Modulation of Human Mesenchymal Stem Cells by Electrical Stimulation Using an Enzymatic Biofuel Cell
Abstract
1. Introduction
2. Results
2.1. Characterization of EBFCs Used for Cellular Studies
2.2. EBFC Electrical Current for Determining Cell Viability
2.3. Morphological Analysis of Electrically Stimulated hAD-MSCs
2.4. Transcriptomic Analysis of Electrically Stimulated hAD-MSCs
2.5. Transcriptome Visualization of Electrically Stimulated hAD-MSCs by Reduce Visualize Gene Ontology (REVIGO) Program
2.6. Early-Phase Differentiation-Related Gene Expression of Electrically Stimulated hAD-MSCs
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of Enzyme Electrodes
4.3. EBFC Set-Up for 2D Cell Culture
4.4. Measurements of Electrical Currents
4.5. Human Adipose-Derived Mesenchymal Stem Cell Preparation and Maintenance
4.6. Cell Survival, Proliferation and Cell Morphology under Electrical Stimulation
4.7. mRNA-Seq Analysis
4.8. Gene Ontology Analysis of Transcriptome Data
4.9. Reverse Transcription-qPCR Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hickey, D.P.; Reid, R.C.; Milton, R.D.; Minteer, S.D. A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI. Biosens. Bioelectron. 2016, 77, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Jeon, W.Y.; Lee, J.H.; Dashnyam, K.; Choi, Y.B.; Kim, T.H.; Lee, H.H.; Kim, H.W.; Kim, H.H. Performance of a glucose-reactive enzyme-based biofuel cell system for biomedical applications. Sci. Rep. 2019, 9, 10872. [Google Scholar] [CrossRef]
- Kim, J.; Jeerapan, I.; Sempionatto, J.R.; Barfidokht, A.; Mishra, R.K.; Campbell, A.S.; Hubble, L.J.; Wang, J. Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices. Acc. Chem. Res. 2018, 51, 2820–2828. [Google Scholar] [CrossRef] [PubMed]
- Burdick, J.A.; Vunjak-Novakovic, G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng. Part A 2009, 15, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Kondrashova, M.N. Control of mitochondria respiration during potentiating effects on the cell. Biofizika 1970, 15, 312–323. [Google Scholar] [PubMed]
- Levin, M. Bioelectric mechanisms in regeneration: Unique aspects and future perspectives. Semin. Cell Dev. Biol. 2009, 20, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.; Stevenson, C.G. Regulation of cell behavior and tissue patterning by bioelectrical signals: Challenges and opportunities for biomedical engineering. Annu. Rev. Biomed. Eng. 2012, 14, 295–323. [Google Scholar] [CrossRef] [PubMed]
- Peckham, P.H.; Knutson, J.S. Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 2005, 7, 327–360. [Google Scholar] [CrossRef]
- Song, B.; Gu, Y.; Pu, J.; Reid, B.; Zhao, Z.; Zhao, M. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat. Protoc. 2007, 2, 1479–1489. [Google Scholar] [CrossRef]
- Ud-Din, S.; Bayat, A. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence. Healthcare 2014, 2, 445–467. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.A.; Kim, J.W.; Kim, J.A.; Lee, S.E.; Kim, S.; Suh, W.H.; Kim, H.S.; Kwon, S.; Kim, S.J.; Suh, Y.H. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells. PLoS ONE 2011, 6, e18738. [Google Scholar] [CrossRef]
- Du, J.; Zhen, G.; Chen, H.; Zhang, S.; Qing, L.; Yang, X.; Lee, G.; Mao, H.Q.; Jia, X. Optimal electrical stimulation boosts stem cell therapy in nerve regeneration. Biomaterials 2018, 181, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Hu, B.; Li, Z.; Li, J.; Gao, Y.; Wang, Z.; Hao, J. Synergistic Effects of Electrical Stimulation and Aligned Nanofibrous Microenvironment on Growth Behavior of Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2018, 10, 18543–18550. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Lee, G.S.; Chun, H. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors. Sci. Rep. 2016, 6, 39302. [Google Scholar] [CrossRef] [PubMed]
- Mobini, S.; Leppik, L.; Barker, J.H. Direct current electrical stimulation chamber for treating cells in vitro. Biotechniques 2016, 60, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.U.; Blasiak, A.; Agrawal, D.R.; Loong, D.T.B.; Thakor, N.V.; All, A.H.; Ho, J.S.; Yang, I.H. Subcellular electrical stimulation of neurons enhances the myelination of axons by oligodendrocytes. PLoS ONE 2017, 12, e0179642. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Grumbles, R.M.; Thomas, C.K. Electrical stimulation of embryonic neurons for 1 h improves axon regeneration and the number of reinnervated muscles that function. J. Neuropathol. Exp. Neurol. 2013, 72, 697–707. [Google Scholar] [CrossRef]
- Malyshevskaya, O.; Shiraishi, Y.; Kimura, F.; Yamamoto, N. Role of electrical activity in horizontal axon growth in the developing cortex: A time-lapse study using optogenetic stimulation. PLoS ONE 2013, 8, e82954. [Google Scholar] [CrossRef]
- Zhu, R.; Sun, Z.; Li, C.; Ramakrishna, S.; Chiu, K.; He, L. Electrical stimulation affects neural stem cell fate and function in vitro. Exp. Neurol. 2019, 319, 112963. [Google Scholar] [CrossRef]
- Jackson, A.; Zimmermann, J.B. Neural interfaces for the brain and spinal cord--restoring motor function. Nat. Rev. Neurol. 2012, 8, 690–699. [Google Scholar] [CrossRef]
- Jaermann, T.; Suter, F.; Osterwalder, D.; Luechinger, R. Measurement and analysis of electromagnetic fields of pulsed magnetic field therapy systems for private use. J. Radiol. Prot. 2011, 31, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Yahiro, A.T.; Lee, S.M.; Kimble, D.O. Bioelectrochemistry. I. Enzyme Utilizing Bio-Fuel Cell Studies. Biochim. Biophys. Acta 1964, 88, 375–383. [Google Scholar] [PubMed]
- Barton, S.C.; Gallaway, J.; Atanassov, P. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 2004, 104, 4867–4886. [Google Scholar] [CrossRef] [PubMed]
- Heller, A. Miniature biofuel cells. Phys. Chem. Chem. Phys. 2004, 6, 209. [Google Scholar] [CrossRef]
- Mano, N.; Mao, F.; Heller, A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 2003, 125, 6588–6594. [Google Scholar] [CrossRef]
- Rapoport, B.I.; Kedzierski, J.T.; Sarpeshkar, R. A glucose fuel cell for implantable brain-machine interfaces. PLoS ONE 2012, 7, e38436. [Google Scholar] [CrossRef]
- Halamkova, L.; Halamek, J.; Bocharova, V.; Szczupak, A.; Alfonta, L.; Katz, E. Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc. 2012, 134, 5040–5043. [Google Scholar] [CrossRef]
- Rasmussen, M.; Ritzmann, R.E.; Lee, I.; Pollack, A.J.; Scherson, D. An implantable biofuel cell for a live insect. J. Am. Chem. Soc. 2012, 134, 1458–1460. [Google Scholar] [CrossRef]
- Wen, D.; Eychmuller, A. Enzymatic Biofuel Cells on Porous Nanostructures. Small 2016, 12, 4649–4661. [Google Scholar] [CrossRef]
- Zebda, A.; Gondran, C.; Le Goff, A.; Holzinger, M.; Cinquin, P.; Cosnier, S. Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat. Commun. 2011, 2, 370. [Google Scholar] [CrossRef]
- Justin, G.A.; Zhang, Y.; Cui, X.T.; Bradberry, C.W.; Sun, M.; Sclabassi, R.J. A metabolic biofuel cell: Conversion of human leukocyte metabolic activity to electrical currents. J. Biol. Eng. 2011, 5, 5. [Google Scholar] [CrossRef][Green Version]
- Lee, K.D. Applications of mesenchymal stem cells: An updated review. Chang. Gung Med. J. 2008, 31, 228–236. [Google Scholar] [PubMed]
- Sigurjonsson, O.E.; Guethmundsson, K.O.; Guethmundsson, S. Mesenchymal stem cells. A review. Laeknabladid 2001, 87, 627–632. [Google Scholar] [PubMed]
- Guilak, F.; Cohen, D.M.; Estes, B.T.; Gimble, J.M.; Liedtke, W.; Chen, C.S. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009, 5, 17–26. [Google Scholar] [CrossRef]
- Park, J.; Kim, P.; Helen, W.; Engler, A.J.; Levchenko, A.; Kim, D.H. Control of stem cell fate and function by engineering physical microenvironments. Integr. Biol. 2012, 4, 1008–1018. [Google Scholar]
- Zhang, B.; Fan, L.; Zhong, H.; Liu, Y.; Chen, S. Graphene nanoelectrodes: Fabrication and size-dependent electrochemistry. J. Am. Chem. Soc. 2013, 135, 10073–10080. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Jiao, Y. Next-generation sequencing applied to flower development: RNA-seq. Methods Mol. Biol. 2014, 1110, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Banks, M.A.; Persily, G.L. Campus perspective on the National Institutes of Health public access policy: University of California, San Francisco, library experience. J. Med. Libr. Assoc. 2010, 98, 256–259. [Google Scholar] [CrossRef]
- Zhang, J.; Jiao, J. Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis. Biomed. Res. Int. 2015, 2015, 727542. [Google Scholar] [CrossRef]
- Hill, C.B.; Cassin, A.; Keeble-Gagnere, G.; Doblin, M.S.; Bacic, A.; Roessner, U. De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure. Sci. Rep. 2016, 6, 31558. [Google Scholar] [CrossRef]
- Uzer, G.; Fuchs, R.K.; Rubin, J.; Thompson, W.R. Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage. Stem Cells 2016, 34, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Kleinschmidt, E.G.; Schlaepfer, D.D. Focal adhesion kinase signaling in unexpected places. Curr. Opin. Cell Biol. 2017, 45, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Visavadiya, N.P.; Keasey, M.P.; Razskazovskiy, V.; Banerjee, K.; Jia, C.; Lovins, C.; Wright, G.L.; Hagg, T. Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun. Signal. 2016, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Schlaepfer, D.D.; Hauck, C.R.; Sieg, D.J. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 1999, 71, 435–478. [Google Scholar] [CrossRef]
- Moujaber, O.; Stochaj, U. The Cytoskeleton as Regulator of Cell Signaling Pathways. Trends Biochem. Sci. 2020, 45, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, M.A.; Modzelewska, K.; Kwong, L.; Keely, P.J. Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 2004, 1692, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Alenghat, F.J.; Ingber, D.E. Mechanotransduction: All signals point to cytoskeleton, matrix, and integrins. Sci. STKE 2002, 2002, pe6. [Google Scholar] [CrossRef]
- Lee, F.Y.; Zhen, Y.Y.; Yuen, C.M.; Fan, R.; Chen, Y.T.; Sheu, J.J.; Chen, Y.L.; Wang, C.J.; Sun, C.K.; Yip, H.K. The mTOR-FAK mechanotransduction signaling axis for focal adhesion maturation and cell proliferation. Am. J. Transl. Res. 2017, 9, 1603–1617. [Google Scholar]
- Leucht, P.; Kim, J.B.; Currey, J.A.; Brunski, J.; Helms, J.A. FAK-Mediated mechanotransduction in skeletal regeneration. PLoS ONE 2007, 2, e390. [Google Scholar] [CrossRef]
- Shafrir, Y.; Forgacs, G. Mechanotransduction through the cytoskeleton. Am. J. Physiol. Cell Physiol. 2002, 282, C479–C486. [Google Scholar] [CrossRef]
- Shao, Y.; Mann, J.M.; Chen, W.; Fu, J. Global architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction. Integr. Biol. 2014, 6, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Chen, Q.; Zheng, Y.; Nan, L.; Liao, N.; Mo, S. Potential Role of Integrin alpha(5)beta(1)/Focal Adhesion Kinase (FAK) and Actin Cytoskeleton in the Mechanotransduction and Response of Human Gingival Fibroblasts Cultured on a 3-Dimension Lactide-Co-Glycolide (3D PLGA) Scaffold. Med. Sci. Monit. 2020, 26, e921626. [Google Scholar] [CrossRef] [PubMed]
- Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Zemel, A.; Rehfeldt, F.; Brown, A.E.; Discher, D.E.; Safran, S.A. Cell shape, spreading symmetry and the polarization of stress-fibers in cells. J. Phys. Condens. Matter. 2010, 22, 194110. [Google Scholar] [CrossRef] [PubMed]
- Denis-Donini, S.; Caprini, A.; Frassoni, C.; Grilli, M. Members of the NF-kappaB family expressed in zones of active neurogenesis in the postnatal and adult mouse brain. Brain Res. Dev. Brain Res. 2005, 154, 81–89. [Google Scholar] [CrossRef]
- Furst, D.O.; Osborn, M.; Weber, K. Myogenesis in the mouse embryo: Differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J. Cell Biol. 1989, 109, 517–527. [Google Scholar] [CrossRef]
- Rutkovskiy, A.; Stenslokken, K.O.; Vaage, I.J. Osteoblast Differentiation at a Glance. Med. Sci. Monit. Basic Res. 2016, 22, 95–106. [Google Scholar] [CrossRef]
- Zhou, X.; Liao, W.J.; Liao, J.M.; Liao, P.; Lu, H. Ribosomal proteins: Functions beyond the ribosome. J. Mol. Cell Biol. 2015, 7, 92–104. [Google Scholar] [CrossRef]
- Atanasova, M.; Whitty, A. Understanding cytokine and growth factor receptor activation mechanisms. Crit. Rev. Biochem. Mol. Biol. 2012, 47, 502–530. [Google Scholar] [CrossRef]
- Sanders, J.M.; Wampole, M.E.; Thakur, M.L.; Wickstrom, E. Molecular determinants of epidermal growth factor binding: A molecular dynamics study. PLoS ONE 2013, 8, e54136. [Google Scholar] [CrossRef]
- Bentzinger, C.F.; Wang, Y.X.; Rudnicki, M.A. Building muscle: Molecular regulation of myogenesis. Cold Spring Harb. Perspect. Biol. 2012, 4. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Kato, K.; Miyake, T.; Nagamine, K.; Ofuji, T.; Yoshino, S.; Nishizawa, M. Organic transdermal iontophoresis patch with built-in biofuel cell. Adv. Healthc. Mater. 2015, 4, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Yun, J.H.; Park, Y.B.; Hyeon, J.S.; Jang, Y.; Choi, Y.B.; Kim, H.H.; Kang, T.M.; Ovalle, R.; Baughman, R.H.; et al. Two-Ply Carbon Nanotube Fiber-Typed Enzymatic Biofuel Cell Implanted in Mice. IEEE Trans. Nanobiosci. 2020, 19, 333–338. [Google Scholar] [CrossRef] [PubMed]
Condition | Anode Electrodes GOx (Cathode Electrode; BOD Fixed to 0.1 mg/mL) | |||
---|---|---|---|---|
Enzyme concentration | 0.01 mg/mL | 0.05 mg/mL | 0.1 mg/mL | 1.0 mg/mL |
IT current (nA/cm2) of the full system | 127 ± 9 | 248 ± 15 | 598 ± 75 | 1870 ± 305 |
Forward Primer | Reverse Primer | |
---|---|---|
GFAP | 5′-GGCGCTCAATGCTGGCTTCA-3′ | 5′-TCTGCCTCCAGCCTCAGGTT-3′ |
NF | 5′-TCAAGGCTAAGACCCTGGAG-3 | 5-AGGCCATCTTGACATTGAGG-3 |
ALP | 5′-CCTCGTTGACACCTGGAAGAG-3′ | 5′-TTCCGTGCGGTTCCAGA-3′ |
OPN | 5-ATCGATGTCCTTACTG-3 | 5-GGGATACTGTTCATCAGAAA-3 |
MyoG | 5-GGATATGTCTGTTGCCTTC-3′ | 5-TGGGTGTTAGCCTTATGT-3 |
MyoD | 5-GGAGTGGCAGAAAGTTAAG-3 | 5-ACGGGTCATCATAGAAGTC-3 |
beta-actin | 5′-GCACCACACCTTCTACAATG-3′ | 5′-TGCTTGCTGATCCACATCTG-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, W.-Y.; Mun, S.; Ng, W.B.; Kang, K.; Han, K.; Hwang, S.; Kim, H.-H.; Lee, J.H. Modulation of Human Mesenchymal Stem Cells by Electrical Stimulation Using an Enzymatic Biofuel Cell. Catalysts 2021, 11, 62. https://doi.org/10.3390/catal11010062
Jeon W-Y, Mun S, Ng WB, Kang K, Han K, Hwang S, Kim H-H, Lee JH. Modulation of Human Mesenchymal Stem Cells by Electrical Stimulation Using an Enzymatic Biofuel Cell. Catalysts. 2021; 11(1):62. https://doi.org/10.3390/catal11010062
Chicago/Turabian StyleJeon, Won-Yong, Seyoung Mun, Wei Beng Ng, Keunsoo Kang, Kyudong Han, Sohyun Hwang, Hyug-Han Kim, and Jae Ho Lee. 2021. "Modulation of Human Mesenchymal Stem Cells by Electrical Stimulation Using an Enzymatic Biofuel Cell" Catalysts 11, no. 1: 62. https://doi.org/10.3390/catal11010062
APA StyleJeon, W.-Y., Mun, S., Ng, W. B., Kang, K., Han, K., Hwang, S., Kim, H.-H., & Lee, J. H. (2021). Modulation of Human Mesenchymal Stem Cells by Electrical Stimulation Using an Enzymatic Biofuel Cell. Catalysts, 11(1), 62. https://doi.org/10.3390/catal11010062