Preparation of Reduced-Graphene-Oxide-Supported CoPt and Ag Nanoparticles for the Catalytic Reduction of 4-Nitrophenol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization and Properties of CoPt, GO, rGO, rGO/CoPt, and rGO/CoPt/Ag
2.2. Catalytic Applications of CoPt, rGO/CoPt, and rGO/CoPt/Ag Catalysts
2.3. Possible Catalytic Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of the CoPt Nanoparticles
3.3. Preparation of the rGO/CoPt and rGO/CoPt/Ag Nanocomposites
3.4. Catalytic Reduction of 4-Nitrophenol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, C.L.; Zhang, L.; Gong, J.L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energ. Environ. Sci. 2019, 12, 2620–2645. [Google Scholar] [CrossRef]
- Wu, T.; Zheng, H.; Kou, Y.C.; Su, X.Y.; Kadasala, N.R.; Gao, M.; Chen, L.; Han, D.L.; Liu, Y.; Yang, J.H. Self-sustainable and recyclable ternary Au@Cu2O-Ag nanocomposites: Application in ultra-sensitive SERS detection and highly efficient photocatalysis of organic dyes under visible light. Microsyst. Nanoeng. 2021, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.Z.; Wang, S.F.; Wang, M.; Ge, B.; Ren, G.N.; Li, W.Z.; Zhao, L.M. Application of superhydrophobic ZnO rod composites with environmentally-friendly and photodegradation properties in water environment treatment. Colloids Surf. A 2021, 618, 126437. [Google Scholar] [CrossRef]
- Mir, S.H.; Hasan, P.M.Z.; Danish, E.Y.; Aslam, M. Pd-induced phase separation in poly (methyl methacrylate) telopolymer: Synthesis of nanostructured catalytic Pd nanorods. Colloid Polym. Sci. 2020, 298, 441–448. [Google Scholar] [CrossRef]
- Liu, T.; Sun, Y.H.; Jiang, B.; Guo, W.; Qin, W.; Xie, Y.M.; Zhao, B.; Zhao, L.; Liang, Z.Q.; Jiang, L. Pd nanoparticles decorated 3D printed hierarchically porous TiO2 scaffolds for efficient reduction of highly concentrated 4-nitrophenol solution. ACS Appl. Mater. Inter. 2020, 12, 28100–28109. [Google Scholar] [CrossRef]
- Huo, H.; Jiang, Y.Q.; Wang, Z.; Hu, Y.J.; Zhao, T.T.; Liu, X.; Xu, X.Z.; Lin, K.F. Carbonyl oxygen-coordinated metallic cobalt nanoparticles anchored on hybrid mesoporous silica matrix to enhance 4-nitrophenol hydrogenation. J. Mater. Sci. 2021, 56, 364–379. [Google Scholar] [CrossRef]
- Neal, R.D.; Hughes, R.A.; Sapkota, P.; Ptasinska, S.; Neretina, S. Effect of nanoparticle ligands on 4-nitrophenol reduction: Reaction rate, induction time, and ligand desorption. ACS Catal. 2020, 10, 10040–10050. [Google Scholar] [CrossRef]
- Zheng, H.; Huang, J.; Zhou, T.X.; Jiang, Y.M.; Jiang, Y.H.; Gao, M.; Yang, L. Recyclable Magnetic Cu/CuFe2O4 Nanocomposites for the Rapid Degradation of 4-NP. Catalysts 2020, 10, 1437. [Google Scholar] [CrossRef]
- Strachan, J.; Barnett, C.; Masters, A.F.; Maschmeyer, T. 4-Nitrophenol Reduction: Probing the Putative Mechanism of the Model Reaction. ACS Catal. 2020, 10, 5516–5521. [Google Scholar] [CrossRef]
- Kang, X.Y.; Teng, D.Y.; Wu, S.L.; Tian, Z.F.; Liu, J.; Li, P.F.; Ma, Y.; Liang, C.H. Ultrafine copper nanoparticles anchored on reduced graphene oxide present excellent catalytic performance toward 4-nitrophenol reduction. J. Colloid Interf. Sci. 2020, 566, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.H.; Liu, X.; Yi, C.G.; Li, J.R.; Su, Y.H.; Guo, M. Palladium. nanoparticles embedded in yolk–shell N-doped carbon Nanosphere@Void@SnO2 composite nanoparticles for the photocatalytic reduction of 4-nitrophenol. ACS Appl. Nano Mater. 2020, 3, 6574–6583. [Google Scholar] [CrossRef]
- Chen, S.S.; Huang, R.M.; Zou, J.; Liao, D.; Yu, J.G.; Jiang, X.Y. A sensitive sensor based on MOFs derived nanoporous carbons for electrochemical detection of 4-aminophenol. Ecotox. Environ. Safe 2020, 191, 110194. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Moosvi, S.K.; Jan, T.; Rydzek, G.; Mir, S.H.; Rizvi, M.A. Development of Polythiophene/Prussian Red Nanocomposite with Dielectric, Photocatalytic and Metal Scavenging Properties. J. Electron. Mater. 2020, 49, 4018–4027. [Google Scholar] [CrossRef]
- Hasan, K.; Shehadi, I.A.; Al-Bab, N.D.; Elgamouz, A. Magnetic Chitosan-Supported Silver Nanoparticles: A Heterogeneous Catalyst for the Reduction of 4-Nitrophenol. Catalysts 2019, 9, 839. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Chen, K.B.; Ma, Z.; Yang, J.L.; Geng, Z.G.; Zeng, J. Atomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core–shell nanocubes as an ideal platform. J. Catal. 2020, 381, 427–433. [Google Scholar] [CrossRef]
- Han, X.W.; Bi, S.D.; Zhang, W.Q.; Yang, Z.W. One-step fabrication of highly dispersed Ag nanoparticles decorated N-doped reduced grapheme oxide heterogeneous nanostructure for the catalytic reduction of 4-nitrophenol. Colloids Surf. A 2019, 574, 69–77. [Google Scholar] [CrossRef]
- Mir, S.H.; Ochiai, B. Development of Hierarchical Polymer@Pd Nanowire-Network: Synthesis and Application as Highly Active Recyclable Catalyst and Printable Conductive lnk. Chemistryopen 2016, 5, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Luneau, M.; Lim, J.S.; Patel, D.A.; Sykes, E.C.H.; Friend, C.M.; Sautet, P. Guidelines to Achieving High Selectivity for the Hydrogenation of α, β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Chem. Rev. 2020, 120, 12834–12872. [Google Scholar] [CrossRef]
- Parizad, M.; Wong, A.P.; Reber, A.C.; Tengco, J.M.M.; Karakalos, S.G.; Khanna, S.N.; Regalbuto, J.R.; Monnier, J.R. Stabilization of Catalytic Surfaces through Core–Shell Structures: Ag–Ir/Al2O3 Case Study. ACS Catal. 2020, 10, 13352–13363. [Google Scholar] [CrossRef]
- Zeng, Y.Q.; Ji, B.R.; Lv, Z.; Zheng, X.J.; Yang, X.M.; Cui, P.; Dong, Y.; Zhang, X.H.; Jiang, J.Q. Rapid synthesis of porous Pt-Ni-Cu coatings with a wide composition range, tunable structures and enhanced electrocatalytic properties. J. Alloy. Compd. 2020, 835, 155402. [Google Scholar] [CrossRef]
- Inaba, H.; Yamada, M.; Rashid, M.R.; Kabir, A.M.R.; Kakugo, A.; Sada, K.; Matsuura, K. Magnetic force-induced alignment of microtubules by encapsulation of copt nanoparticles using a tau-derived peptide. Nano Lett. 2020, 20, 5251–5258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.F.; Chen, X.L.; Wang, A.J.; Han, D.M.; Wang, Z.G.; Feng, J.J. Facile solvothermal synthesis of Pt71Co29 lamellar nanoflowers as an efficient catalyst for oxygen reduction and methanol oxidation reactions. J. Colloid Interf. Sci. 2019, 536, 556–562. [Google Scholar] [CrossRef]
- He, C.Y.; Zhang, S.K.; Tao, J.Z.; Shen, P.K. One-step solid state synthesis of PtCo nanocubes/graphene nanocomposites as advanced oxygen reduction reaction electrocatalysts. J. Catal. 2018, 362, 85–93. [Google Scholar] [CrossRef]
- Xu, X.; Guan, C.; Xu, L. Three dimensionally free-formable gaphene foam with designed structures for energy and environmental applications. ACS Nano 2020, 14, 937–947. [Google Scholar] [CrossRef]
- Hemmati, S.; Heravia, M.M.; Karmakar, B.; Veisic, H. Green fabrication of reduced graphene oxide decorated with Ag nanoparticles (rGO/Ag NPs) nanocomposite: A reusable catalyst for the degradation of environmental pollutants in aqueous medium. J. Mol. Liq. 2020, 319, 114302. [Google Scholar] [CrossRef]
- Ren, F.F.; Chen, X.R.; Xing, R.; Du, Y.K. Rod-like MnO2 boost Pd/reduced graphene oxide nanocatalyst for ethylene glycol electrooxidation. J. Colloid Interf. Sci. 2021, 582, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.H.; Liu, Y.X.; Deng, J.G. Carbon Monoxide Oxidation over rGO-Mediated Gold/Cobalt Oxide Catalysts with Strong Metal-Support Interaction. ACS Appl. Mater. Inter. 2020, 12, 31467–31476. [Google Scholar] [CrossRef]
- Cao, M.W.; Feng, L.; Yang, P.P.; Wang, H.X.; Liang, X.; Chen, X.W. Fabrication of reduced graphene oxide decorated with gold and nickel for the catalytic reduction of 4-nitrophenol. J. Mater. Sci. 2018, 53, 4874–4883. [Google Scholar] [CrossRef]
- Lin, J.H.; Pan, K.Y.; Wei, D.H.; Chung, R.J. FePt nanoparticles embedded-rGO nanocmoposites for magnetic fluid hyperthermia. Surf. Coat. Technol. 2018, 350, 868–873. [Google Scholar] [CrossRef]
- Varvaro, G.; Imperatori, P.; Laureti, S.; Cannas, C.; Ardu, A.; Plescia, P.; Capobianchi, A. Synthesis of L10 alloy nanoparticles. Potential and versatility pre-ordered Precursor Reduction strategy. J. Alloy. Compd. 2020, 846, 156156. [Google Scholar] [CrossRef]
- Song, Y.S.; Peng, Y.S.; Long, N.V.; Huang, Z.R.; Yang, Y. Multifunctional self-assembly 3D Ag/g-C3N4/RGO aerogel as highly efficient adsorbent and photocatalyst for R6G removal from wastewater. Appl. Surf. Sci. 2021, 542, 148584. [Google Scholar] [CrossRef]
- Song, Z.L.; Sun, J.Y.; Wang, W.H.; Wang, Z.B.; Zhang, Y.T.; Xu, B.B.; Qi, F. Stable synergistic decontamination and self-cleaning performance of powerful N-rGO catalytic ozonation membrane: Clustering effect of free electrons and role of interface properties. Appl. Catal. B Environ. 2021, 283, 119662. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, Y.; Qing, H.Y. Construction of rGO wrapping octahedral Ag-Cu2O heterostructure for enhanced visible light photocatalytic activity. Appl. Catal. B Environ. 2018, 227, 132–144. [Google Scholar] [CrossRef]
- Xie, Y.H.; Liu, B.L.; Li, Y.Z.; Chen, Z.X.; Cao, Y.L.; Jia, D.Z. Cu/Cu2O/rGO nanocomposites: Solid-state self-reduction synthesis and catalytic activity for p-nitrophenol reduction. New J. Chem. 2019, 43, 12118–12125. [Google Scholar] [CrossRef]
- Hasan, Z.; Ok, Y.S.; Rinklebe, J.; Tsang, Y.F.; Cho, D.W.; Song, H. N doped cobalt-carbon composite for reduction of p-nitrophenol and pendimethaline. J. Alloy. Compd. 2017, 703, 118–124. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, W.; Han, D.; Gan, S.; Dong, X.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27, 3767–3773. [Google Scholar] [CrossRef] [PubMed]
- Maarisetty, D.; Mahanta, S.; Sahoo, A.K.; Mohapatra, P.; Baral, S.S. Steering the Charge Kinetics in Dual-Functional Photocatalysis by Surface Dipole Moments and Band Edge Modulation: A Defect Study in TiO2-ZnS-rGO Composites. ACS Appl. Mater. Inter. 2020, 12, 11679–11692. [Google Scholar] [CrossRef]
- Song, H.J.; Wang, Z.Q.; Yang, J.; Jia, X.H.; Zhang, Z.Z. Facile synthesis of copper/polydopamine functionalized graphene oxide nanocomposites with enhanced tribological performance. Chem. Eng. J. 2017, 324, 51–62. [Google Scholar] [CrossRef]
- Wu, X.L.; Zhang, X.Y.; Han, G.S.; Liu, Y.Y.; Liu, B.Z.; Gao, J.; Fan, Y.P.; Li, B.J. Reaction of Co3O4 Nanocrystals on Graphene Sheets to Fabricate Excellent Catalysts for Hydrogen Generation. ACS Sustain. Chem. Eng. 2018, 6, 8427–8436. [Google Scholar] [CrossRef]
- Yan, D.F.; Li, Y.X.; Huo, J.; Chen, R.; Dai, L.M.; Wang, S.Y. Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions. Adv. Mater. 2017, 29, 1606459. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Liu, Z.H.; Zhong, Q.S.; Qin, Y.J.; Xu, A.Z.; Li, W.; Shi, J.H. In situ synthesis of trifluoroacetic acid-doped polyaniline/reduced graphene oxide composites for high-performance all-solid-state supercapacitors. ACS Appl. Energ. Mater. 2020, 3, 8774–8785. [Google Scholar] [CrossRef]
- Sheng, Y.Q.; Miao, H.; Jiang, J.F.; Yao, W.Q.; Zhu, Y.F. Perylene diimide anchored graphene 3D structure via π-π interaction for enhanced photoelectrochemical degradation performances. Appl. Catal. B Environ. 2020, 272, 118897. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, H.; Liu, Y.G.; Ren, Z.P.; Lin, C.P.; Tao, J.L.; Zhai, Y.P. Facile synthesis of PdNiP/Reduced graphene oxide nanocomposites for catalytic reduction of 4-nitrophenol. Mater. Chem. Phys. 2019, 222, 391–397. [Google Scholar] [CrossRef]
- Chen, R.Z.; Tan, Y.Y.; Zhang, Z.Y.; Lei, Z.; Wu, W.; Cheng, N.C.; Mu, S.C. Hydrazine Hydrate Induced Two-Dimensional Porous Co3+ Enriched Co3O4 Nanosheets for Enhanced Water Oxidation Catalysis. ACS Sustain. Chem. Eng. 2020, 8, 9813–9821. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Mao, H.Z.; Gu, X.; Song, C.H.; Yang, J.; Qian, Y.T. ZIF-derived cobalt-containing N doped carbon-coated siox nanoparticles for superior lithium storage. ACS Appl. Mater. Inter. 2020, 12, 7206–7211. [Google Scholar] [CrossRef]
- Lima, C.C.; Rodrigues, M.V.F.; Neto, A.F.M.; Zanata, C.R.; Fernández, P.S. Highly active Ag/C nanoparticles containing ultra-low quantities of subsurface Pt for the electrooxidation of glycerol in alkaline media. Appl. Catal. B Environ. 2020, 279, 119369. [Google Scholar] [CrossRef]
- Baruah, B.; Gabriel, G.J.; Akbashev, M.J.; Booher, M.E. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir 2013, 29, 4225–4234. [Google Scholar] [CrossRef] [Green Version]
- Naz, M.; Rafiq, A.; Ikram, M.; Haider, A.; Ahmad, S.O.A.; Haider, J.; Naz, S. Elimination of dyes by catalytic reduction in the absence of light: A review. J. Mater. Sci. 2021, 56, 15572–15608. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, T. Fundamental formation of three-dimensional Fe3O4 microcrystals and practical application in anchoring Au as recoverable catalyst for effective reduction of 4-nitrophenol. Ind. Eng. Chem. Res. 2019, 58, 15151–15161. [Google Scholar] [CrossRef]
- Liew, K.H.; Lee, T.K.; Yarmo, M.A.; Loh, K.S.; Peixoto, A.F.; Freire, C.; Yusop, R.M. Ruthenium Supported on Ionically Cross-linked Chitosan-Carrageenan Hybrid MnFe2O4 Catalysts for 4-Nitrophenol Reduction. Catalysts 2019, 9, 254. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.J.; Wang, A.J.; Ma, X.H.; Xiang, R.Y.; Chen, R.J.; Feng, J.J. One-pot synthesis of porous Pt-Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 290. [Google Scholar] [CrossRef]
- Gupta, R.K.; Dubey, M.; Li, P.Z.; Xu, Q.; Pandey, D.S. Size-controlled synthesis of Ag nanoparticles functionalized by heteroleptic dipyrrinato complexes having meso-pyridyl substituents and their catalytic applications. Inorg. Chem. 2015, 54, 2500–2511. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, C.; Rong, Z.; Xiao, R.; Zhou, Z.; Wang, S. Silver coated magnetic microflowers as efficient and recyclable catalysts for catalytic reduction. New J. Chem. 2017, 41, 14199–14208. [Google Scholar] [CrossRef]
- Huo, H.; Jiang, Y.Q.; Zhao, T.T.; Wang, Z.; Hu, Y.J.; Xu, X.Z.; Lin, K.F. Quantitatively loaded ultra-small Ag nanoparticles on molecularly imprinted mesoporous silica for highly efficient catalytic reduction process. J. Mater. Sci. 2020, 55, 1475–1488. [Google Scholar] [CrossRef]
- Yao, W.; Li, F.L.; Li, X.H.; Lang, J.P. Fabrication of hollow Cu2O@CuO-supported Au-Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. J. Mater. Chem. A 2015, 3, 4578–4585. [Google Scholar] [CrossRef]
- Shi, G.M.; Li, S.T.; Shi, F.N.; Shi, X.F.; Lv, S.H.; Cheng, X.B. A facile strategy for synthesis of Ni@C(N) nanocapsules with enhanced catalytic activity for 4-nitrophenol reduction. Colloids Surf. A 2018, 555, 170–179. [Google Scholar] [CrossRef]
- Yao, D.W.; Wang, Y.; Hassan-Legault, K.; Li, A.T.; Zhao, Y.J.; Lv, J.; Huang, S.Y.; Ma, X.B. Balancing effect between adsorption and diffusion on catalytic performance inside hollow nanostructured catalyst. ACS Catal. 2019, 9, 2969–2976. [Google Scholar] [CrossRef]
- Arora, N.; Mehta, A.; Mishra, A.; Basu, S. 4-Nitrophenol reduction catalyzed by Au-Ag bimetallic nanoparticles supported on LDH: Homogeneous vs. heterogeneous catalysis. Appl. Clay. Sci. 2018, 151, 1–9. [Google Scholar] [CrossRef]
- Tran, X.T.; Hussain, M.; Kim, H.T. Facile and fast synthesis of a reduced graphene oxide/carbon nanotube/iron/silver hybrid and its enhanced performance in catalytic reduction of 4-nitrophenol. Solid State Sci. 2020, 100, 106107. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 8, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
Catalysts | Mass | k (min−1) | knor (min −1mg −1) * | Reference |
---|---|---|---|---|
Ag NPs | 32 µg | 0.36 | 11.25 | [52] |
Fe3O4@SiO2@Ag | 2 µg | 0.14 | 70 | [53] |
MSAg-50 | 50 µg | 1.18 | 23.6 | [54] |
Cu2O@CuO(Au-Pd) | 84.5 µg | 1.158 | 13.7 | [55] |
rGO/CoPt/Ag | 93.48 µg | 5.306 | 56.76 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, L.; Liu, Y.; Duan, Q. Preparation of Reduced-Graphene-Oxide-Supported CoPt and Ag Nanoparticles for the Catalytic Reduction of 4-Nitrophenol. Catalysts 2021, 11, 1336. https://doi.org/10.3390/catal11111336
Zhang X, Chen L, Liu Y, Duan Q. Preparation of Reduced-Graphene-Oxide-Supported CoPt and Ag Nanoparticles for the Catalytic Reduction of 4-Nitrophenol. Catalysts. 2021; 11(11):1336. https://doi.org/10.3390/catal11111336
Chicago/Turabian StyleZhang, Xiaolong, Lei Chen, Yang Liu, and Qian Duan. 2021. "Preparation of Reduced-Graphene-Oxide-Supported CoPt and Ag Nanoparticles for the Catalytic Reduction of 4-Nitrophenol" Catalysts 11, no. 11: 1336. https://doi.org/10.3390/catal11111336
APA StyleZhang, X., Chen, L., Liu, Y., & Duan, Q. (2021). Preparation of Reduced-Graphene-Oxide-Supported CoPt and Ag Nanoparticles for the Catalytic Reduction of 4-Nitrophenol. Catalysts, 11(11), 1336. https://doi.org/10.3390/catal11111336