao, P.; Ahmad, F.; Luo, L.; Ye, Y.; Geng, Z.; Wang, G.; et al. Atomic-level construction of tensile-strained PdFe alloy surface toward highly efficient oxygen reduction electrocatalysis. Nano Lett. 2020, 20, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; He, T.; Yang, X.; Liu, Y.; Wang, C.; Li, J.; Xiao, A.; Zhang, K.; Shi, X.; Jin, M. General Synthesis of Amorphous PdM (M = Cu, Fe, Co, Ni) Alloy Nanowires for Boosting HCOOH Dehydrogenation. Nano Lett. 2021, 21, 3458–3464. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Luo, M.; Han, J.; Peng, W.; Zhao, Y.; Chen, D.; Peng, M.; Liu, J.; de Groot, F.M.F.; Tan, Y. Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 2019, 5, 192–199. [Google Scholar] [CrossRef]
- Xia, B.Y.; Wu, H.B.; Wang, X.; Lou, X.W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937. [Google Scholar] [CrossRef]
- Zhang, N.; Guo, S.; Zhu, X.; Guo, J.; Huang, X. Hierarchical Pt/Pt x Pb core/shell nanowires as efficient catalysts for electrooxidation of liquid fuels. Chem. Mater. 2016, 28, 4447–4452. [Google Scholar] [CrossRef]
- Chen, L.; Lu, L.; Zhu, H.; Chen, Y.; Huang, Y.; Li, Y.; Wang, L. Improved ethanol electrooxidation performance by shortening Pd–Ni active site distance in Pd–Ni–P nanocatalysts. Nat. Commun. 2017, 8, 14136. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Qi, K.; Zhang, L.; Zhang, H.; Yu, S.; Cui, X. Engineering Pt/Pd interfacial electronic structures for highly efficient hydrogen evolution and alcohol oxidation. ACS Appl. Mater. Interfaces 2017, 9, 18008–18014. [Google Scholar] [CrossRef]
- Wu, J.; Cui, X.; Fan, J.; Zhao, J.; Zhang, Q.; Jia, G.; Wu, Q.; Zhang, D.; Hou, C.; Xu, S.; et al. Stable Bimetallene Hydride Boosts Anodic CO Tolerance of Fuel Cells. ACS Energy Lett. 2021, 6, 1912–1919. [Google Scholar] [CrossRef]
- Li, S.S.; Lv, J.J.; Teng, L.N.; Wang, A.J.; Chen, J.R.; Feng, J.J. Facile synthesis of PdPt@ Pt nanorings supported on reduced graphene oxide with enhanced electrocatalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 10549–10555. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Che, Z.; Zhao, S.; Sheng, X.; Han, M.; Bao, J. Concave octahedral Pd@ PdPt electrocatalysts integrating core–shell, alloy and concave structures for high-efficiency oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 2016, 4, 16690–16697. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Z.; Xu, M.; Zhang, J.; Yang, X.; Huang, Y.; Lin, J.; Sun, D.; Xu, L.; Tang, Y. Facile synthesis of ultrathin Pd–Pt alloy nanowires as highly active and durable catalysts for oxygen reduction reaction. Int. J. Hydrogen Energy 2016, 41, 6805–6813. [Google Scholar] [CrossRef]
- Zhang, J.; Wan, L.; Liu, L.; Deng, Y.; Zhong, C.; Hu, W. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale 2016, 8, 3962–3972. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Li, Y.; Zhou, H.; Duan, X.; Huang, Y. Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Lett. 2012, 12, 4265–4270. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-M.; Gao, X.-Q.; Li, S.-N.; Chen, Y.; Lee, J.-M. Thermal decomposition synthesis of functionalized PdPt alloy nanodendrites with high selectivity for oxygen reduction reaction. NPG Asia Mater. 2015, 7, e219. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.W.; Lee, Y.W.; Park, Y.; Choi, B.S.; Hong, J.W.; Han, S.W. One-pot synthesis of trimetallic Au@PdPt core–shell nanoparticles with high catalytic performance. ACS Nano 2013, 7, 7945–7955. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhou, W.; Ji, Y.; Chen, B.; Fu, G.; Yun, Q.; Chen, S.; Lin, Y.; Yin, P.F.; Cui, X.; et al. Hydrogen-Intercalation-Induced Lattice Expansion of Pd@ Pt Core–Shell Nanoparticles for Highly Efficient Electrocatalytic Alcohol Oxidation. J. Am. Chem. Soc. 2021, 143, 11262–11270. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, M.; Xia, Y. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035–8049. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, K.; Luo, M.; Zhao, Y.; Lan, J.; Peng, M.; de Groot, F.M.F.; Tan, Y. Self-Activated Catalytic Sites on Nanoporous Dilute Alloy for High-Efficiency Electrochemical Hydrogen Evolution. ACS Nano 2021, 15, 5333–5340. [Google Scholar] [CrossRef]
- Yao, R.-Q.; Zhou, Y.-T.; Shi, H.; Zhang, Q.-H.; Gu, L.; Wen, Z.; Lang, X.-Y.; Jiang, Q. Nanoporous palladium–silver surface alloys as efficient and pH-universal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2019, 4, 1379–1386. [Google Scholar] [CrossRef]
- Chang, F.; Bai, Z.; Li, M.; Ren, M.; Liu, T.; Yang, L.; Zhong, C.J.; Lu, J. Strain-modulated platinum–palladium nanowires for oxygen reduction reaction. Nano Lett. 2020, 20, 2416–2422. [Google Scholar] [CrossRef]
- Sarkar, S.; Peter, S.C. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 2018, 5, 2060–2080. [Google Scholar] [CrossRef]
- Wu, J.; Shan, S.; Cronk, H.; Chang, F.; Kareem, H.; Zhao, Y.; Luo, J.; Petkov, V.; Zhong, C.-J. Understanding composition-dependent synergy of PtPd alloy nanoparticles in electrocatalytic oxygen reduction reaction. J. Phys. Chem. C 2017, 121, 14128–14136. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, S.; Dong, S. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv. Mater. 2012, 24, 2326–2331. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, L.; Tian, Y.; Jiao, A.; Li, S.; Liu, X.; Chen, F. Convenient synthesis of 3D fluffy PtPd nanocorals loaded on 2D h-BN supports as highly efficient and stable electrocatalysts for alcohol oxidation reaction. ACS Omega 2019, 4, 11163–11172. [Google Scholar] [CrossRef]
- Li, S.S.; Zheng, J.N.; Ma, X.; Hu, Y.Y.; Wang, A.J.; Chen, J.R.; Feng, J.J. Facile synthesis of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide with enhanced electrocatalytic properties. Nanoscale 2014, 6, 5708–5713. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.N.; Zhang, X.T.; Wang, Z.H.; Guo, S.; Li, Y.J. Cubic superstructures composed of PtPd alloy nanocubes and their enhanced electrocatalysis for methanol oxidation. Chem. Commun. 2016, 52, 12737–12740. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhou, Y.; Pan, H.B.; Zhu, C.; Fu, S.; Wai, C.M.; Lin, Y. Ultrasonic-assisted synthesis of Pd–Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrason. Sonochem. 2016, 28, 192–198. [Google Scholar] [CrossRef] [Green Version]
- De la Cruz-Cruz, J.J.; Domínguez-Crespo, M.A.; Ramírez-Meneses, E.; Torres-Huerta, A.M.; Brachetti-Sibaja, S.B.; Cayetano-Castro, N.; Dorantes-Rosales, H.J. Efficient stabilization of in situ fabrication of PtxPd1-x nanostructures for electro-oxidation of methanol in alkaline medium. Int. J. Hydrogen Energy 2020, 45, 4570–4586. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhu, Z.; Lu, X.; Zhou, Z.; Shao, J.; Zhou, H.S. Facile synthesis of three-dimensional PtPdNi fused nanoarchitecture as highly active and durable electrocatalyst for methanol oxidation. ACS Appl. Energy Mater. 2017, 1, 32–37. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, S.; Dong, S. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium. Chem.–A Eur. J. 2013, 19, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.X.; Zhang, Q.L.; Wang, A.J.; Wei, J.; Chen, J.R.; Feng, J.J. Caffeine-assisted facile synthesis of platinum@ palladium core-shell nanoparticles supported on reduced graphene oxide with enhanced electrocatalytic activity for methanol oxidation. Electrochim. Acta 2014, 142, 343–350. [Google Scholar] [CrossRef]
Catalyst | Overpotential/(mV) ~10 mA cm−2 | Tafel Plots/(mV dec−1) |
---|---|---|
Pd/C | 122.3 mV | 76.8 mV dec−1 |
Pt/C | 35.3 mV | 30.5 mV dec−1 |
Pd–Pt–10CTAC NDs | 34.7 mV | 25.1 mV dec−1 |
Pd–Pt–50CTAC NDs | 33.1 mV | 24.7 mV dec−1 |
Pd–Pt–100CTAC NDs | 32.4 mV | 24.4 mV dec−1 |
Pd–Pt–200CTAC NDs | 32.3 mV | 23.8 mV dec−1 |
Catalyst | Electrochemical Condition | Mass Activity (A mg−1total) | Ref. |
---|---|---|---|
Pd–Pt–200CTAC Nanodendrites | 1 M KOH + 1 M Methanol | 6.40 | In this work |
Pd45Pt55 Nanowires | 1 M KOH + 1 M Methanol | ~1.90 | [34] |
h-BN/PdPt Nanocorals | 1 M KOH + 0.5 M Methanol | 0.96 | [35] |
PtPd/RGO nanogarlands | 1 M KOH + 1 M Methanol | 0.33 | [36] |
Pt50Pd50 Nanocubes | 1 M KOH + 1 M Methanol | 0.34 | [37] |
PdPt/CNTs | 0.5 M KOH + 0.5 M Methanol | 1.07 | [38] |
Pt30Pd70/C | 1 M KOH + 1 M Methanol | 0.72 | [39] |
o-PdH0.43@Pt Nanooctahedra | 1 M KOH + 1 M Methanol | 3.68 | [27] |
c-PdH0.43@Pt Nanocubes | 1 M KOH + 1 M Methanol | 2.14 | [27] |
PtPd Nanowires | 1 M KOH + 1M Methanol | 4.29 | [40] |
PdPt Bimetallic Nanosponges | 1 M KOH + 1 M Methanol | ~2.20 | [41] |
Pt@Pd/RGO | 1 M KOH + 1 M Methanol | ~0.65 | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pramadewandaru, R.K.; Shim, J.-H.; Lee, Y.W.; Hong, J.W. Highly Enhanced Electrocatalytic Performances with Dendritic Bimetallic Palladium-Based Nanocrystals. Catalysts 2021, 11, 1337. https://doi.org/10.3390/catal11111337
Pramadewandaru RK, Shim J-H, Lee YW, Hong JW. Highly Enhanced Electrocatalytic Performances with Dendritic Bimetallic Palladium-Based Nanocrystals. Catalysts. 2021; 11(11):1337. https://doi.org/10.3390/catal11111337
Chicago/Turabian StylePramadewandaru, Respati K., Jeong-Hu Shim, Young Wook Lee, and Jong Wook Hong. 2021. "Highly Enhanced Electrocatalytic Performances with Dendritic Bimetallic Palladium-Based Nanocrystals" Catalysts 11, no. 11: 1337. https://doi.org/10.3390/catal11111337
APA StylePramadewandaru, R. K., Shim, J.-H., Lee, Y. W., & Hong, J. W. (2021). Highly Enhanced Electrocatalytic Performances with Dendritic Bimetallic Palladium-Based Nanocrystals. Catalysts, 11(11), 1337. https://doi.org/10.3390/catal11111337