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Abstract: In the present investigation, modified X-Ni/GDC electrodes (where X = Au, Mo, and Fe)
are studied, in the form of half-electrolyte supported cells, for their performance in the RWGS through
catalytic-kinetic measurements. The samples were tested at open circuit potential conditions in order
to elucidate their catalytic activity towards the production of CO (rco), which is one of the products of
the H2O/CO2 co-electrolysis reaction. Physicochemical characterization is also presented, in which
the samples were examined in the form of powders and as half cells with BET, H2-TPR, Air-TPO and
TGA re-oxidation measurements in the presence of H2O. In brief, it was found that the rate of the
produced CO (rco) increases by increasing the operating temperature and the partial pressure of H2

in the reaction mixture. In addition, the first results revealed that Fe and Mo modification enhances
the catalytic production of CO, since the 2wt% Fe-Ni/GDC and 3wt% Mo-Ni/GDC electrodes were
proven to perform better compared to the other samples, in the whole studied temperature range
(800–900 ◦C), reaching thermodynamic equilibrium. Furthermore, carbon formation was not detected.

Keywords: SOECs; RWGS reaction kinetics; Au–Mo–Fe-Ni/GDC electrodes; high temperature
H2O/CO2 co-electrolysis

1. Introduction

Solid oxide electrolysis is a contemporary process for CO2 capture/recycling, which is proven as
an attractive method to provide CO2 neutral synthetic hydrocarbon fuels. In particular, co-electrolysis
of H2O and CO2 in a solid oxide electrolysis cell (SOEC) yields synthesis gas (CO + H2), which
in turn can be used towards the formation of various types of synthetic fuels [1–3] by applying
the Fischer-Tropsch process. According to thermodynamics, SOECs offer benefits for endothermic
reactions, such as H2O and/or CO2 electrolysis at temperatures >700 ◦C, because a larger part of the
required electrical energy can be substituted by thermal energy [4,5]. In addition, high temperature
can lead to a significant decrease in the internal resistance of the cell and acceleration of the electrode
reaction processes due to fast reaction kinetics [4–7].

H2O/CO2 Co-electrolysis is a much more complex process compared to pure steam or CO2

electrolysis. This is because three reactions take place simultaneously, namely H2O electrolysis,
CO2 electrolysis, and the catalytic Reverse Water Gas Shift reaction (RWGS). More specifically, at the
cathode of SOECs, two electrochemical reactions take place in parallel at the triple phase boundaries,
i.e., H2O and CO2 electrochemical reductions. The oxygen ions (O2−), produced by these reactions, are
moved to the anode, through an oxygen ion-conducting electrolyte (Yttria-Stabilized Zirconia − YSZ),
where oxygen (O2) gas is formed [8,9]:

Cathode: H2O + 2e− → H2 + O2− ∆H800 ◦C = 151.8 kJ/mol (1)

Catalysts 2019, 9, 151; doi:10.3390/catal9020151 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0002-1365-413X
http://www.mdpi.com/2073-4344/9/2/151?type=check_update&version=1
http://dx.doi.org/10.3390/catal9020151
http://www.mdpi.com/journal/catalysts


Catalysts 2019, 9, 151 2 of 19

CO2 + 2e− → CO + O2− ∆H800 ◦C = 185.9 kJ/mol (2)

Anode: O2− → 1
2

O2 + 2e− (3)

Besides the electrolysis reactions mentioned above, the reversible water gas shift (RWGS) catalytic
reaction also occurs at the cathode with the co-existence of CO2 and H2O:

Cathode: H2 + CO2 → H2O + CO ∆H800 ◦C = 36.8 kJ/mol (4)

It thus appears that CO can be produced either electrocatalytically by the reduction of CO2 or
catalytically via the RWGS reaction. Questionable conclusions have been proposed in the literature
about the role of the RWGS reaction for CO production. Some studies mention that CO is mainly
produced electrocatalytically and RWGS has a small participation [10–15], while other studies mention
that CO is absolutely produced catalytically via the RWGS reaction [16,17]. However, it has not been
shown conclusively to which degree the RWGS is responsible for CO production in an SOEC.

Specifically, Mogensen and co-researchers found that the performance of co-electrolysis on an
Ni/YSZ cathode varied between the highest pure H2O electrolysis and the lowest CO2 electrolysis,
being much closer to the prior process [13,14]. This implies the significant contribution of the RWGS
reaction in the H2O/CO2 SOEC co-electrolysis process and also confirms the co-existence of CO2

electrolysis. The above conclusion was supported by recently published results on computational
modelling of the direct and indirect (with electro-generated H2) reduction of CO2 [18,19]. The direction
of the Water Gas Shift (WGS) reaction could be forward or backward, depending on the operating
conditions, indicating that at high temperatures (>838 ◦C), CO was produced electrochemically and
the WGS was shifted in reverse towards H2 and CO2.

In contrast, Yue and Irvine [20] suggested that the RWGS reaction did not contribute critically
in catalysing H2O/CO2 co-electrolysis on s (La,Sr)(Cr,Mn)O3 (LSCM) perovskite based cathode. The
LSCM cathode displayed higher catalytic activity for pure CO2 electrolysis than pure H2O electrolysis,
and the performance for H2O/CO2 co-electrolysis was much closer to pure CO2 electrolysis.

On the other hand, Bae et al., Hartvigsen et al., Kee et al., and Zhao et al. considered that CO
production on Ni-based cathodes was mainly from the RWGS reaction, whereas the electrochemical
processes are dominated by H2O electrolysis with identical performances for H2O electrolysis and
H2O/CO2 co-electrolysis [16,17,21].

According to the above mentioned reports, until now, no agreement has been reached regarding
the role of the RWGS reaction in the production of CO. As a result, it is crucial to quantify the degree of
CO formation for each reaction. The discrepancies regarding the CO production route can be affected
both by the structural characteristics of the electrode/catalyst (specific surface area, reducibility
and re-oxidation behaviour, porosity, particle size, ionic and electronic conductivity), but also by
the operating conditions (gas composition, temperature, etc.) [9,22]. As reported by Li’s study [10],
the heterogeneous thermochemical reactions occur at the external surface of the cathode and they
are 20–100 times faster than the electrochemical reactions, which occur close to the electrolyte at the
three phase boundaries. Furthermore, structural modifications of the cathode could enhance mass
transport and promote CO production through the catalytic RWGS reaction, resulting in H2O/CO2

co-electrolysis performance close to that of H2O electrolysis.
The majority of studies on high temperature H2O/CO2 co-electrolysis utilize Ni-containing

ceramic cathodes with YSZ and Gadolinia-Doped Ceria (GDC), similarly to the case of H2O
electrolysis [10–14]. Ni-based materials indeed are cheap and exhibit porous structure, high electronic
conductivity, appropriate catalytic activity, and a similar Thermal Expansion Coefficient (TEC)
with the electrolyte. Consequently, they could act as excellent SOECs cathodes for H2O/CO2

co-electrolysis [7,22–26].
However, SOECs comprising Ni-based cathodes face some critical degradation issues, which are

more pronounced with an increasing current density [3,12,14,27–33]. The main reasons for degradation
have been reported to be microstructural changes that take place after prolonged co-electrolysis,
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resulting in passivation and blocking of the Three-Phase Boundaries (TPB) area [12,13,28,30,31,33,34].
Post-mortem microscopy investigations in the Ni/YSZ electrode have shown irreversible damages
of the electrode’s microstructure, such as loss of Ni-YSZ contact, decomposition of YSZ, Ni grain
growth, loss of Ni percolation (loss of Ni–Ni contact), and even migration of Ni from the fuel
electrode [28,30,31,33]. Taking into account the above, it is critical to develop alternative cathode
materials for H2O/CO2 co-electrolysis with improved structural properties.

Previous studies reported that the electrocatalytic efficiency of SOECs can be improved by alloying
transition metals with the state of the art (SoA) Ni catalyst [35–39]. Modification by means of alloying
may be a promising strategy to promote the catalytic activity due to ligand and strain effects that
change the electronic structure [40] of the active element. Recent studies focused on the Ni–Co alloy
with Sm-doped ceria (Ni–Co/SDC) as an alternative material, with enhanced performance for H2O
electrolysis in SOECs [36]. Specifically, the addition of Co increased the intrinsic catalytic activity
of pure Ni and simultaneously expanded the active reaction region [36,41]. Other reports have
shown that an Ni–Fe bimetallic cathode, mixed with Ba0.6La0.4CoO3 on La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM)
electrolyte, improved the electrochemical performance of the electrode for H2O electrolysis [38] and
CO2 electrolysis [39], due to prevention of Ni aggregation. Furthermore, the enhanced performance of
the Ni–Fe formulations could be attributed to the increased stability and improved catalytic activity,
due to the addition of Fe, as this was concluded by combining experimental results with theoretical
Density Functional Theory (DFT) calculations [41].

Our research group have studied the effect of Au and/or Mo doping on the physicochemical
and catalytic properties of Ni/GDC for the reactions of catalytic CH4 dissociation and methane steam
reforming [23,42–45] in the presence of H2 and H2S impurities. These modifications resulted in SOFC
fuel electrodes with high sulfur and carbon tolerance as well as with improved electrocatalytic activity.
Regarding the doping level of Au and Mo, the amount of 3wt% was indicated as an appropriate
loading for achieving the most promising results under the examined SOFC conditions. Recently,
the 3wt% Au-Ni/GDC electrode was tested under SOEC conditions for the H2O electrolysis process
and exhibited improved electrocatalytic performance compared to Ni/GDC [46]. The enhanced
performance of the Au-doped cathode was attributed to the creation of a surface Ni–Au solid solution,
which causes weaker interplay of absorbed H2Oads and Oads species with the modified cathode.
The result is a durable and resistant electrode to surface oxidation with an improved “three phase
boundaries” area, especially at temperatures higher than 800 ◦C [46].

The presented investigation deals with modified X-Ni/GDC electrodes (where X = Au, Mo, Fe),
in the form of half-Electrolyte Supported Cells (ESCs), for their performance in the RWGS through
catalytic-kinetic measurements. Ni/GDC, 3wt% Au-Ni/GDC, 3wt% Mo-Ni/GDC, 3wt% Au–3wt%
Mo-Ni/GDC, and 2wt% Fe-Ni/GDC modified cathodes were tested at Open Circuit Potential (OCP)
conditions to elucidate their catalytic activity towards the production of CO (rco), which is one of the
products from the H2O/CO2 co-electrolysis reaction. The latter approach is considered as an attempt
to create a reference profile for the catalytic performance of the candidate electrodes, by applying the
same H2O/CO2/H2 feed conditions as those under the co-electrolysis operational mode. The samples,
both in the form of powders and as half cells, were physicochemically characterized, including specific
redox stability measurements in the presence of H2O.

2. Results and Discussion

2.1. Physicochemical Characterization

2.1.1. Specific Surface Area Values of Au–Mo–Fe-Modified Powders

The specific surface area values (SSA) for the modified-NiO/GDC samples, calcined in air at 600
and 1100 ◦C, as well as after reduction with H2 at 850 ◦C, are presented in Table 1.

The first remark is that all samples exhibit quite similar and low SSA values, which decrease
further by increasing the calcination temperature from 600 ◦C to 1100 ◦C and after H2 reduction at
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850 ◦C. Furthermore, Mo and Au–Mo modification slightly decrease the SSA of Ni/GDC, while the
addition of Fe causes a significant increase in the SSA values up to approximately 70%. Taking into
account the generally low values and the ±0.2 m2 g−1 accuracy limits of the measurements, it can
be concluded that the reduced Mo and Au–Mo-Ni/GDC powders have similar SSAs with Ni/GDC.
On the other hand, the 70% increase in the SSA of the Fe modified sample can be primarily ascribed to
the formation of FeOx species, in the oxidized form of the sample, which inhibit the decrease of SSA
during reduction.

Table 1. BET Specific Surface Area (SSABET) of commercial NiO/GDC, and X-modified NiO/GDC
samples (where X = Au, Mo, and Fe). The measurements were performed on powders, calcined at
600 ◦C, 1100 ◦C, and after H2-reduction at 850 ◦C. Error/accuracy of SSABET = ±0.2 m2 g−1.

Sample Powder
SSABET (m2 g−1)

T = 600 ◦C, (oxidized) T = 1100 ◦C, (oxidized) After H2-reduction
at T = 850 ◦C

NiO/GDC 5.3 2.9 2.0
3Au-NiO/GDC 5.4 2.7 2.1
3Mo-NiO/GDC 5.0 2.2 1.7

3Au–3Mo-NiO/GDC 5.1 2.4 1.8
2Fe-NiO/GDC 8.8 4.0 3.4

2.1.2. H2 Reducibility and air Re-Oxidation Behaviour of Au–Mo–Fe-Modified Powders

Temperature Programmed Reduction followed by Oxidation (H2-TPR, Air-TPO) measurements
were performed, in order to investigate the reducibility and re-oxidation behavior of the prepared
composite powders, as well as the existence of possible bulk effects due to the modification with Au,
Mo, and Fe. The corresponding H2-TPR and Air-TPO TGA profiles of modified-NiO/GDC samples,
calcined at 1100 ◦C, are presented in Figure 1.
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Figure 1. TGA (A) H2-TPR (12 vol.% H2/Ar), and (B) O2-TPO (33 vol.% air) profiles of X-modified
NiO/GDC samples (where X= Au, Mo, and Fe). The measurements were performed on powders,
calcined at 1100 ◦C. Ftotal = 60 cm3/min (STP conditions: 0 ◦C, 1 atm).

H2-TPR and air-TPO measurements showed different reduction and oxidation behavior in each
of the examined modified samples. In particular, two main reduction peaks (Figure 1A) and one
oxidation peak (Figure 1B) are mainly observed, which can be attributed to the reduction of NiO
species to Ni and the reverse [42,47]. Moreover, the presence of Au does not seem to affect significantly
the reduction of NiO. On the other hand, MoO3 and, to a certain extent, Fe inhibit the NiO reduction,
implying a stronger Ni–O bond. The inhibition effect of MoO3 is also observed in the case of the
ternary 3Au–3Mo-NiO/GDC sample and indicates a bulk interaction between Ni–Au–Mo, which
has been thoroughly investigated in previous studies [23,42,43]. In particular, the second broad peak
(“shoulder”) at 580 ◦C, which is observed for the 3Mo-NiO/GDC and 3Au–3Mo-NiO/GDC samples,
may be associated with the reduction of MoO3 species, which are reduced at higher temperatures in
the range of 600–770 ◦C [42,47]. The presence of Fe seems to affect the main reduction peak of NiO,
in a similar way as MoO3, suggesting the possible formation of a solid solution between Ni and Fe.
The latter observation is currently under further clarification.

Upon re-oxidation of the samples, the unmodified Ni/GDC as well as the Au modified sample
are oxidized practically at the same temperature with a similar TPO profile. The reduced state of the
Fe, Mo-, and Au–Mo- modified samples proved to be more resistant to re-oxidation in 33 vol.% air/Ar
(6.7 vol.% O2/Ar), since they had to reach higher temperature for complete re-oxidation.

2.1.3. H2O Re-Oxidation Profiles of Au-Mo-Fe–Modified Powders

Isothermal-TGA measurements, under 15.5 vol.% H2O/Ar conditions, were carried out at 650 ◦C,
700 ◦C, 750 ◦C, and 800 ◦C and the results are depicted in Figures 2 and 3. These measurements
investigate the activity of the powders for the H2O dissociation reaction and their concomitant
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re-oxidation rate. H2O acts as an oxidative agent and interacts with the Ni atoms on the surface
of each sample towards H2 and NiO [reaction (5)] [46].

H2O + Ni→ H2 + NiO (5)

Thereafter, there is a progressive diffusion of the absorbed oxygen species (Oads) from the
surface in the bulk phase of the sample, which is oxidized further [46,48–50]. Figure 2 depicts the
H2O re-oxidation profiles, as an increase of the weight (∆wt%), of the pre-reduced Ni/GDC, 3wt%
Au-Ni/GDC, 3wt% Mo-Ni/GDC, 3wt% Au–3wt% Mo-Ni/GDC, and 2wt% Fe-Ni/GDC samples in
the temperature range between 650–800 ◦C.
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Figure 2. Isothermal TG analysis of the pre-reduced, (A) Ni/GDC, (B) 3wt% Au-Ni/GDC, (C) 3wt%
Mo-Ni/GDC, (D) 3wt% Au–3wt% Mo-Ni/GDC, and (E) 2wt% Fe-Ni/GDC samples in the temperature
range between 650–800 ◦C. (F) Comparative TG profiles of the samples at 800 ◦C. Feed Conditions:
15.5 vol.% H2O/Ar, Ftotal = 100 cm3/min (STP conditions: 0 ◦C, 1 atm).
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Figure 3. Arrhenius plots of the H2O re-oxidation rate (resulting from the slope of the isothermal
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Mo-Ni/GDC, and 2wt% Fe-Ni/GDC Feed Conditions: 15.5 vol.% H2O/Ar, Ftotal = 110 cm3/min
(STP conditions: 0 ◦C, 1 atm).

The re-oxidation profiles of the samples in Figure 2 can be separated in three sections [46]. The first
section corresponds to the initial sharp increase in weight and is ascribed [46] to the complete, bulk,
re-oxidation of the partially reduced CeO2 in GDC and specifically of Ce3+ to Ce4+. The second section
occurs during the following 12–25 min of the reaction, where the samples, except for 2Fe-Ni/GDC,
keep their reduced state without any changes in their weight. This step is associated [46] to the
dissociation of bulk NiH species, which are formed during the prior reduction period, and maintains
the samples reduction. NiH dissociation is considered as an activated process, because by decreasing
the operating temperature from 800 ◦C to 650 ◦C, the specific “delay” period increases from 12 min
to 25 min. The first two sections are quite similar for the pre-reduced powders, with identical low
SSA values (Table 1). On the other hand, the initial re-oxidation behavior, in the first section, of the
pre-reduced 2Fe-Ni/GDC is more intense, indicating the strong effect of H2O.

In the third section of the TG profiles, further re-oxidation takes place [reaction (5)] and the
main discrepancies are detected among the samples. In the range of 650–800 ◦C, the ternary
3Au–3Mo-Ni/GDC sample is the most tolerant in bulk re-oxidation by H2O, while the binary
2Fe-Ni/GDC sample is the least tolerant. The decrease in temperature (800 → 650 ◦C) leads to
inhibition of the bulk re-oxidation, as observed by the reduced slopes in the TG profiles, whereas
the trend among the samples does not change. The high tolerance of the 3Au–3Mo-Ni/GDC sample
against bulk re-oxidation by H2O is attributed to the synergistic interaction of nickel with gold and
molybdenum [23,42].

The slope on the linear part of the third section in the TG curves represents the intrinsic dissociation
rate of H2O and correspondingly the re-oxidation rate of Ni atoms on each sample [reaction (5)] [46].
Figure 3 depicts the Arrhenius plots of the oxidation rates of the samples, which were calculated
from the slopes on the linear parts of the TG profiles (Figure 2). The Arrhenius plots (Figure 3)
show that the binary 2Fe-Ni/GDC sample has the highest H2O re-oxidation rates, while the ternary
3Au–3Mo-Ni/GDC has the lowest. This is further confirmed by the calculated apparent activation
energies (Ea,ap), which are defined from the Arrhenius plots and are reported in Table 2.
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Table 2. Apparent activation energies (kJ mol−1) for the dissociation of H2O on commercial Ni/GDC [46],
and modified Ni/GDC samples. The values correspond to the slopes of the Arrhenius plots in Figure 3.

Sample Powder Ea, app (kJ mol−1)

Ni/GDC [46] 41
3Au-Ni/GDC [46] 56

3Mo-Ni/GDC 45
3Au–3Mo-Ni/GDC 63

2Fe-Ni/GDC 20

The calculated values verify that the binary 2Fe-Ni/GDC sample exhibits the lowest Ea,ap

(20 kJ/mol) for the catalytic dissociation of H2O, whereas the ternary 3Au–3Mo-Ni/GDC sample
exhibits the highest Ea,ap (63 kJ/mol). The above behavior can be interpreted by the fact that Ni-Fe
interaction reinforces the bond of H2Oads, resulting in a higher re-oxidation rate (lower Ea,ap). On the
other hand, following the same interpretation, Ni–Au–Mo interaction weakens the bond of H2Oads,
resulting in a lower re-oxidation rate (higher Ea,ap) [46].

The calculated Ea,ap values are in good agreement with our previous study [46] and other
studies [51–53] in the literature, which focus on theoretical investigations. The binary 2Fe-Ni/GDC
sample is the most active for the thermochemical dissociation of H2O and is less resistant against bulk
re-oxidation. On the contrary, the ternary 3Au–3Mo-Ni/GDC sample exhibits the lowest activity for
the thermochemical dissociation of H2O and the highest tolerance against bulk re-oxidation.

Taking into account the above, H2O, apart from being the main reactant of the co-electrolysis
process, is also considered as a potential poisoning agent of the electrode. This means that the bonding
strength of the adsorbed oxygen species, which result from H2O decomposition, may induce the
re-oxidation of the electrode and finally the deactivation of the sample [46,53]. The H2O poisoning
effect in electrolysis and co-electrolysis processes can also be correlated to the CH4 poisoning effect in
SOFC applications, where degradation is enhanced by the strong adsorption bond of CH4 on the Ni
surface [23,42–45,54,55]. Thus, the stronger binding of the adsorbed oxygen species, which result from
the catalytic dissociation of H2Oads, can similarly cause a poisoning effect on the Ni surface, leading to
faster re-oxidation and finally deactivation of the sample [46,53]. According to Besenbacher et al. [56],
the surface solid solution between Au and Ni induces significant modifications in the electronic
properties of Ni (Fermi level, work function, and d-band center) and affects the bonding strength of
the adsorbed species on the surface of the sample.

In this respect, the Au- and Au–Mo- doping of Ni should shift the d-band center to lower
energies, with respect to the Fermi level of nickel, thus inhibiting the interaction and the dissociation
of H2O. Therefore, the 3Au-Ni/GDC and 3Au–3Mo-Ni/GDC samples are suggested to be the least
active samples for the dissociation of H2O, having the highest Ea,app and consequently the lowest
binding energies for both H2O and Oads. The binary 2Fe-Ni/GDC is suggested to be the most active
sample for the dissociation of H2O, with the lowest Ea,app, resulting in Oads species with the highest
binding energy and the potential to cause faster re-oxidation/poisoning of the electrode [46,53] during
SOEC operation.

2.2. Catalytic-Kinetic Measurements of the RWGS Reaction

All the prepared samples, in the form of half-electrolyte supported cells, were tested at Open
Circuit Potential (OCP) conditions to elucidate their catalytic activity towards the production of CO,
which is one of the products from the H2O/CO2 co-electrolysis reaction. Furthermore, the effect
of the modification (type of dopant: Au, Mo, Fe) on the catalytic activity for the production of CO,
through the RWGS reaction, was also investigated. The latter approach is considered as an attempt
to create a reference profile for the catalytic performance of the candidate electrodes, under the same
experimental conditions as in co-electrolysis (including the presence of current collector). This is an
important step, because it will provide detailed experimental feedback on the possible contribution of
the RWGS reaction to the production of CO and the extent of this contribution to the electrochemical
reduction of CO2, during the co-electrolysis mode.
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In regards to the “homogenous” catalytic production of CO, the rate was found to be negligible,
in the range of rco, homogenous = 0.05 µmol/s, for a fuel feed comprising 30 vol.% He − 24.5 vol.% H2O
− 24.5 vol.% CO2 − 21 vol.% H2. Concerning the current collector, Ni-mesh shows some catalytic
activity for the production of CO (rCO), which increases by increasing the operating temperature and
the partial pressure of H2. However, comparative rCO measurements (see Figure S1 in Supplementary
Material) of an Ni/GDC electrode with and without the presence of Ni mesh as the current collector,
as well as of the bare Ni mesh, suggest that there is no direct catalytic correlation/contribution of the
Ni mesh to the activity of the electrocatalysts. This is mainly explained by the fact that Ni/GDC is a
porous electrocatalyst with SSABET and thus with more active sites, compared to the metallic nickel
mesh, which does not possess similar properties. Consequently, from the point where they co-exist as
the electrode and current collector, the catalytic activity is mainly attributed to the electrocatalyst.

Figure 4 presents the comparison of the produced rCO for the Ni/GDC and for modified-Ni/GDC
electrodes, under three different H2O-CO2-H2 mixtures. The corresponding %CO2 conversions are
depicted in Figure 5. The values are low enough to be considered in the differential region, apart from
the case of 2Fe-Ni/GDC in the reaction mixture (A), which is relatively high. The % conversion of CO2

was calculated by the following formula:

CO2 conversion (%) =
Fout

CO

Fin
CO2

·100 (6)

where: Fout
CO and Fin

CO2
correspond to the rate (µmol/s) of the produced CO and of the introduced CO2

in the reactants feed, respectively.
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Figure 4. CO production rates (μmol s−1 g−1) on ESCs comprising: Ni/GDC, 3Au-Νi/GDC, 3Μο-
Νi/GDC, 3Au–3Μο-Νi/GDC, and 2Fe-Ni/GDC, as fuel electrodes, in the range of 800–900 °C under 
three different mixtures: (A) 24.5% H2O − 24.5% CO2 − 21% H2 (PH2/PCO2 = 0.86), (B) 28% H2O − 28% 

Figure 4. CO production rates (µmol s−1 g−1) on ESCs comprising: Ni/GDC, 3Au-Ni/GDC,
3Mo-Ni/GDC, 3Au–3Mo-Ni/GDC, and 2Fe-Ni/GDC, as fuel electrodes, in the range of 800–900 ◦C
under three different mixtures: (A) 24.5% H2O − 24.5% CO2 − 21% H2 (PH2/PCO2 = 0.86), (B) 28%
H2O − 28% CO2 − 14% H2 (PH2/PCO2 = 0.50), and (C) 31.5% H2O − 31.5% CO2 − 7% H2 (PH2/PCO2

= 0.22). Dilution of He: 30 vol.% and Ftotal = 140 cm3/min (STP conditions: 0 ◦C, 1 atm) in all cases.
The dash line (– –) corresponds to the rCO values in thermodynamic equilibrium. All studied electrodes
have similar loading in the range of 10–12 mg/cm2.
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Figure 5. The corresponding %CO2 conversions of ESCs comprising: Ni/GDC, 3Au-Ni/GDC,
3Mo-Ni/GDC, 3Au–3Mo-Ni/GDC, and 2Fe-Ni/GDC, as fuel electrodes, in the range of 800–900 ◦C
under three different mixtures: (A) 24.5% H2O − 24.5% CO2 − 21% H2 (PH2/PCO2 = 0.86), (B) 28%
H2O − 28% CO2 − 14% H2 (PH2/PCO2 = 0.50), and (C) 31.5% H2O − 31.5% CO2 − 7% H2 (PH2/PCO2

= 0.22). Dilution of He: 30 vol.% and Ftotal = 140 cm3/min (at STP conditions: 0 ◦C, 1 atm) in all cases.
All studied electrodes have similar loading in the range of 10–12 mg/cm2.

It is shown (Figures 4 and 5) that 2Fe-Ni/GDC and 3Mo-Ni/GDC have the highest catalytic
activity of the examined electrodes for the RWGS reaction. In fact, 2Fe-Ni/GDC is the most active in
terms of the produced CO. The above performance is observed for all applied fuel feeds (PH2/PCO2

= 0.86, 0.50 and 0.22), whereas it is enhanced by increasing (i) the operating temperature and (ii) the
partial pressure of H2 in the fuel feed. The enhanced catalytic performance of the Fe-modified sample,
can be primarily ascribed to the possible stronger adsorption and consequent catalytic dissociation
of CO2 on the active sites of the catalyst. This first conclusion is going to be further examined with
specific CO2 Temperature Programmed Desorption (TPD) measurements.

Another noteworthy remark is that the produced CO rates were compared to the thermodynamic
equilibrium rates (dash line in Figure 4) for the three different H2O-CO2-H2 reaction mixtures.
The equilibrium rates were calculated by using the equilibrium constant (Keq) formula that is reported
in [57,58]. It was found (Figure 4) that Ni/GDC, the binary Au-, and the ternary Au–Mo- modified
samples exhibit CO production rates, which are lower than the thermodynamic equilibrium for all the
examined reaction conditions. The performances of 2Fe-Ni/GDC and 3Mo-Ni/GDC are closer to the
equilibrium, but cannot be considered as thermodynamically limited.

The results from the measurements in Figure 4 can also be presented as Arrhenius plots, depicted
in Figure 6, where the derived apparent activation energies (Ea, app) for the production of CO and
consequently for the RWGS reaction are listed in Table 3.
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Figure 6. Arrhenius plots of the CO production rates (μmol s−1 g−1) on ESCs comprising: Ni/GDC, 
3Au-Νi/GDC, 3Μο-Νi/GDC, 3Au–3Μο-Νi/GDC, and 2Fe-Ni/GDC, in the range of 800–900 °C, under 
three different mixtures: (A) 24.5% H2O - 24.5% CO2 - 21% H2 (PH2/PCO2 = 0.86), (B) 28% H2O - 28% CO2 
- 14% H2 (PH2/PCO2 = 0.50), and (C) 31.5% H2O - 31.5% CO2 - 7% H2 (PH2/PCO2 = 0.22). Dilution of He: 30 
vol.% and Ftotal = 140 cm3/min (at STP conditions: 0 °C, 1 atm) in all cases. 
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Figure 6. Arrhenius plots of the CO production rates (µmol s−1 g−1) on ESCs comprising: Ni/GDC,
3Au-Ni/GDC, 3Mo-Ni/GDC, 3Au–3Mo-Ni/GDC, and 2Fe-Ni/GDC, in the range of 800–900 ◦C, under
three different mixtures: (A) 24.5% H2O − 24.5% CO2 − 21% H2 (PH2/PCO2 = 0.86), (B) 28% H2O −
28% CO2 − 14% H2 (PH2/PCO2 = 0.50), and (C) 31.5% H2O − 31.5% CO2 − 7% H2 (PH2/PCO2 = 0.22).
Dilution of He: 30 vol.% and Ftotal = 140 cm3/min (at STP conditions: 0 ◦C, 1 atm) in all cases.

Table 3. Apparent activation energies (Ea,app, kJ/mol) for the RWGS reaction on ESCs for three different
mixtures: (A) 24.5% H2O − 24.5% CO2 − 21% H2 (PH2/PCO2 = 0.86), (B) 28% H2O − 28% CO2 − 14%
H2 (PH2/PCO2 = 0.50), and (C) 31.5% H2O − 31.5% CO2 − 7% H2 (PH2/PCO2 = 0.22).

Sample Ea, apparent (kJ mol−1) and A* (µmol s−1 g−1), per reaction mixture

PH2/PCO2 = 0.86 PH2/PCO2 = 0.50 PH2/PCO2 = 0.22

Ni/GDC 20 2.3 × 103 22 3.6 × 103 20 1.0 × 103

3Au-Ni/GDC 85 1.9 × 106 74 5.0 × 105 46 1.5 × 104

3Mo-Ni/GDC 27 6.5 × 103 14 1.1 × 103 21 1.4 × 103

3Au–3Mo-Ni/GDC 43 1.7 × 104 45 1.5 × 104 50 1.6 × 104

2Fe-Ni/GDC 21 3.3 × 103 19 1.6 × 103 21 1.3 × 103

*A: The pre-exponential factor in the Arrhenius equation, r = A· exp(− Ea,app
R·T ).
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The Arrhenius plots and the calculated Ea, app show that 2Fe-Ni/GDC, 3Mo-Ni/GDC, and Ni/GDC
have practically the same and the lowest Ea, app. However, the Fe- and Mo- modified samples exhibit
higher pre-exponential factors, compared to Ni/GDC, which explains the higher production rates
of CO. 3Au-Ni/GDC shows overall the highest Ea, app, which is an additional indication for its
worst catalytic activity. Finally, the ternary 3Au–3Mo-Ni/GDC sample shows an apparent activation
energy, which lies between that for 2Fe-Ni/GDC and 3Au-Ni/GDC. However, the catalytic activity
of the ternary sample is the lowest, due to the lower pre-exponential factor compared to the binary
Au-modified sample. According to the knowledge of the authors, there are no literature data available
for experimentally measured Ea, app, for similar samples and reaction conditions. The so far available
data come from theoretical investigations and there is a recent study from Cho et al. [41], who
performed DFT calculations to evaluate the ability of various transition metals to increase the activity
of Ni for the H2O/CO2 co-electrolysis. In particular, they computed the activation energies of specific
elementary reaction steps and in the case of the RWGS on Ni(111), the Ea was found to be approximately
46 kJ/mole, which is very close to the values that were experimentally calculated in the present study.

The effect of H2 partial pressure on the catalytic rate of CO production is further verified in
Figure 7 for all samples at 900 ◦C and 800 ◦C. The 2Fe-Ni/GDC sample is the most active and
3Au–3Mo-Ni/GDC the least one. The 3Au-Ni/GDC catalyst at 900 ◦C shows similar performance
with that of Ni/GDC. In addition, by decreasing the temperature at 800 ◦C, the catalytic activity of
3Au-Ni/GDC exhibits the highest reduction. This is apparent from the significant decrease in the slope
of the corresponding curve (Figure 7) from 800 ◦C to 900 ◦C and can be further explained from the
calculated Ea, app (Table 3), which is the highest from all samples. Finally, the kinetic behavior of all
samples suggests that the production rate of CO exhibits a positive order dependence on the partial
pressure of H2.
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Figure 7. Steady state effect of the H2 partial pressure (pH2, kPa) on the CO production rates (μmol 
s−1 g−1) on ESCs comprising: Ni/GDC, 3Au-Νi/GDC, 3Μο-Νi/GDC, 3Au–3Μο-Νi/GDC, and 2Fe-
Ni/GDC, for 900 °C and 800 °C. The pH2O/pCO2 ratios are fixed and their values are presented in 
Table 3. 

The fact that in the majority of the samples there is no trend in the Ea, app, by varying the pH2/pCO2 
ratios, primarily shows that all samples, apart from the binary Au-modified, have similar intrinsic 
catalytic activity for the RWGS reaction. This is also concluded from the remark that the effect of the 
H2 partial pressure on the CO production rate is almost linear. On the other hand, in the case of 3Au-
Ni/GDC, there is an increase in Ea, app, by increasing the pH2/pCO2 ratio. This is corroborated from the 
results in Figure 7, where rCO seems to reach a plateau at high pH2. The latter remarks indicate that 
the majority of the samples have actives sites that follow a similar reaction mechanism, in regards to 

Figure 7. Steady state effect of the H2 partial pressure (pH2, kPa) on the CO production rates
(µmol s−1 g−1) on ESCs comprising: Ni/GDC, 3Au-Ni/GDC, 3Mo-Ni/GDC, 3Au–3Mo-Ni/GDC,
and 2Fe-Ni/GDC, for 900 ◦C and 800 ◦C. The pH2O/pCO2 ratios are fixed and their values are
presented in Table 3.

The fact that in the majority of the samples there is no trend in the Ea, app, by varying the
pH2/pCO2 ratios, primarily shows that all samples, apart from the binary Au-modified, have similar
intrinsic catalytic activity for the RWGS reaction. This is also concluded from the remark that the effect
of the H2 partial pressure on the CO production rate is almost linear. On the other hand, in the case of
3Au-Ni/GDC, there is an increase in Ea, app, by increasing the pH2/pCO2 ratio. This is corroborated
from the results in Figure 7, where rCO seems to reach a plateau at high pH2. The latter remarks indicate
that the majority of the samples have actives sites that follow a similar reaction mechanism, in regards
to the dissociative adsorption of H2 and CO2 towards the RWGS. On the other hand, the reaction
mechanism seems to be different in the case of 3Au-Ni/GDC. In particular, it is implied that the high
coverage of adsorbed H2 may inhibit the CO2 dissociative adsorption and thus decreases the intrinsic
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catalytic activity of the specific sample. This suggestion is going to be further clarified through the
currently performed H2O/CO2 co-electrolysis measurements.

Carbon formation, through the Boudouard reaction (6), was also investigated and the results are
presented in Figure 8. The slight scattering of the experimentally measured rates in combination with
the theoretical values, where r[CO2]inlet is equal to r[CO + CO2]outlet, suggest that there is no carbon
deposition under the examined reaction conditions. This result is also in accordance with the fact that
the Boudouard reaction is not thermodynamically favored above 750 ◦C [59].
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case where [CO2]inlet is equal to [CO+CO2]outlet is also depicted with a solid line. 
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Previous studies [1,59,60] reported that at realistic CO2/CO concentrations, during CO2

electrolysis in the range of 650–750 ◦C, the equilibrium of (6) is shifted towards CO production
(reaction (7)) and therefore carbon will not be formed, catalytically, during CO2 electrolysis. In the case
where the cell is operated at OCP conditions, as in our case, any coke deposited within the porous,
modified or not, Ni/GDC electrode would be oxidized to CO according to the reverse Boudouard
reaction (7) and thereby removed. Furthermore, the addition of steam in the feed is reported to remove
carbon depositions according to reaction (8) [1,8]:

Boudouard reaction: 2CO→ CO2 + C (7)

Reverse Boudouard reaction: CO2 + C→ 2CO (8)

Reaction of coke with H2O: C + H2O→ CO + H2 (9)

3. Materials and Methods

3.1. Preparation of Electrocatalysts

The modified cathode powders were prepared via the Deposition-Precipitation (D.P.) and
Deposition-Co Precipitation (D.CP.) methods by using the commercial NiO/GDC cermet (65wt%
NiO-35wt% GDC, Marion Technologies, Verniolle, France) as the support. The precursors for the
3wt% Au-NiO/GDC, 3wt% Mo-NiO/GDC, 3wt% Au−3wt% Mo-NiO/GDC, and 2wt% Fe-NiO/GDC
samples were the HAuCl4 (Sigma-Aldrich) or/and (NH4)6Mo7O24 (Sigma-Aldrich, St. Louis, MO,
USA) and Fe(NO3)3x9H2O (Sigma-Aldrich, St. Louis, MO, USA) solutions, respectively. Full details
about the synthesis can be found elsewhere [42,43]. After filtering, the precipitate was dried at 110 ◦C
for 24 h. All dried powders were calcined at 600 ◦C/90 min and a part of them at 1100 ◦C/75 min.
The first batch was used for the paste preparation, which is described in the following paragraph.
The batch at 1100 ◦C was used for the physicochemical characterization. In this way, the prepared
catalysts were studied at similar thermal stress as the calcined electrode-electrolyte assemblies.
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3.2. Preparation of Electrolyte-Supported Half Cells

The electrolyte-supported half cells consisted of circular shaped planar 8YSZ electrolyte
(by Kerafol) with a 25 mm diameter and 300 µm thickness. The fuel electrode was deposited by using
the screen printing technique as reported in previous studies [23,46]. In particular, a paste was prepared
by using an appropriate amount of the electrocatalyst (modified NiO/GDC powder), terpineol
(Sigma-Aldrich, St. Louis, MO, USA) as the dispersant, and PVB (polyvinylbutyral, Sigma-Aldrich,
St. Louis, MO, USA) as binder. After the deposition of the paste, the cell was sintered at 1150 ◦C with a
heating/cooling ramp rate of 2 ◦C/min. The last temperature is the lowest possible in order to obtain
proper adherence of the electrode on the electrolyte, whereas it is equivalent with the calcination
temperature of the characterized powders (1100 ◦C). The examined electrodes were approximately
20 µm thick and their loading varied in the region of 10–12 mg/cm2 with a 1.8 cm2 geometric surface
area (Figure 9). The prepared half cells were adjusted on a ceramic YSZ tube and sealed airtight with a
glass sealing material manufactured by Kerafol.
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3.3. Physicochemical Characterization

The samples, in the form of powders, were characterized with BET, H2-TPR, Air-TPO, and TGA
re-oxidation measurements in the presence of H2O.

The BET specific surface area values of the samples were determined from the adsorption
isotherms of nitrogen at −196 ◦C, recorded with a Micromeritics TriStar 3000 apparatus (Micromeritics,
Norcross, GA, USA).

The re-oxidation measurements in the presence of H2O, as well as H2-TPR and Air-TPO
measurements were carried out with a TA Q50 instrument. The H2O re-oxidation properties of the
powders were studied with TGA measurements, at a constant temperature in the range of 650–800 ◦C.
Before the measurement, the samples were pre-reduced in-situ with 80 vol.% H2/Ar at 800 ◦C for
100 min and then the feed was changed to 15.5 vol.% H2O/Ar. The total flow rate (at STP conditions:
0 ◦C, 1 atm) was 100 cm3/min and the loading of the measured samples was approximately 50 mg.
Steam was introduced in the reactor by passing Ar through a saturator, which was maintained at a
fixed temperature (65 ◦C).

3.4. Catalytic-Kinetic Measurements

The prepared half cells were catalytically investigated at Open Circuit Potential (OCP) conditions
for the RWGS reaction, in the presence of Ni mesh. The catalytic experiments were accomplished at
temperatures between 800–900 ◦C under various H2O/CO2/H2 mixtures by keeping in all cases the
PH2O/PCO2 ratio constant. In regards to the experimental part of these measurements, H2O was added
and handled in the feed in the form of steam, as in the SOEC measurements. Before its evaporation,
liquid H2O was pressurized in a container and circulated in the system by means of a liquid water
mass flow controller. Then, liquid H2O was evaporated through lines and valves, heated at 160 ◦C,
to prevent water condensation. The flow rate was fixed at 140 cm3/min (at STP conditions: 0 ◦C, 1 atm),
avoiding any mass transfer limitation effects in the reactor. Reactants and products were determined
by using an on-line gas chromatograph (Varian CP-3800) with a thermal conductivity detector. Further
details regarding the experimental parameters are indicated in the corresponding Figures.

4. Conclusions

The presented study deals with the kinetic investigation of Ni-based (modified or not) electrodes
towards their performance for the RWGS reaction. The samples were examined in the form of
electrolyte-supported (half) cells and the measured kinetic parameter was the production rate of CO.
The main objective was to clarify the effect of the modification on the catalytic activity for the RWGS,
which is considered as a key reaction for the CO production under H2O/CO2 co-electrolysis operation.
The reaction conditions were similar to those that are applied under co-electrolysis mode.

Redox stability measurements in the presence of H2O showed that the ternary 3Au–3Mo-Ni/GDC
electrode is the least active sample for the dissociation of H2O, having the highest Ea,app and
consequently the lowest binding energy for the H2Oads. On the other hand, the binary 2Fe-Ni/GDC
is the most active sample for the dissociation of H2O, thus having the potential to experience faster
re-oxidation. Complementary characterization suggests that the interaction of Ni and Fe (FeOx

species in the oxidized form of the sample) during the H2-reduction process increases the SSABET

and affects the bulk properties of the binary Ni-Fe/GDC. The interaction can be realized through the
possible formation of an Ni-Fe solid solution, which is currently under further clarification and may be
responsible for enhancing the catalytic dissociation of H2Oads.

The kinetic study of the candidate electrocatalysts showed that Au modification inhibits the
catalytic production of CO, through the RWGS reaction, while modification with Fe or Mo induces an
enhancement of rCO. In fact, the 2wt% Fe-Ni/GDC sample is the most active both in terms of %CO2

conversion and of the produced CO. In addition, a negative synergy was observed for the ternary
Au–Mo-Ni modified sample. Specifically, the 2wt% Fe-Ni/GDC and 3wt% Mo-Ni/GDC samples
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showed similar apparent activation energy for the RWGS reaction as that of Ni/GDC, while the 3wt%
Au-Ni/GDC and 3wt% Au–3wt% Mo-Ni/GDC samples showed lower Ea,app. The above performance
is observed for all applied fuel feeds (PH2/PCO2 = 0.86, 0.50, and 0.22), whereas it is enhanced by
increasing (i) the operating temperature and (ii) the partial pressure of H2.

Consequently, the kinetic behavior of all samples suggests that the production rate of CO exhibits
a positive order dependence on the partial pressure of H2, whereas carbon formation was not detected.
In the case of the most active 2Fe-Ni/GDC sample, it is proposed that Fe-modification may enhance the
catalytic dissociative adsorption of CO2 towards the production of CO and this is further investigated.
Finally, it is worth mentioning that the RWGS catalytic performance of both Fe- and Mo- modified
samples is close to the equilibrium, but cannot be considered as thermodynamically limited.

Overall, the presented results correspond to a reference catalytic profile of the examined modified
Ni/GDC samples for the RWGS reaction. These candidate electrocatalysts are currently being
examined, as full electrolyte supported cells, in SOEC measurements for the H2O/CO2 co-electrolysis
reaction to elucidate any additional effects by the applied current. Moreover, further investigation of
the Fe-modification on NiO/GDC for the H2O/CO2 electrolysis processes will occur in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/2/151/s1,
Figure S1. Kinetic study of the R.W.G.S. reaction on the nickel mesh (�), Ni/GDC with Ni mesh (l) and Ni/GDC
without Ni mesh (4), in the range of 800–900 ◦C, under two different mixtures: (A) 24.5% H2O − 24.5% CO2 −
21% H2 (PH2/PCO2 = 0.86) and (B) 28% H2O − 28% CO2 − 14% H2 (PH2/PCO2 = 0.50). Dilution of He: 30 vol.%
and Ftotal = 140 cm3/min (at STP conditions: 0 ◦C, 1 atm) in all cases. The loading of Ni/GDC is 11 mg/cm2.
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