The Effect of Ni-Modified LSFCO Promoting Layer on the Gas Produced through Co-Electrolysis of CO2 and H2O at Intermediate Temperatures
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronym | Full Form |
ASC | Anode-supporting cell |
ASR | Area-specific resistance |
a.u. | arbitrary unit |
CGO | Ce0.9Gd0.1O2-δ |
GC | Gas-chromatography |
GDC | Gadolinia-doped ceria |
LSC | La0.6Sr0.4CoO3 |
LSFCO | La0.6Sr0.4Fe0.8Co0.2O3 |
MIEC | Mixed ionic and electronic conductor |
n.a. | data not available |
OCV | Open circuit voltage |
SOEC | Solid oxide electrolysis cell |
SOFC | Solid oxide fuel cell |
SOC | Solid oxide cell |
YSZ | Yttria-stabilised zirconia |
References
- Marchand, R.D.; Koh, S.L.; Morris, J. Delivering energy efficiency and carbon reduction schemes in England: Lessons from Green Deal Pioneer Places. Energy Policy 2015, 84, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Pettifor, H.; Wilson, C.; Chryssochoidis, G. The appeal of the green deal: Empirical evidence for the influence of energy efficiency policy on renovating homeowners. Energy Policy 2015, 79, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Sikora, A. European Green Deal-legal and financial challenges of the climate change. ERA Forum 2021, 21, 681–697. [Google Scholar] [CrossRef]
- Lau, K.J.; Tokofsky, P.I.; Winick, S.D. What Goes Around Comes Around: The Circulation of Proverbs in Contemporary Life; Utah State University Press: Logan, UT, USA, 2004; pp. 1–19. [Google Scholar]
- Koytsoumpa, E.I.; Bergins, C.; Kakaras, E. The CO2 economy: Review of CO2 capture and reuse technologies. J. Supercrit. Fluids 2018, 132, 3–16. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S. Green Carbon Dioxide: Advances in CO2 Utilization; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Graves, C.R.; Ebbesen, S.D.; Mogensen, M.B.; Lackner, K.S. Sustainable hydrocarbon fuels by recycling CO 2 and H 2 O with renewable or nuclear energy. Renew. Sustain. Energy Rev. 2011, 15, 1–23. [Google Scholar] [CrossRef]
- Ioannidou, E.; Neophytides, S.; Niakolas, D.K. Experimental Clarification of the RWGS Reaction Effect in H2O/CO2 SOEC Co-Electrolysis Conditions. Catalysts 2019, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Ru, X.; Lin, Z.; Xiao, G.; Wang, J.-Q. Optimization Design of Rib Width and Performance Analysis of Solid Oxide Electrolysis Cell. Energies 2020, 13, 5468. [Google Scholar] [CrossRef]
- Glauche, A.; Betz, T.; Ise, M. Product Development for SOFC and SOE Applications. ECS Trans. 2011, MA2011-01, 157–165. [Google Scholar] [CrossRef]
- Aguilo-Rullan, A.; Atanasiu, M.; Biebuyck, B.; Lymperopoulos, N.; Marenco, C.; Tsimis, D. The Status of SOFC and SOEC R&D in the European Fuel Cell and Hydrogen Joint Undertaking Programme. ECS Trans. 2017, 78, 41–61. [Google Scholar]
- Küngas, R.; Blennow, P.; Heiredal-Clausen, T.; Nørby, T.H.; Rass-Hansen, J.; Primdahl, S.; Hansen, J.B. ECOs-A Commercial CO2 Electrolysis System Developed by Haldor Topsoe. ECS Trans. 2017, 78, 2879–2884. [Google Scholar] [CrossRef]
- Tsimis, D.; Aguilo-Rullan, A.; Atanasiu, M.; Zafeiratou, E.; Dirmiki, D. The Status of SOFC and SOEC R&D in the European Fuel Cell and Hydrogen Joint Undertaking Programme. ECS Trans. 2019, 91, 9–26. [Google Scholar]
- Küngas, R.; Blennow, P.; Heiredal-Clausen, T.; Nørby, T.H.; Rass-Hansen, J.; Hansen, J.B.; Moses, P.G. Progress in SOEC Development Activities at Haldor Topsøe. ECS Trans. 2019, 91, 215–223. [Google Scholar] [CrossRef]
- Redissi, Y.; Bouallou, C. Valorization of Carbon Dioxide by Co-Electrolysis of CO2/H2O at High Temperature for Syngas Production. Energy Procedia 2013, 37, 6667–6678. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, T.; Lei, L.; Chen, F. High temperature solid oxide H2O/CO2 co-electrolysis for syngas production. Fuel Process. Technol. 2017, 161, 248–258. [Google Scholar] [CrossRef]
- Maréchal, F.; Chen, M.; Küngas, R.; Lin, T.-E.; Diethelm, S.; Maréchal, F.; Van Herle, J. Power-to-fuels via solid-oxide electrolyzer: Operating window and techno-economics. Renew. Sustain. Energy Rev. 2019, 110, 174–187. [Google Scholar] [CrossRef]
- Kupecki, J.; Mastropasqua, L.; Motylinski, K.; Ferrero, D. Chapter 5-Multilevel modeling of solid oxide electrolysis. In Solid Oxide-Based Electrochemical Devices; Lo Faro, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 123–166. [Google Scholar]
- Navasa, M.; Frandsen, H.L.; Skafte, T.L.; Sundén, B.; Graves, C. Localized carbon deposition in solid oxide electrolysis cells studied by multiphysics modeling. J. Power Sources 2018, 394, 102–113. [Google Scholar] [CrossRef]
- Aicart, J.; Usseglio-Viretta, F.; Laurencin, J.; Petitjean, M.; Delette, G.; Dessemond, L. Operating maps of high temperature H2O electrolysis and H2O+CO2 co-electrolysis in solid oxide cells. Int. J. Hydrog. Energy 2016, 41, 17233–17246. [Google Scholar] [CrossRef]
- Nelson, G.J.; Grew, K.N.; Izzo, J.R.; Lombardo, J.J.; Harris, W.M.; Faes, A.; Hessler-Wyser, A.; Van Herle, J.; Wang, S.; Chu, Y.S.; et al. Three-dimensional microstructural changes in the Ni–YSZ solid oxide fuel cell anode during operation. Acta Mater. 2012, 60, 3491–3500. [Google Scholar] [CrossRef]
- Iwanschitz, B.; Holzer, L.; Mai, A.; Schütze, M. Nickel agglomeration in solid oxide fuel cells: The influence of temperature. Solid State Ion. 2012, 211, 69–73. [Google Scholar] [CrossRef]
- Chen, B.; Hajimolana, Y.S.; Venkataraman, V.; Ni, M.; Aravind, P.V. Integration of reversible solid oxide cells with methane synthesis (ReSOC-MS) in grid stabilization: A dynamic investigation. Appl. Energy 2019, 250, 558–567. [Google Scholar] [CrossRef]
- Biswas, S.; Kulkarni, A.P.; Giddey, S.; Bhattacharya, S. A Review on Synthesis of Methane as a Pathway for Renewable Energy Storage with a Focus on Solid Oxide Electrolytic Cell-Based Processes. Front. Energy Res. 2020, 8. [Google Scholar] [CrossRef]
- Chen, B.; Xu, H.; Ni, M. Modelling of SOEC-FT reactor: Pressure effects on methanation process. Appl. Energy 2017, 185, 814–824. [Google Scholar] [CrossRef]
- Giglio, E.; Lanzini, A.; Santarelli, M.; Leone, P. Synthetic natural gas via integrated high-temperature electrolysis and methanation: Part I—Energy performance. J. Energy Storage 2015, 1, 22–37. [Google Scholar] [CrossRef]
- Frontera, P.; Macario, A.; Malara, A.; Antonucci, V.; Modafferi, V.; Antonucci, P.L. Simultaneous methanation of carbon oxides on nickel-iron catalysts supported on ceria-doped gadolinia. Catal. Today 2020, 357, 565–572. [Google Scholar] [CrossRef]
- Faro, M.L.; Vita, A.; Pino, L.; Aricò, A.S. Performance evaluation of a solid oxide fuel cell coupled to an external biogas tri-reforming process. Fuel Process. Technol. 2013, 115, 238–245. [Google Scholar] [CrossRef]
- Manenti, F.; Pelosato, R.; Vallevi, P.; Leon-Garzon, A.R.; Dotelli, G.; Vita, A.; Faro, M.L.; Maggio, G.; Pino, L.; Aricò, A.S. Biogas-fed solid oxide fuel cell (SOFC) coupled to tri-reforming process: Modelling and simulation. Int. J. Hydrog. Energy 2015, 40, 14640–14650. [Google Scholar] [CrossRef]
- Faro, M.L.; Trocino, S.; Zignani, S.; Aricò, A.S.; Maggio, G.; Italiano, C.; Fabiano, C.; Pino, L.; Vita, A. Study of a Solid Oxide Fuel Cell fed with n-dodecane reformate. Part I: Endurance test. Int. J. Hydrog. Energy 2016, 41, 5741–5747. [Google Scholar] [CrossRef]
- Faro, M.L.; Trocino, S.; Zignani, S.; Italiano, C.; Vita, A.; Aricò, A.S. Study of a solid oxide fuel cell fed with n-dodecane reformate. Part II: Effect of the reformate composition. Int. J. Hydrog. Energy 2017, 42, 1751–1757. [Google Scholar] [CrossRef]
- Faro, M.L.; Reis, R.M.; Saglietti, G.G.A.; Barcelos, M.R.D.S.; Ticianelli, E.A.; Zignani, S.C.; Aricò, A.S. Nickel-Copper/Gadolinium-Doped Ceria (CGO) Composite Electrocatalyst as a Protective Layer for a Solid-Oxide Fuel Cell Anode Fed with Ethanol. ChemElectroChem 2014, 1, 1395–1402. [Google Scholar] [CrossRef]
- Faro, M.L.; Reis, R.M.; Saglietti, G.G.A.; Zignani, S.C.; Trocino, S.; Frontera, P.; Antonucci, P.L.; Ticianelli, E.A.; Aricò, A.S. Investigation of Ni-based alloy/CGO electro-catalysts as protective layer for a solid oxide fuel cell anode fed with ethanol. J. Appl. Electrochem. 2015, 45, 647–656. [Google Scholar] [CrossRef]
- Faro, M.L.; Trocino, S.; Zignani, S.C.; Italiano, C.; Reis, R.M.; Ticianelli, E.A.; Aricò, A.S. Nickel-Iron/Gadolinium-Doped Ceria (CGO) Composite Electrocatalyst as a Protective Layer for a Solid-Oxide Fuel Cell Anode Fed with Biofuels. ChemCatChem 2016, 8, 648–655. [Google Scholar] [CrossRef]
- Faro, M.L.; Da Silva, W.O.; Barrientos, W.V.; Saglietti, G.; Zignani, S.; Ticianelli, E.; Antonucci, V.; Aricò, A. The role of CuSn alloy in the co-electrolysis of CO2 and H2O through an intermediate temperature solid oxide electrolyser. J. Energy Storage 2020, 27, 100820. [Google Scholar] [CrossRef]
- Faro, M.L.; Silva, W.; Barrientos, W.V.; Saglietti, G.; Zignani, S.; Antonucci, V.; Ticianelli, E.A.; Aricò, A.S. Enhanced production of methane through the use of a catalytic Ni–Fe pre-layer in a solid oxide co-electrolyser. Int. J. Hydrog. Energy 2020, 45, 5134–5142. [Google Scholar] [CrossRef]
- Yang, G.; Zhou, W.; Liu, M.; Shao, Z. Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2016, 8, 35308–35314. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Sengodan, S.; Kim, K.; Kim, G.; Jeong, H.Y.; Shin, J.; Ju, Y.-W.; Han, J.W.; Kim, G. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 2017, 8, 15967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faro, M.L.; Reis, R.M.; Saglietti, G.; Oliveira, V.; Zignani, S.; Trocino, S.; Maisano, S.; Ticianelli, E.; Hodnik, N.; Ruiz-Zepeda, F.; et al. Solid oxide fuel cells fed with dry ethanol: The effect of a perovskite protective anodic layer containing dispersed Ni-alloy @ FeOx core-shell nanoparticles. Appl. Catal. B Environ. 2018, 220, 98–110. [Google Scholar] [CrossRef]
- Faro, M.L.; Oliveira, V.L.; Reis, R.M.; Saglietti, G.G.A.; Zignani, S.C.; Trocino, S.; Ticianelli, E.A.; Aricò, A.S. Solid Oxide Fuel Cell Fed Directly with Dry Glycerol. Energy Technol. 2018, 7, 45–47. [Google Scholar] [CrossRef]
- Vecino-Mantilla, S.; Quintero, E.; Fonseca, C.; Gauthier, G.H.; Gauthier-Maradei, P. Catalytic Steam Reforming of Natural Gas over a New Ni Exsolved Ruddlesden-Popper Manganite in SOFC Anode Conditions. ChemCatChem 2020, 12, 1453–1466. [Google Scholar] [CrossRef]
- Nishikawa, R.; Kakinuma, K.; Nishino, H.; Brito, M.E.; Gopalan, S.; Uchida, H. Synthesis and Evaluation of Ni Catalysts Supported on BaCe0.5Zr0.3−xY0.2NixO3−δ with Fused-Aggregate Network Structure for the Hydrogen Electrode of Solid Oxide Electrolysis Cell. Catalysts 2017, 7, 223. [Google Scholar] [CrossRef] [Green Version]
- Rosen, B.A. Progress and Opportunities for Exsolution in Electrochemistry. Electrochemistry 2020, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Faro, M.L.; La Rosa, D.; Nicotera, I.; Antonucci, V.; Aricò, A.S. Electrochemical investigation of a propane-fed solid oxide fuel cell based on a composite Ni–perovskite anode catalyst. Appl. Catal. B Environ. 2009, 89, 49–57. [Google Scholar] [CrossRef]
- Faro, M.L.; Zignani, S.; Aricò, A.S. Lanthanum Ferrites-Based Exsolved Perovskites as Fuel-Flexible Anode for Solid Oxide Fuel Cells. Materials 2020, 13, 3231. [Google Scholar] [CrossRef] [PubMed]
- Faro, M.L.; Modafferi, V.; Frontera, P.; Antonucci, P.; Aricò, A.S. Catalytic behavior of Ni-modified perovskite and doped ceria composite catalyst for the conversion of odorized propane to syngas. Fuel Process. Technol. 2013, 113, 28–33. [Google Scholar] [CrossRef]
- Faro, M.L.; Antonucci, V.; Antonucci, P.; Aricò, A. Fuel flexibility: A key challenge for SOFC technology. Fuel 2012, 102, 554–559. [Google Scholar] [CrossRef]
- Faro, M.L.; Aricò, A.S. Electrochemical behaviour of an all-perovskite-based intermediate temperature solid oxide fuel cell. Int. J. Hydrog. Energy 2013, 38, 14773–14778. [Google Scholar] [CrossRef]
- Faro, M.L.; Trocino, S.; Zignani, S.; Antonucci, V.; Aricò, A.S. Production of syngas by solid oxide electrolysis: A case study. Int. J. Hydrog. Energy 2017, 42, 27859–27865. [Google Scholar] [CrossRef]
- Faro, M.L.; Zignani, S.; Trocino, S.; Antonucci, V.; Aricò, A. New insights on the co-electrolysis of CO2 and H2O through a solid oxide electrolyser operating at intermediate temperatures. Electrochim. Acta 2019, 296, 458–464. [Google Scholar] [CrossRef]
- Bian, L.; Duan, C.; Wang, L.; Chen, Z.; Hou, Y.; Peng, J.; Song, X.; An, S.; O’Hayre, R. An all-oxide electrolysis cells for syngas production with tunable H2/CO yield via co-electrolysis of H2O and CO2. J. Power Sources 2021, 482, 228887. [Google Scholar] [CrossRef]
- Reisert, M.; Aphale, A.; Singh, P. Solid Oxide Electrochemical Systems: Material Degradation Processes and Novel Mitigation Approaches. Materials 2018, 11, 2169. [Google Scholar] [CrossRef] [Green Version]
- Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.Y.; Swinnea, J.S.; Steinfink, H.; Reiff, W.M.; Lightfoot, P.; Pei, S.; Jorgensen, J.D. Ruddlesden-Popper Phases An+1MnO3n+1: Structures and Properties; NIST Special Publication: Jackson, WY, USA, 1991; pp. 301–306. [Google Scholar]
- Lee, D.; Lee, H.N. Controlling Oxygen Mobility in Ruddlesden–Popper Oxides. Materials 2017, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.D.L.; Prévot, M.S.; Fagan, R.D.; Zhang, Z.; Sedach, P.A.; Siu, M.K.J.; Trudel, S.; Berlinguette, C.P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.D.L.; Prévot, M.S.; Fagan, R.D.; Trudel, S.; Berlinguette, C.P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing Iron, Cobalt, and Nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586. [Google Scholar] [CrossRef] [PubMed]
- Torrell, M.; García-Rodríguez, S.; Morata, A.; Penelas, G.; Tarancón, A. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: A strategy for avoiding the use of hydrogen as a safe gas. Faraday Discuss. 2015, 182, 241–255. [Google Scholar] [CrossRef]
- Hou, S.; Xie, K. Enhancing the performance of high-temperature H2O/CO2 co-electrolysis process on the solid oxide Sr2Fe1.6Mo0.5O6-δ-SDC/LSGM/Sr2Fe1.5Mo0.5O6-δ-SDC cell. Electrochim. Acta 2019, 301, 63–68. [Google Scholar] [CrossRef]
Temperature | ||||||||
---|---|---|---|---|---|---|---|---|
525 °C | 550 °C | 600 °C | 650 °C | 700 °C | 750 °C | 800 °C | ||
Cell Voltage at 150 mA cm−2 | Coated cell | 1.88 V | 1.48 V | 1.24 V | 1.24 V | 1.24 V | 1.11 V | 1.00 V |
Bare cell Ref. [50] | 1.15 V | 1.07 V | 0.99 V | 0.94 V | 0.91 | n.a. | n.a. | |
Area Specific Resistance at 150 mA cm−2 | Coated cell | >16 Ω cm2 | 3.51 Ω cm2 | 2.07 Ω cm2 | 1.80 Ω cm2 | 1.72 Ω cm2 | 1.33 Ω cm2 | 0.69 Ω cm2 |
Bare cell Ref. [50] | 2.89 Ω cm2 | 2.25 Ω cm2 | 1.24 Ω cm2 | 0.81 Ω cm2 | 0.76 Ω cm2 | n.a. | n.a. |
Temperature | ||||||||
---|---|---|---|---|---|---|---|---|
525 °C | 550 °C | 600 °C | 650 °C | 700 °C | 750 °C | 800 °C | ||
Coated cell -@ 150 mA cm−2- | CO2conversion | 14.1% | 15.4% | 19.1% | 32.5% | 57.9% | 66.8% | 66.3% |
H2residue | 89.2% | 89.2% | 88.4% | 85.2% | 80.11% | 71.9% | 67.4% | |
Selectivity to CO | 92.4% | 96.7% | 99.1% | 99.8% | 99.9% | 99.9% | 99.8% | |
CO yield | 13.1% | 14.9% | 19.0% | 32.5% | 57.8% | 66.8% | 66.1% | |
Selectivity to CH4 | 7.6% | 3.2% | 0.8% | 0.2% | 0.1% | 0.1% | 0.2% | |
CH4yield | 1.1% | 0.5% | 0.2% | 0.1% | 0.1% | 0.1% | 0.1% | |
Bare cell -@ 150 mA cm−2- Ref. [50] | CO2conversion | 25.9% | 26.9% | 29.8% | 30.3% | 31% | n.a. | n.a. |
H2residue | 107% | 108.1% | 108.2% | 103.7% | 98.9% | n.a. | n.a. | |
Selectivity to CO | 97.9% | 99.2% | 99.9% | 100% | 100% | n.a. | n.a. | |
CO yield | 25.4% | 26.7% | 29.7% | 30.3% | 30.9% | n.a. | n.a. | |
Selectivity to CH4 | 2.1% | 0.8% | 0.1% | 0% | 0% | n.a. | n.a. | |
CH4yield | 0.5% | 0.2% | traces | traces | traces | n.a. | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Faro, M.; Campagna Zignani, S.; Antonucci, V.; Aricò, A.S. The Effect of Ni-Modified LSFCO Promoting Layer on the Gas Produced through Co-Electrolysis of CO2 and H2O at Intermediate Temperatures. Catalysts 2021, 11, 56. https://doi.org/10.3390/catal11010056
Lo Faro M, Campagna Zignani S, Antonucci V, Aricò AS. The Effect of Ni-Modified LSFCO Promoting Layer on the Gas Produced through Co-Electrolysis of CO2 and H2O at Intermediate Temperatures. Catalysts. 2021; 11(1):56. https://doi.org/10.3390/catal11010056
Chicago/Turabian StyleLo Faro, Massimiliano, Sabrina Campagna Zignani, Vincenzo Antonucci, and Antonino Salvatore Aricò. 2021. "The Effect of Ni-Modified LSFCO Promoting Layer on the Gas Produced through Co-Electrolysis of CO2 and H2O at Intermediate Temperatures" Catalysts 11, no. 1: 56. https://doi.org/10.3390/catal11010056
APA StyleLo Faro, M., Campagna Zignani, S., Antonucci, V., & Aricò, A. S. (2021). The Effect of Ni-Modified LSFCO Promoting Layer on the Gas Produced through Co-Electrolysis of CO2 and H2O at Intermediate Temperatures. Catalysts, 11(1), 56. https://doi.org/10.3390/catal11010056