Reaction Analyses Based on Quaternary Metal/Metal Oxide Catalyst Testing in Micro-Structured Reactors Using Combinatorial High-Throughput Methods for Power-to-Gas Applications
Abstract
:1. Introduction
2. Results
2.1. Catalyst Selection and Syntheses
2.2. Catalyst Screening
- NiIrCeOx_IWI
- NiRhCeOx_IWI
- RhRuAlSAOx_IWI
- RhRuAlSAOx_WI
- RhRuZrYOx_WI
- IrRhTiOx_SGCA
- IrRhTiOx_SGPA
- RhRuTiOx_SGCA
- RhRuTiOx_SGPA
2.3. Validation of the Screening Results in the Micro-Slit Reactor
- T = 573 K–663 K; p = 15 bar
- gas hourly space velocity (GHSV) = 42,500 h−1; = 100 NmL/min (H2: CO2 = 4: 1 without dilutant)
- dgas gap: 500 µm; dcatalyst layer = 250 µm.
- time on stream (TOS) = 3600 s
2.4. Characterization of NiIrCeOx_IWI
- T = 773 K; p = 15 bar
- GHSV = 42,500 h−1; = 100 NmL/min (N2: H2 = 7: 3)
- treduction = 4 h
3. Discussion
3.1. Validation Studies in the Micro-Slit Reactor
3.2. Characterization of the Catalyst NiIrCeOx_IWI
4. Materials and Methods
4.1. Sol–Gel Method by Propionic Acid (PA) Route
4.2. Modified Sol–Gel Method by Citric Acid (CA) Route
4.3. Incipient Wetness Impregnation (IWI)
4.4. Wet Impregnation (WI)
4.5. Catalyst Screening in a 10-Fold Parallel Gas Flow Micro-Structured Reactor
4.6. Validation in the Micro-Slit Reactor
4.7. Catalyst Characterisation
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aldashukurova, G.; Mironenko, A.; Mansurov, Z.; Shikina, N.; Yashnik, S.; Ismagilov, Z. Carbon dioxide reforming of methane over Co-Ni catalysts. Chem. Eng. Trans. 2011, 25, 63–68. [Google Scholar] [CrossRef]
- Benson, E.E.; Kubiak, C.P.; Sathrum, A.J.; Smieja, J.M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009, 38, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Bligaard, T.; Nørskov, J.K.; Dahl, S.; Matthiesen, J.; Christensen, C.H.; Sehested, J. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206–217. [Google Scholar] [CrossRef]
- Bradford, M.C.J.; Vannice, M.A. CO2 reforming of CH4. Catal. Rev. Sci. Eng. 1999, 41, 1–42. [Google Scholar] [CrossRef]
- Mutz, B.; Sprenger, P.; Wang, W.; Wang, D.; Kleist, W.; Grunwaldt, J.-D. Operando Raman spectroscopy on CO2 methanation over alumina-supported Ni, Ni3Fe and NiRh0.1 catalysts: Role of carbon formation as possible deactivation pathway. Appl. Catal. A Gen. 2018, 556, 160–171. [Google Scholar] [CrossRef]
- Mondal, K.C.; Choudhary, V.R.; Joshi, U.A. CO2 reforming of methane to syngas over highly active and stable supported CoOx (accompanied with MgO, ZrO2 or CeO2) catalysts. Appl. Catal. A Gen. 2007, 316, 47–52. [Google Scholar] [CrossRef]
- Marwood, M.; Doepper, R.; Renken, A. In-situ surface and gas phase analysis for kinetic studies under transient conditions. The catalytic hydrogenation of CO2. Appl. Catal. A Gen. 1997, 151, 223–246. [Google Scholar] [CrossRef] [Green Version]
- Fukuhara, C.; Hayakawa, K.; Suzuki, Y.; Kawasaki, W.; Watanabe, R. A novel nickel-based structured catalyst for CO2 methanation: A honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources. Appl. Catal. A Gen. 2017, 532, 12–18. [Google Scholar] [CrossRef]
- Tang, L.; Yamaguchi, D.; Burke, N.; Trimm, D.; Chiang, K. Methane decomposition over ceria modified iron catalysts. Catal. Commun. 2010, 11, 1215–1219. [Google Scholar] [CrossRef]
- Myrstad, R.; Eri, S.; Pfeifer, P.; Rytter, E.; Holmen, A. Fischer–Tropsch synthesis in a microstructured reactor. Catal. Today 2009, 147S, S301–S304. [Google Scholar] [CrossRef]
- Gödde, M.; Liebner, C.; Hieronymus, H. Sicherheit in der Mikroreaktionstechnik. Chem. Ing. Tech. 2009, 81, 73–78. [Google Scholar] [CrossRef]
- Schwarz, T.; Schirrmeister, S.; Döring, H.; Klemm, E. Herstellung von Wandkatalysatoren für Mikrostrukturreaktoren mittels der Niederdruckspritztechnologie. Chem. Ing. Tech. 2010, 82, 921–928. [Google Scholar] [CrossRef]
- Pfeifer, M.; Schwarz, T.; Stöwe, K. Quaternäre metall/metalloxid-katalysatoren als wandkataly satoren in mikroreaktoren für power-to-gas-applikationen mittels kombinatorischer hochdurchsatzmethoden. Chem. Ing. Tech. 2019, 91, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Satthawong, R.; Koizumi, N.; Song, C.; Prasassarakich, P. Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons. J. CO2 Util. 2013, 3–4, 102–106. [Google Scholar] [CrossRef]
- San-José-Alonso, D.; Juan-Juan, J.; Illán-Gómez, M.J.; Román-Martínez, M.C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Appl. Catal. A Gen. 2009, 371, 54–59. [Google Scholar] [CrossRef]
- Kugai, J.; Velu, S.; Song, C. Low-temperature reforming of ethanol over CeO2-supported Ni-Rh Bimetallic catalysts for H2 production. Catal. Lett. 2005, 101, 255–264. [Google Scholar] [CrossRef]
- Traa, Y.; Weitkamp, J. Kinetik der methanisierung von kohlendioxid an ruthenium auf titandioxid. Chem. Ing. Tech. 1998, 70, 1428–1430. [Google Scholar] [CrossRef]
- Lin, W.; Cheng, H.; He, L.; Yu, Y.; Zhao, F. High performance of Ir-promoted Ni/TiO2 catalyst toward the selective hydrogenation of cinnamaldehyde. J. Catal. 2013, 303, 110–116. [Google Scholar] [CrossRef]
- Irusta, S.; Cornaglia, L.M.; Lombardo, E.A. Hydrogen production using Ni–Rh on ZrO2 as potential low-temperature catalysts for membrane reactors. J. Catal. 2002, 210, 263–272. [Google Scholar] [CrossRef]
- Crisafulli, C.; Scirè, S.; Maggiore, R.; Minicò, S.; Galvagno, S. CO2 reforming of methane over Ni–Ru and Ni–Pd bimetallic catalysts. Catal. Lett. 1999, 59, 21–26. [Google Scholar] [CrossRef]
- Nie, W.; Zou, X.; Shang, X.; Wang, X.; Ding, W.; Lu, X. CeO2-assisted Ni nanocatalysts supported on mesoporous γ-Al2O3 for the production of synthetic natural gas. Fuel 2017, 202, 135–143. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Ping, Y.; Hu, D.; Xu, G.; Gu, F.; Su, F. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv. 2012, 2, 2358–2368. [Google Scholar] [CrossRef]
- Degussa VP AdNano® Ceria 50 product sheet, Degussa AG, Advanced Nanomaterials, Germany.
- Raub, E.; Röschel, E. Die Legierungen des Nickels mit Iridium und Rhodium. Z. Met. 1970, 61, 113–115, Searched at Springer Materials. Available online: https://materials.springer.com/isp/phase-diagram/docs/c_0901433 (accessed on 3 February 2020).
- Schilling, C.; Hofmann, A.; Hess, C.; Ganduglia-Pirovano, M.V. Raman spectra of polycrystalline CeO2: A density functional theory study. J. Phys. Chem. C 2017, 121, 20834–20849. [Google Scholar] [CrossRef]
- Weber, W.; Hass, K.; McBride, J. Raman study of CeO2: Second-order scattering, lattice dynamics and particle-size effects. Phys. Rev. B Cover. Condens. Matter Mater. Phys. 1993, 48, 178–185. [Google Scholar] [CrossRef]
- Nguyen, T.-S.; Postole, G.; Loridant, S.; Bosselet, F.; Burel, L.; Aouine, M.; Massin, L.; Gélin, P.; Morfin, F.; Piccolo, L. Ultrastable iridium–ceria nanopowders synthesized in one step by solution combustion for catalytic hydrogen production. J. Mater. Chem. A 2014, 2, 19822–19832. [Google Scholar] [CrossRef]
- Derafa, W.; Paloukis, F.; Mewafy, B.; Baaziz, W.; Ersen, O.; Petit, C.; Corbel, G.; Zafeiratos, S. Synthesis and characterization of nickel-doped ceria nanoparticles with improved surface reducibility. RSC Adv. 2018, 8, 40712–40719. [Google Scholar] [CrossRef] [Green Version]
- Saalfrank, J.W.; Maier, W.F. Directed evolution of noble-metal-free catalysts for the oxidation of CO at room temperature. Angew. Chem. Int. Ed. 2004, 43, 2028–2031. [Google Scholar] [CrossRef]
- Kakihana, M.; Arima, M.; Yoshimura, M.; Ikeda, N.; Sugitani, Y. Synthesis of high surface area LaMnO3+d by a polymerizable complex method. J. Alloy. Compd. 1999, 283, 102–105. [Google Scholar] [CrossRef]
combination | y | z | 100-y-z |
M1, M2: Ni, Co or Fe | 7.5 | 7.5 | 85 |
M1: Ni, Co or Fe; M2: Ir, Rh, Ru or Pd | 12 | 3 | 85 |
M1, M2: Ir, Rh, Ru or Pd | 3 | 3 | 94 |
- | y | z | 100-y-z | KB | PS |
M1, M2: Ni, Co or Fe | 7.5 | 7.5 | 85 | 300 | 2 |
M1: Ni, Co or Fe; M2: Ir, Rh, Ru or Pd | 12 | 3 | 85 | 300 | 2 |
M1, M2: Ir, Rh, Ru or Pd | 3 | 3 | 94 | 300 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfeifer, M.; Schwarz, T.; Cao, P.; Stöwe, K. Reaction Analyses Based on Quaternary Metal/Metal Oxide Catalyst Testing in Micro-Structured Reactors Using Combinatorial High-Throughput Methods for Power-to-Gas Applications. Catalysts 2021, 11, 6. https://doi.org/10.3390/catal11010006
Pfeifer M, Schwarz T, Cao P, Stöwe K. Reaction Analyses Based on Quaternary Metal/Metal Oxide Catalyst Testing in Micro-Structured Reactors Using Combinatorial High-Throughput Methods for Power-to-Gas Applications. Catalysts. 2021; 11(1):6. https://doi.org/10.3390/catal11010006
Chicago/Turabian StylePfeifer, Mirko, Thomas Schwarz, Pengfei Cao, and Klaus Stöwe. 2021. "Reaction Analyses Based on Quaternary Metal/Metal Oxide Catalyst Testing in Micro-Structured Reactors Using Combinatorial High-Throughput Methods for Power-to-Gas Applications" Catalysts 11, no. 1: 6. https://doi.org/10.3390/catal11010006
APA StylePfeifer, M., Schwarz, T., Cao, P., & Stöwe, K. (2021). Reaction Analyses Based on Quaternary Metal/Metal Oxide Catalyst Testing in Micro-Structured Reactors Using Combinatorial High-Throughput Methods for Power-to-Gas Applications. Catalysts, 11(1), 6. https://doi.org/10.3390/catal11010006