Promoting Photoelectrochemical Water Oxidation on Ti-Doped Fe2O3 Nanowires Photoanode by O2 Plasma Treatment
Abstract
1. Introduction
2. Results and Discussion
2.1. Effect of O2 Plasma on Morphology, Structure, and Optical Properties of the Electrodes
2.2. Effect of O2 Plasma on the PEC Performance of Ti-Fe2O3 Photoanodes
2.3. Mechanism of O2 Plasma Treatment on Promoting PEC Performance
3. Materials and Methods
3.1. Materials
3.2. Preparation of Ti-Doped Fe2O3 Photoanodes
3.2.1. Preparation of Ti-Fe2O3 Nanowires Array on FTO Substrate
3.2.2. O2 Plasma Treated Ti-Doped Hematite Nanowires
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.-H.; Kronawitter, C.X.; Wheeler, D.A.; Guo, P.; Lindley, S.A.; Jiang, J.; Zhang, J.-Z.; Guo, L.; Mao, S.-S. Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth. J. Mater.Chem. A 2013, 1, 14498–14506. [Google Scholar] [CrossRef]
- Franking, R.; Li, L.; Lukowski, M.A.; Meng, F.; Tan, Y.; Hamers, R.J.; Jin, S. Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation. Energy Environ. Sci. 2013, 6, 500–512. [Google Scholar] [CrossRef]
- Mazzaro, R.; Bibi, S.B.; Natali, M.; Bergamini, G.; Morandi, V.; Ceroni, P.; Vomiero, A. Hematite nanostructures: An old material for a new story. Simultaneous photoelectrochemical oxidation of benzylamine and hydrogen production through Ti doping. Nano Energy 2019, 61, 36–46. [Google Scholar] [CrossRef]
- Feng, F.; Li, C.; Jian, J.; Li, F.; Xu, Y.-X.; Wang, H.-Q.; Jia, L.-C. Gradient Ti-doping in hematite photoanodes for enhanced photoelectrochemical performance. J. Power Sour. 2020, 449, 227473. [Google Scholar] [CrossRef]
- Upul Wijayantha, K.G.; Saremi-Yarahmadi, S.; Peter, L.M. Kinetics of oxygen evolution at α-Fe2O3 photoanodes: A study by photoelectrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 2011, 13, 5264–5270. [Google Scholar] [CrossRef]
- Pendlebury, S.R.; Barroso, M.; Cowan, A.J.; Sivula, K.; Tang, J.W.; Grätzel, M.; Klug, D.; Durrant, J.R. Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem. Commun. 2011, 47, 716–718. [Google Scholar] [CrossRef]
- Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. Water oxidation at hematite photoelectrodes: The role of surface states. J. Am. Chem. Soc. 2012, 134, 4294–4302. [Google Scholar] [CrossRef]
- Hamann, T.W. Splitting water with rust: Hematite photoelectrochemistry. Dalton Trans. 2012, 41, 7830–7834. [Google Scholar] [CrossRef]
- McDonald, K.J.; Choi, K.-S. Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem. Mater. 2011, 23, 4863–4869. [Google Scholar] [CrossRef]
- Steier, L.; Herraiz-Cardona, I.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Tilley, S.D.; Grätzel, M. Understanding the role of underlayers and overlayers in thin film hematite photoanodes. Adv. Funct. Mater. 2014, 24, 7681–7688. [Google Scholar] [CrossRef]
- Zhong, D.-K.; Sun, J.-W.; Inumaru, H.; Gamelin, D.R. Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J. Am. Chem. Soc. 2009, 131, 6086–6087. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.-K.; Gamelin, D.R. Photoelectrochemical water oxidation by cobalt catalyst (“Co–Pi”)/α-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 2010, 132, 4202–4207. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.-W.; Xu, Z.; Yan, S.-C.; Zou, Z.-G. Tuning the ion permeability of an Al2O3 coating layer on Fe2O3 photoanodes for improved photoelectrochemical water oxidation. J. Mater. Chem. A 2017, 5, 8402–8407. [Google Scholar] [CrossRef]
- Hu, Z.-F.; Shen, Z.-R.; Yu, J.C. Covalent fixation of surface oxygen atoms on hematite photoanode for enhanced water oxidation. Chem. Mater. 2016, 28, 564–572. [Google Scholar] [CrossRef]
- Zhu, C.-Q.; Li, C.-L.; Zheng, M.-J.; Delaunay, J.J. Plasma-induced oxygen vacancies in ultrathin hematite nanoflakes promoting photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 2015, 7, 22355–22363. [Google Scholar] [CrossRef]
- Li, M.-Y.; Zhang, Z.-Y.; Lyu, F.-Y.; He, X.-J.; Liang, Z.-H.; Balogun, M.S.; Lu, X.-H.; Fang, P.-P.; Tong, Y.-X. Facile hydrothermal synthesis of three dimensional hematite nanostructures with enhanced water splitting performance. Electrochim. Acta 2015, 186, 95–100. [Google Scholar] [CrossRef]
- Kyesmen, P.I.; Nombona, N.; Diale, M. Modified annealing approach for preparing multi-layered hematite thin films for photoelectrochemical water splitting. Mater. Res. Bull. 2020, 131, 110964. [Google Scholar] [CrossRef]
- Wu, F.-K.; Xie, J.-L.; You, Y.-E.; Zhao, Z.-Y.; Wang, L.-L.; Chen, X.-Y.; Yang, P.-P.; Huang, Y.-L. Cobalt metal–organic framework ultrathin cocatalyst overlayer for improved photoelectrochemical activity of Ti-doped hematite. ACS Appl. Energy Mater. 2020, 3, 4867–4876. [Google Scholar] [CrossRef]
- Mo, R.; Liu, Q.; Li, H.-X.; Yang, S.; Zhong, J.-X. Photoelectrochemical water oxidation in α-Fe2O3 thin films enhanced by a controllable wet-chemical Ti-doping strategy and Co–Pi co-catalyst modification. J. Mater. Sci. Mater. El. 2019, 30, 21444–21453. [Google Scholar] [CrossRef]
- Cao, D.-P.; Zhang, J.-B.; Wang, A.-C.; Yu, X.-H.; Mi, B.-X. Fabrication of Cr-doped SrTiO3/Ti-doped α-Fe2O3 photoanodes with enhanced photoelectrochemical properties. J. Mater. Sci. Technol. 2020, 56, 189–195. [Google Scholar] [CrossRef]
- Wang, G.-M.; Yang, Y.; Ling, Y.-C.; Wang, H.-Y.; Lu, X.-H.; Pu, Y.-C.; Zhang, J.-Z.; Tong, Y.-X.; Li, Y. An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. J. Mater. Chem. A 2016, 4, 2849–2855. [Google Scholar] [CrossRef]
- Dotan, H.; Sivula, K.; Grätzel, M.; Rothschild, A.; Warren, S.C. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 2011, 4, 958–964. [Google Scholar] [CrossRef]
- Klotz, D.; Grave, D.A.; Rothschild, A. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting. Phys. Chem. Chem. Phys. 2017, 19, 20383–20392. [Google Scholar] [CrossRef] [PubMed]
- Bohn, C.D.; Agrawal, A.K.; Walter, E.C.; Vaudin, M.D.; Herzing, A.A.; Haney, P.M.; Talin, A.A.; Szalai, V.A. Effect of tin doping on α-Fe2O3 photoanodes for water splitting. J. Phys. Chem. C 2012, 116, 15290–15296. [Google Scholar] [CrossRef]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy; Wiley: New York, NY, USA, 2001; pp. 225–230. [Google Scholar]
- Wilhelm, S.M.; Yun, K.S.; Ballenger, L.W.; Hackerman, N. Semiconductor properties of iron oxide electrodes. J. Electrochem. Soc. 1979, 126, 419–424. [Google Scholar] [CrossRef]
- Turner, J.E.; Hendewerk, M.; Parmeter, J.; Neiman, D.; Somorjai, G.A. The characterization of doped iron oxide electrodes for the photodissociation of water: Stability, optical, and electronic properties. J. Electrochem. Soc. 1984, 131, 1777–1783. [Google Scholar] [CrossRef]
- Gao, S.; Wang, D.; Wang, Y.-L.; Li, C.; Liu, Y.-C.; Suzuki, N.; Terashima, C.; Fujishima, A.; Zhang, X.-T. Activating titanium dopants in hematite photoanode by rapid thermal annealing for enhancing photoelectrochemical water oxidation. Electrochim. Acta 2019, 318, 746–753. [Google Scholar] [CrossRef]
- Fujii, T.; de Groot, F.M.F.; Sawatzky, G.A.; Voogt, F.C.; Hibma, T.; Okada, K. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 3195–3202. [Google Scholar] [CrossRef]
- Lu, J.; Jiao, X.; Chen, D.; Li, W. Solvothermal synthesis and characterization of Fe3O4 and γ-Fe2O3 nanoplates. J. Phys. Chem. C 2009, 113, 4012–4017. [Google Scholar] [CrossRef]
- Chae, S.Y.; Rahman, G.; Joo, O.S. Elucidation of the structural and charge separation properties of titanium-doped hematite films deposited by electrospray method for photoelectrochemical water oxidation. Electrochim. Acta 2019, 297, 784–793. [Google Scholar] [CrossRef]
- Kawabe, T.; Tabata, K.; Suzuki, E.; Yamaguchi, Y.; Nagasawa, Y. Electronic states of chemisorbed oxygen species and their mutually related studies on SnO2 thin film. J. Phys. Chem. B 2001, 105, 4239–4244. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, X.; Fan, B.; Zhang, J.; Zhou, M.; Yang, W.; Hu, X.; Wang, H.; Pan, B.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. Int. Ed. 2015, 54, 7399–7404. [Google Scholar] [CrossRef] [PubMed]
- Moir, J.; Soheilnia, N.; Liao, K.; O’Brien, P.; Tian, Y.; Burch, K.S.; Ozin, G.A. Activation of ultrathin films of hematite for photoelectrochemical water splitting via H2 treatment. ChemSusChem 2015, 8, 1557–1567. [Google Scholar] [CrossRef]
- Janowitz, C.; Scherer, V.; Mohamed, M.; Krapf, A.; Dwelk, H.; Manzke, R.; Galazka, Z.; Uecker, R.; Irmacher, K.; Fornari, R.; et al. Experimental electronic structure of In2O3 and Ga2O3. New J. Phys. 2011, 13, 085014. [Google Scholar] [CrossRef]
- Lee, J.; Han, S. Thermodynamics of native point defects in α-Fe2O3: An Ab initio study. Phys. Chem. Chem. Phys. 2013, 15, 18906–18914. [Google Scholar] [CrossRef]
- Rioult, M.; Stanescu, D.; Fonda, E.; Barbier, A.; Magnan, H. Oxygen vacancies engineering of iron oxides films for solar water splitting. J. Phys. Chem. C 2016, 120, 7482–7490. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, T.; Zhang, L.; Liu, B.; Wang, D.; Wang, L.; Xie, T. Surface treatment with Al3+ on a Ti-doped α-Fe2O3 nanorod array photoanode for efficient photoelectrochemical water splitting. J. Mater. Chem. A 2014, 2, 13705–13712. [Google Scholar] [CrossRef]
- Vayssieres, L.; Beermann, N.; Lindquist, S.E.; Hagfeldt, A. Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater. 2001, 13, 233–235. [Google Scholar] [CrossRef]
- Li, C.; Wang, D.; Suzuki, N.; Terashima, C.; Liu, Y.-C.; Fujishima, A.; Zhang, X.-T. A coral-like hematite photoanode on a macroporous SnO2:Sb substrate for enhanced photoelectrochemical water oxidation. Electrochim. Acta 2020, 360, 137012. [Google Scholar] [CrossRef]
Circuit Element | Rs (Ω) | Rct (Ω) | Cbulk (F) | Csc (F) |
---|---|---|---|---|
Pristine Ti-Fe2O3 | 9.87 | 143.49 | 8.77 × 10−5 | 3.98 × 10−4 |
OPT−100W−150s | 9.66 | 114.25 | 9.46 × 10−5 | 7.99 × 10−4 |
OPT−200W−70s | 9.41 | 103.67 | 9.48 × 10−5 | 7.14 × 10−4 |
Sample | Binding Energy (eV) | ||||
---|---|---|---|---|---|
Fe 2p1/2 | Fe 2p3/2 | Ti 2p1/2 | Ti 2p3/2 | O1s (Main Peak) | |
Pristine Ti-Fe2O3 | 724.78 | 711.3 | 464.23 | 458.39 | 530.22 |
OPT-100W-150s | 724.78 | 711.3 | 464.53 | 458.64 | 530.31 |
OPT-200W-70s | 725 | 711.5 | 464.53 | 458.75 | 530.45 |
Sample | Ratio of Ov/O2− |
---|---|
Pristine Ti-Fe2O3 | 53.4% |
OPT-100W-150s | 51.6% |
OPT-200W-70s | 49.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, D.; Gu, J.; Liu, Y.; Zhang, X. Promoting Photoelectrochemical Water Oxidation on Ti-Doped Fe2O3 Nanowires Photoanode by O2 Plasma Treatment. Catalysts 2021, 11, 82. https://doi.org/10.3390/catal11010082
Li C, Wang D, Gu J, Liu Y, Zhang X. Promoting Photoelectrochemical Water Oxidation on Ti-Doped Fe2O3 Nanowires Photoanode by O2 Plasma Treatment. Catalysts. 2021; 11(1):82. https://doi.org/10.3390/catal11010082
Chicago/Turabian StyleLi, Chuang, Dan Wang, Jiangli Gu, Yichun Liu, and Xintong Zhang. 2021. "Promoting Photoelectrochemical Water Oxidation on Ti-Doped Fe2O3 Nanowires Photoanode by O2 Plasma Treatment" Catalysts 11, no. 1: 82. https://doi.org/10.3390/catal11010082
APA StyleLi, C., Wang, D., Gu, J., Liu, Y., & Zhang, X. (2021). Promoting Photoelectrochemical Water Oxidation on Ti-Doped Fe2O3 Nanowires Photoanode by O2 Plasma Treatment. Catalysts, 11(1), 82. https://doi.org/10.3390/catal11010082