Microwave-Assisted Catalytic Fast Pyrolysis of Biomass for Hydrocarbon Production with Physically Mixed MCM-41 and ZSM-5
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of Temperature of MACFP on Pyrolysis Product Yields
2.2. Influence of MCM-41/ZSM-5 Mass Ratio on Pyrolysis Product Yields
2.3. The Formation of Coke on ZSM-5 during MACFP
2.4. Comparison between MCM-41/ZSM-5 Mixture and Hierarchical ZSM-5/MCM-41 Composite
3. Experimental
3.1. Biomass Feed
3.2. Catalyst
3.3. Experimental Setup
3.4. Experimental Methods
3.5. Product Analysis
3.5.1. Gaseous Product Analysis
3.5.2. Bio-Oil Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Czernik, S.; Bridgwater, A.V. Overview of application of biomass fast pyrolysis oil. Energy Fuels 2004, 18, 590–598. [Google Scholar] [CrossRef]
- Dickerson, T.; Soria, J. Catalytic fast pyrolysis: A review. Energies 2013, 6, 514–538. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhong, Z.P.; Ding, K.; Cao, Y.Y.; Liu, Z.C. Catalytic upgrading of corn stalk fast pyrolysis vapors with fresh and hydrothermally treated HZSM-5 catalysts using Py-GC/MS. Ind. Eng. Chem. Res. 2014, 53, 9979–9984. [Google Scholar] [CrossRef]
- Ren, S.J.; Lei, H.W.; Wang, L.; Bu, Q.; Chen, S.L.; Wu, J.; Julson, J.; Ruan, R. Biofuel production and kinetics analysis for microwave pyrolysis of Douglas fir sawdust pellet. J. Anal. Appl. Pyrolysis 2012, 94, 163–169. [Google Scholar] [CrossRef]
- Xue, Y.; Kelkar, A.; Bai, X.L. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer. Fuel 2016, 166, 227–236. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.R.; Dai, G.X.; Yang, H.P.; Luo, Z.Y. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Wang, S.R.; Chen, J.H.; Cai, Q.J.; Zhang, F.; Wang, Y.R.; Ru, B.; Wang, Q. The effect of mild hydrogenation on the catalytic cracking of bio-oil for aromatic hydrocarbon production. Int. J. Hydrog. Energy 2016, 41, 16385–16393. [Google Scholar] [CrossRef]
- Zhang, X.S.; Lei, H.W.; Wang, L.; Zhu, L.; Wei, Y.; Liu, Y.P.; Yadavalli, G.; Yan, D. Renewable gasoline-range aromatics and hydrogen-enriched fuel gas from biomass via catalytic microwave-induced pyrolysis. Green Chem. 2015, 17, 4029–4036. [Google Scholar] [CrossRef]
- Wang, K.G.; Johnston, P.A.; Brown, R.C. Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system. Bioresour. Technol. 2014, 173, 124–131. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, Z.B.; Wang, X.Q.; Dong, C.Q.; Liu, Y.Q. Catalytic upgrading of biomass fast pyrolysis vapors using ordered mesoporous ZrO2, TiO2 and SiO2. Energy Procedia 2014, 61, 1937–1941. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Cho, J.; Tompsett, G.A.; Westmoreland, P.R.; Huber, G.W. Kinetics and mechanism of cellulose pyrolysis. J. Phys. Chem. C 2009, 113, 20097–20107. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Zhao, L.Q.; Dong, C.Q.; Lu, Q.; Du, X.Z.; Dahlquist, E. Catalytic steam reforming of toluene as a model compound of biomass gasification tar using Ni-CeO2/SBA-15 catalysts. Energies 2013, 6, 3284–3296. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lei, H.W.; Bu, Q.; Ren, S.J.; Wei, Y.; Zhu, L.; Zhang, X.S.; Liu, Y.P.; Yadavalli, G.; Lee, J.; et al. Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapour over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor. Fuel 2014, 129, 78–85. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.P.; Chen, P.; Ruan, R. Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapour deposition modified HZSM-5 catalyst. Bioresour. Technol. 2015, 197, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Y.; Shao, S.S.; Luo, M.M.; Xiao, R. The comparison of chemical liquid deposition and acid dealumination modified ZSM-5 for catalytic pyrolysis of pinewood using pyrolysis-gas chromatography/mass spectrometry. Bioresour. Technol. 2017, 244, 726–732. [Google Scholar] [CrossRef]
- Ilias, S.; Bhan, A. Tuning the selectivity of methanol-to-hydrocarbons conversion on H-ZSM-5 by co-processing olefin or aromatic compounds. J. Catal. 2012, 290, 186–192. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.P.; Song, Z.W.; Ding, K.; Chen, P.; Ruan, R. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk. J. Power Sources 2015, 300, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhong, Z.P.; Wang, X.B.; Ding, K.; Song, Z.W. Catalytic upgrading of fast pyrolysis biomass vapors over fresh, spent and regenerated ZSM-5 zeolites. Fuel Process. Technol. 2015, 138, 430–434. [Google Scholar] [CrossRef]
- Casoni, A.I.; Nievas, M.L.; Moyano, E.L.; Alvarez, M.; Diez, A.; Dennehy, M.; Volpe, M.A. Catalytic pyrolysis of cellulose using MCM-41 type catalysts. Appl. Catal. A Gen. 2016, 514, 235–340. [Google Scholar] [CrossRef]
- Custodis, V.B.; Karakoulia, S.A.; Triantafyllidis, K.S.; Bokhoven, J.A. Catalytic Fast Pyrolysis of Lignin over High-Surface-Area Mesoporous Aluminosilicates: Effect of Porosity and Acidity. ChemSusChem 2016, 9, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Borges, F.C.; Du, Z.Y.; Xie, Q.L.; Trierweiler, J.O.; Cheng, Y.L.; Wan, Y.Q.; Liu, Y.H.; Zhu, R.B.; Lin, X.Y.; Chen, P.; et al. Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour. Technol. 2014, 156, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.Y.; Li, Y.C.; Wang, X.Q.; Wan, Y.Q.; Chen, Q.; Wang, C.G.; Lin, X.Y.; Liu, Y.H.; Chen, P.; Ruan, R. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour. Technol. 2011, 102, 4890–4896. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.Q.; Chen, P.; Zhang, B.; Yang, C.Y.; Liu, Y.H.; Lin, X.Y.; Ruan, R. Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity. J. Anal. Appl. Pyrolysis 2009, 86, 161–167. [Google Scholar] [CrossRef]
- Mushtaq, F.; Abdullah, T.A.T.; Mat, R.; Ani, F.N. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber. Bioresour. Technol. 2015, 190, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Encinar, J.M.; González, J.F.; Gonzalez, J. Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions. Fuel Process. Technol. 2000, 68, 209–222. [Google Scholar] [CrossRef]
- Liu, H.L.; Ma, X.Q.; Li, L.J.; Hu, Z.F.; Guo, P.S.; Jiang, Y.H. The catalytic pyrolysis of food waste by microwave heating. Bioresour. Technol. 2014, 166, 45–50. [Google Scholar] [CrossRef]
- Yang, H.P.; Coolman, R.; Karanjkar, P.; Wang, H.Y.; Dornath, P.; Chen, H.P.; Fan, W.; Conner, W.C.; Mountziaris, T.J.; Huber, G. The Effects of Contact Time and Coking on the Catalytic Fast Pyrolysis of Cellulose. Green Chem. 2017, 19, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Dahl, I.M.; Kolboe, S. On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34: I. Isotopic Labeling Studies of the Co-Reaction of Ethene and Methanol. J. Catal. 1994, 149, 458–464. [Google Scholar] [CrossRef]
- Ilias, S.; Bhan, A. Mechanism of the Catalytic Conversion of Methanol to Hydrocarbons. ACS Catal. 2013, 3, 18–31. [Google Scholar] [CrossRef]
- Tau, L.M.; Fort, A.W.; Bao, S.Q.; Davis, B.H. Methanol to gasoline: 14C tracer studies of the conversion of methanol/higher alcohol mixtures over ZSM-5. Fuel Process. Technol. 1990, 26, 209–219. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Xiao, R.; Jin, B.S.; Xiao, G.M.; Chen, R. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour. Technol. 2013, 140, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.; Liu, H.X.; He, S.C.; Li, H.S.; Jiao, Q.Z.; Wu, Q.; Sun, K.N. Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether. J. Energy Chem. 2013, 22, 769–777. [Google Scholar] [CrossRef]
- Xue, X.F.; Liu, Y.W.; Wu, L.; Pan, X.Z.; Liang, J.; Sun, Y.F. Catalytic fast pyrolysis of maize straw with a core–shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons. Bioresour. Technol. 2019, 289, 121691. [Google Scholar] [CrossRef]
- Tang, Q.; Xu, H.; Zhen, Y.Y.; Wang, J.F.; Li, H.S.; Zhang, J. Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves. Appl. Catal. A Gen. 2012, 413–414, 36–42. [Google Scholar] [CrossRef]
Composition | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Mass of ZSM-5 (mg) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Mass of MCM-41 (mg) | 0 | 0.25 | 0.50 | 0.75 | 1.00 |
Coke yield on ZSM-5 (wt.%) | 5.2 | 4.2 | 3.6 | 3.2 | 2.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Zhong, Z.; Zhang, B. Microwave-Assisted Catalytic Fast Pyrolysis of Biomass for Hydrocarbon Production with Physically Mixed MCM-41 and ZSM-5. Catalysts 2020, 10, 685. https://doi.org/10.3390/catal10060685
Xue Z, Zhong Z, Zhang B. Microwave-Assisted Catalytic Fast Pyrolysis of Biomass for Hydrocarbon Production with Physically Mixed MCM-41 and ZSM-5. Catalysts. 2020; 10(6):685. https://doi.org/10.3390/catal10060685
Chicago/Turabian StyleXue, Zeyu, Zhaoping Zhong, and Bo Zhang. 2020. "Microwave-Assisted Catalytic Fast Pyrolysis of Biomass for Hydrocarbon Production with Physically Mixed MCM-41 and ZSM-5" Catalysts 10, no. 6: 685. https://doi.org/10.3390/catal10060685
APA StyleXue, Z., Zhong, Z., & Zhang, B. (2020). Microwave-Assisted Catalytic Fast Pyrolysis of Biomass for Hydrocarbon Production with Physically Mixed MCM-41 and ZSM-5. Catalysts, 10(6), 685. https://doi.org/10.3390/catal10060685