Recent Developments of Effective Catalysts for Hydrogen Storage Technology Using N-Ethylcarbazole
Abstract
:1. Introduction
2. Common Ways of Hydrogen Storage
2.1. Pressurized Gaseous Hydrogen Storage
2.2. Low Temperature Liquefaction Hydrogen Storage
2.3. Carbon Hydrogen Storage
2.4. Metal Alloy Hydrogen Storage
2.5. Glass Microspheres for Hydrogen Storage
2.6. Complex Hydrogen Storage
2.7. Organic Liquid Hydrogen Storage
3. The Development of Hydrogen Storage Materials
4. Interconversion of H2/N-Ethylcarbazole and Dodecahydro-N-Ethylcarbazole for Hydrogen Storage
4.1. Hydrogenation of N-Ethylcarbazole
4.2. Dehydrogenation of Dodecahydro-N-Ethylcarbazoles
4.3. Summary
5. Direction of Development
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zou, H.; Guo, F.; Luo, M.; Yao, Q.; Lu, Z.H. La (OH)3-decorated NiFe nanoparticles as efficient catalyst for hydrogen evolution from hydrous hydrazine and hydrazine borane. Int. J. Hydrog. Energy 2020, 45, 11641–11650. [Google Scholar] [CrossRef]
- Zhang, L.T.; Ji, L.; Yao, Z.D.; Yan, N.H.; Sun, Z.X.; Yang, L.; Zhu, X.Q.; Hu, S.L.; Chen, L.X. Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2. Int. J. Hydrog. Energy 2019, 44, 21955–21964. [Google Scholar] [CrossRef]
- Yang, L.M.; Yi, G.P.; Hou, Y.N.; Cheng, H.Y.; Luo, X.B.; Pavlostathis, S.G.; Luo, S.L.; Wang, A.J. Building electrode with three-dimensional macroporous interface from biocompatible polypyrrole and conductive graphene nanosheets to achieve highly efficient microbial electrocatalysis. Biosens. Bioelectron. 2019, 141, 111444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.K.; Xiong, Z.S.; Yang, L.M.; Ren, Z.; Shao, P.H.; Shi, H.; Xiao, X.; Pavlostathis, S.G.; Fang, L.L.; Luo, X.B. Successful isolation of a tolerant co-flocculating microalgae towards highly efficient nitrogen removal in harsh rare earth element tailings (REEs) wastewater. Water Res. 2019, 166, 115076. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Cheng, D.G.; Chen, F.Q.; Zhan, X.L. Fabrication of CeO2 nanotube supported Pt catalyst encapsulated with silica for high and stable performance. Chem. Commun. 2015, 51, 9785–9788. [Google Scholar] [CrossRef] [PubMed]
- Sari, E.; Yilmaz, G.; Koyuncu, S.; Yagci, Y. Photoinduced Step-Growth Polymerization of N-Ethylcarbazole. J. Am. Chem. Soc. 2018, 140, 12728–12731. [Google Scholar] [CrossRef] [PubMed]
- Muzzio, M.; Lin, H.; Wei, K.; Guo, X.; Yu, C.; Yom, T.; Sun, S. Efficient hydrogen generation from ammonia borane and tandem hydrogenation or hydrodehalogenation over AuPd nanoparticles. ACS Sustain. Chem. Eng. 2020, 8, 2814–2821. [Google Scholar] [CrossRef]
- Liu, X.J.; Jiang, H.; Jia, Y.R.; Xia, M. Position-isomerization-induced switch effect of mechanofluorochromism and mechanoluminescence on carbazolylbenzo[d]imidazoles. Dye. Pigment. 2020, 172, 107845. [Google Scholar] [CrossRef]
- Bingul, M.; Şenkuytu, E.; Saglam, M.F.; Boga, M.; Kandemir, H.; Sengul, I.F. Synthesis, photophysical and antioxidant properties of carbazole-based bis-thiosemicarbazones. Res. Chem. Intermed. 2020, 45, 4487–4499. [Google Scholar] [CrossRef]
- Wang, B.; Chang, T.Y.; Jiang, Z.; Wei, J.J.; Fang, T. Component controlled synthesis of bimetallic PdCu nanoparticles supported on reduced graphene oxide for dehydrogenation of dodecahydro-N-ethylcarbazole. Appl. Catal. B-Environ. 2019, 251, 261–272. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Z.; Zhang, Z.; Chen, Z.; Chi, M.; Wang, S.; Fu, J.; Dai, S. Construction of a Nanoporous Highly Crystalline Hexagonal Boron Nitride from an Amorphous Precursor for Catalytic Dehydrogenation. Angew. Chem. Int. Ed. 2019, 58, 10626–10630. [Google Scholar] [CrossRef] [PubMed]
- Niermann, M.; Beckendorff, A.; Kaltschmitt, M.; Bonhoff, K. Liquid Organic Hydrogen Carrier (LOHC)–Assessment based on chemical and economic properties. Int. J. Hydrog. Energy 2019, 44, 6631–6654. [Google Scholar] [CrossRef]
- Jiang, Z.; Gong, X.; Wang, B.; Wu, Z.; Fang, T. An experimental study on the dehydrogenation performance of dodecahydro-N-ethylcarbazole on M/TiO2 catalysts. Int. J. Hydrog. Energy 2019, 44, 2951–2959. [Google Scholar] [CrossRef]
- Kaya, K.; Koyuncu, S.; Yagci, Y. Photoinduced synthesis of poly (N-ethylcarbazole) from phenacylium salt without conventional catalyst and/or monomer. Chem. Commun. 2019, 55, 11531–11534. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J. Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrog. Energy 2012, 37, 1048–1057. [Google Scholar] [CrossRef]
- Sadaghiani, M.S.; Mehrpooya, M. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. Int. J. Hydrog. Energy 2017, 42, 6033–6050. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, L. Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int. J. Hydrog. Energy 2009, 34, 4788–4796. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, H.; Guo, Y.; Jiang, X.; Qi, Y.; Sun, B.; Li, H.; Zheng, J.; Li, X. A rare earth hydride supported ruthenium catalyst for the hydrogenation of N-heterocycles: Boosting the activity via a new hydrogen transfer path and controlling the stereoselectivity. Chem. Sci. 2019, 10, 10459–10465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Yu, H.; Guo, Y.; Zhang, Y.; Jiang, X.; Sun, B.; Fu, K.; Chen, J.; Qi, Y.; Zheng, J.; et al. Promoting hydrogen absorption of liquid organic hydrogen carriers by solid metal hydrides. J. Mater. Chem. A 2019, 7, 16677–16684. [Google Scholar] [CrossRef]
- Hou, L.; Li, F.; Guo, J.; Zhang, X.; Kong, X.; Cui, X.T.; Dong, C.; Wang, Y.; Shuang, S. A colorimetric and ratiometric fluorescent probe for cyanide sensing in aqueous media and live cells. J. Mat. Chem. B 2019, 7, 4620–4629. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Liang, W.; Wang, P.; Bunker, C.E.; Coleman, M.; Teisl, L.R.; Cao, L.; Sun, Y.P. A new approach in functionalization of carbon nanoparticles for optoelectronically relevant carbon dots and beyond. Carbon 2019, 141, 553–560. [Google Scholar] [CrossRef]
- Wan, C.; Zhou, L.; Sun, L.; Xu, L.X.; Cheng, D.G.; Chen, F.Q.; Zhan, X.L.; Yang, Y.R. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst. Chem. Eng. J. 2020, 396, 125229. [Google Scholar] [CrossRef]
- Itagaki, T.; Kurauchi, S.; Uebayashi, T.; Uji, H.; Kimura, S. Phase-separated molecular assembly of a nanotube composed of amphiphilic polypeptides having a helical hydrophobic block. ACS Omega 2018, 3, 7158–7164. [Google Scholar] [CrossRef] [PubMed]
- Brückner, N.; Obesser, K.; Bösmann, A.; Teichmann, D.; Arlt, W.; Dungs, J.; Wasserscheid, P. Evaluation of Industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems. ChemSusChem 2014, 7, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chang, T.Y.; Jiang, Z.; Wei, J.J.; Zhang, Y.H.; Yang, S.; Fang, T. Catalytic dehydrogenation study of dodecahydro-N-ethylcarbazole by noble metal supported on reduced graphene oxide. Int. J. Hydrog. Energy 2018, 43, 7317–7325. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, S.; Zhu, H.; Liu, X.; Liu, H.; Li, X.; Xiao, Y.; Zakeeruddin, S.M. Impact of peripheral groups on phenothiazine-based hole-transporting materials for perovskite solar cells. Acs. Energy. Lett. 2018, 3, 1145–1152. [Google Scholar] [CrossRef]
- Wan, C.; Sun, L.; Xu, L.X.; Cheng, D.G.; Chen, F.Q.; Zhan, X.L.; Yang, Y.R. Novel NiPt alloy nanoparticle decorated 2D layered g-C3N4 nanosheets: A highly efficient catalyst for hydrogen generation from hydrous hydrazine. J. Mater. Chem. A 2019, 7, 8798–8804. [Google Scholar] [CrossRef]
- Fei, S.; Han, B.; Li, L.; Mei, P.; Zhu, T.; Yang, M.; Cheng, H. A study on the catalytic hydrogenation of N-ethylcarbazole on the mesoporous Pd/MoO3 catalyst. Int. J. Hydrog. Energy 2017, 42, 25942–25950. [Google Scholar] [CrossRef]
- Tang, R.R.; Zhang, W. Facile Procedure for the Synthesis of 3-Acetyl-9-ethylcarbazole and Corresponding Functionalized Bis-β-diketone Compounds. Synth. Commun. 2010, 40, 601–606. [Google Scholar] [CrossRef]
- Bal, S.; Connolly, J.D. Synthesis, characterization, thermal and catalytic properties of a novel carbazole derived Azo ligand and its metal complexes. Arab. J. Chem. 2017, 10, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Chao, J.B.; Wang, H.J.; Zhang, Y.B.; Li, Z.Q.; Liu, Y.H.; Huo, F.J.; Yin, C.X.; Shi, Y.W.; Wang, J.J. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity. Anal. Chim. Acta 2017, 975, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Gawale, Y.; Adarsh, N.; Kalva, S.K.; Joseph, J.; Pramanik, M.; Ramaiah, D.; Sekar, N. Carbazole-linked near-infrared Aza-BODIPY dyes as triplet sensitizers and photoacoustic contrast agents for deep-tissue imaging. Chem. Eur. J. 2017, 23, 6570–6578. [Google Scholar] [CrossRef] [PubMed]
- Mehranfar, A.; Izadyar, M. Theoretical evaluation of N-alkylcarbazoles potential in hydrogen release. Int. J. Hydrog. Energy 2017, 42, 9966–9977. [Google Scholar] [CrossRef]
- Eçik, E.T.; Özcan, E.; Kandemir, H.; Sengul, I.F.; Çoşut, B. Light harvesting systems composed of carbazole based subphthalocyanine-BODIPY enhanced with intramolecular fluorescence resonance energy transfer (FRET). Dyes Pigment. 2017, 136, 441–449. [Google Scholar] [CrossRef]
- Bal, S.; Köytepe, S.; Connolly, J.D. Synthesis of carbazole-derived ligands and their metal complexes: Characterization, thermal, catalytic, and electrochemical features. Mon. Chem. 2016, 147, 2061–2071. [Google Scholar] [CrossRef]
- Choi, I.Y.; Shin, B.S.; Kwak, S.K.; Kang, K.S.; Yoon, C.W.; Kang, J.W. Thermodynamic efficiencies of hydrogen storage processes using carbazole-based compounds. Int. J. Hydrog. Energy 2016, 41, 9367–9373. [Google Scholar] [CrossRef]
- Zhu, M.Y.; Xu, L.X.; Du, L.; An, Y.; Wan, C. Palladium supported on carbon nanotubes as a high-performance catalyst for the dehydrogenation of dodecahydro-N-ethylcarbazole. Catalysts 2018, 8, 638. [Google Scholar] [CrossRef] [Green Version]
- Sultan, O.; Shaw, H. Study of automotive storage of hydrogen using recyclable liquid chemical carriers. Recon Tech. Rep. N 1975, 76, 33642. [Google Scholar]
- Al-Auda, Z.; Al-Atabi, H.; Li, X.; Thapa, P.; Hohn, K. Conversion of 5-Methyl-3-Heptanone to C8 Alkenes and Alkane over Bifunctional Catalysts. Catalysts 2019, 9, 845. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Jiang, P.; Wai, P.T.; Gu, Q.; Zhang, W. Recent Progress in Application of Molybdenum-Based Catalysts for Epoxidation of Alkenes. Catalysts 2019, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Baráth, E. Hydrogen Transfer Reactions of Carbonyls, Alkynes, and Alkenes with Noble Metals in the Presence of Alcohols/Ethers and Amines as Hydrogen Donors. Catalysts 2018, 8, 671. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.-T.; Yang, F.; Zhang, T.-T.; Liu, Y.-F.; Liu, S.-Y.; Su, T.-F.; Lv, D.-C.; Shen, W.-B. Recent Progress in N-Heterocyclic Carbene Gold-Catalyzed Reactions of Alkynes Involving Oxidation/Amination/Cycloaddition. Catalysts 2020, 10, 350. [Google Scholar] [CrossRef] [Green Version]
- Marcheggiani, E.; Tubaro, C.; Biffis, A.; Graiff, C.; Baron, M. Hydroalkoxylation of Terminal and Internal Alkynes Catalyzed by Dinuclear Gold(I) Complexes with Bridging Di(N-Heterocyclic Carbene) Ligands. Catalysts 2020, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Francos, J.; Moreno-Narváez, M.E.; Cadierno, V.; Sierra, D.; Ariz, K.; Gómez, J. Gold(I) Complexes with Ferrocenylphosphino Sulfonate Ligands: Synthesis and Application in the Catalytic Addition of Carboxylic Acids to Internal Alkynes in Water. Catalysts 2019, 9, 955. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Xiao, X.; Wu, Y.; An, Y.; Xu, L.; Wan, C. Hydrogen Production from Ammonia Borane over PtNi Alloy Nanoparticles Immobilized on Graphite Carbon Nitride. Catalysts 2019, 9, 1009. [Google Scholar] [CrossRef] [Green Version]
- Charisteidis, I.; Lazaridis, P.; Fotopoulos, A.; Pachatouridou, E.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Triantafyllidis, K. Catalytic Fast Pyrolysis of Lignin Isolated by Hybrid Organosolv—Steam Explosion Pretreatment of Hardwood and Softwood Biomass for the Production of Phenolics and Aromatics. Catalysts 2019, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Dong, Y.; Fei, S.X.; Pan, Q.Y.; Ni, G.; Han, C.Q.; Ke, H.Z.; Fang, Q.; Cheng, H.S. Hydrogenation of N-propylcarbazole over supported ruthenium as a new prototype of liquid organic hydrogen carriers (LOHC). RSC Adv. 2013, 3, 24877–24881. [Google Scholar] [CrossRef]
- Peters, W.; Seidel, A.; Herzog, S.; Bösmann, A.; Schwieger, W.; Wasserscheid, P. Macrokinetic effects in perhydro-N-ethylcarbazole dehydrogenation and H2 productivity optimization by using egg-shell catalysts. Energy Environ. Sci. 2015, 8, 3013–3021. [Google Scholar] [CrossRef] [Green Version]
- Stark, K.; Emel’yanenko, V.N.; Zhabina, A.A.; Varfolomeev, M.A.; Verevkin, S.P.; Muller, K.; Arlt, W. Liquid organic hydrogen carriers: Thermophysical and thermochemical studies of carbazole partly and fully hydrogenated derivatives. Ind. Eng. Chem. Res. 2015, 54, 7953–7966. [Google Scholar] [CrossRef]
- Chao, J.; Liu, Y.; Sun, J.; Fan, L.; Zhang, Y.; Tong, H.; Li, Z. A ratiometric pH probe for intracellular pH imaging. Sens. Actuator B-Chem. 2015, 221, 427–433. [Google Scholar] [CrossRef]
- Mehranfar, A.; Izadyar, M.; Esmaeili, A.A. Hydrogen storage by N-ethylcarbazol as a new liquid organic hydrogen carrier: A DFT study on the mechanism. Int. J. Hydrog. Energy 2015, 40, 5797–5806. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Wang, H.; Zhou, G. Synthesis and characterization of soluble poly (arylene ether ketones) with high glass transition temperature based on 3,6-bi (4-fluorobenzoyl)-N-alkylcarbazole. Polym. Int. 2015, 64, 258–266. [Google Scholar] [CrossRef]
- Zhang, L.T.; Xiao, X.Z.; Chen, L.X.; Fan, X.L.; Zheng, J.G.; Huang, X. Correction for enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes. J. Mater. Chem. A 2017, 5, 6178–6185. [Google Scholar] [CrossRef]
- Zhang, L.T.; Sun, Z.; Cai, Z.L.; Yan, N.H.; Lu, X.; Zhu, X.Q.; Chen, L.X. Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes. Appl. Surf. Sci. 2020, 504, 144465. [Google Scholar]
- Mehranfar, A.; Izadyar, M. N-Ethylcarbazole-doped fullerene as a potential candidate for hydrogen storage, a kinetics approach. RSC Adv. 2015, 5, 49159–49167. [Google Scholar] [CrossRef]
- Peters, W.; Eypasch, M.; Frank, T.; Schwerdtfeger, J.; Körner, C.; Bösmann, A.; Wasserscheid, P. Efficient hydrogen release from perhydro-N-ethylcarbazole using catalyst-coated metallic structures produced by selective electron beam melting. Energ. Environ. Sci. 2015, 8, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Kono, T.; Shibata, Y.; Wang, Z.; Miyadera, T.; Yoshida, Y. Synthesis of Novel Push–Pull Chromophores based on N-Ethylcarbazole for Vacuum Deposition Processed Organic Photovoltaics. Chem. Lett. 2015, 44, 958–960. [Google Scholar] [CrossRef]
- Sun, F.; An, Y.; Lei, L.; Wu, F.; Zhu, J.; Zhang, X. Identification of the starting reaction position in the hydrogenation of (N-ethyl) carbazole over Raney-Ni. J. Energy Chem. 2015, 24, 219–224. [Google Scholar] [CrossRef]
- Papp, C.; Wasserscheid, P.; Libuda, J.; Steinrück, H.P. Liquid organic hydrogen carriers: Surface science studies of carbazole derivatives. Chem. Rec. 2014, 14, 879–896. [Google Scholar] [CrossRef]
- Wu, K.; Hu, Y.; Yang, W.; Zhang, T.; Guo, Q.; Yang, S.; Shi, Y. Solubility of N-Ethylcarbazole in different organic solvent at 279.15–319.15 K. Fluid Phase Equilib. 2014, 378, 78–82. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, Y.J.; Gao, H.Y.; Jin, W.J. Effect of N-methyl and ethyl on phosphorescence of carbazole in cocrystals assembled by CI⋯π halogen bond, π-hole⋯π bond and other interactions using 1,4-diiodotetrafluorobenzene as donor. J. Photochem. Photobiol. A-Chem. 2014, 289, 31–38. [Google Scholar] [CrossRef]
- Gleichweit, C.; Amende, M.; Bauer, U.; Schernich, S.; Höfert, O.; Lorenz, M.P.A.; Zhao, W.; Müller, M.; Koch, M.; Bachmann, P.; et al. Alkyl chain length-dependent surface reaction of dodecahydro-N-alkylcarbazoles on Pt model catalysts. J. Phys. Chem. Lett. 2014, 140, 204711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amende, M.; Gleichweit, C.; Schernich, S.; Höfert, O.; Lorenz, M.P.A.; Zhao, W.; Koch, M.; Obesser, K.; Papp, C.; Wasserscheid, P.; et al. Size and structure effects controlling the stability of the liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole during dehydrogenation over Pt model catalysts. J. Phys. Chem. Lett. 2014, 5, 1498–1504. [Google Scholar] [CrossRef] [PubMed]
- Amende, M.; Gleichweit, C.; Werner, K.; Schernich, S.; Zhao, W.; Lorenz, M.P.A.; Höfert, O.; Papp, C.; Koch, M.; Wasserscheid, P.; et al. Model catalytic studies of liquid organic hydrogen carriers: Dehydrogenation and decomposition mechanisms of dodecahydro-N-ethylcarbazole on Pt (111). Acs Catal. 2014, 4, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Pez, G.P.; Scott, A.R.; Cooper, A.C.; Cheng, H.; Bagzis, L.; Appleby, J. Hydrogen storage reversible hydrogenated of pi-conjugated substrates. World Pat. 2005, 457, A2. [Google Scholar]
- Niermann, M.; Drünert, S.; Kaltschmitta, M.; Bonhoff, K. Liquid organic hydrogen carriers (LOHCs) -techno-economic analysis of LOHCs in a defined process chain. Energy Environ. Sci. 2019, 12, 290. [Google Scholar] [CrossRef]
- Wan, C.; An, Y.; Kong, W.; Xu, G. A study of catalytic dehydrogenation from dodecahydro-N-ethylcarbazole over a catalyst. Acta Energ. Sol. Sin. 2014, 35, 439–442. [Google Scholar]
- Wan, C.; An, Y.; Kong, W.; Xu, G. Study of cyclic uptake-release of hydrogen with N-Ethylcarbazole. Acta Energ. Sol. Sin. 2014, 8, 38. [Google Scholar]
- Jiang, Z.; Pan, Q.; Xu, J.; Fang, T. Current situation and prospect of hydrogen storage technology with new organic liquid. Int. J. Hydrog. Energy 2014, 39, 17442–17451. [Google Scholar] [CrossRef]
- Wan, C.; An, Y.; Kong, W.; Xu, G. Study of hydrogenation of N-ethylcabazole over Ru/C catalyst. Acta Energ Sol. Sin. 2014, 2, 27. [Google Scholar]
- Zhao, S.; Kang, J.; Du, Y.; Kang, J.; Zhao, X.; Xu, Y.; Chen, R.; Wang, Q.; Shi, X. An Efficient Ultrasound-Assisted Synthesis of N-Alkyl Derivatives of Carbazole, Indole, and Phenothiazine. J. Heterocycl. Chem. 2014, 51, 683–689. [Google Scholar] [CrossRef]
- Asim, S.; Mansha, A.; Landgraf, S.; Grampp, G.; Zahid, M.; Bhatti, H.N. Spectral and thermodynamic properties for the exciplexes of N-alkyl carbazoles with dicyanobenzenes in THF. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, P.; Zhang, Y.; Wu, Y.; Chen, Z.; He, C. Synthesis, one and two-photon optical properties of two asymmetrical and symmetrical carbazole derivatives containing quinoline ring. J. Mol. Struct. 2013, 1051, 23–29. [Google Scholar] [CrossRef]
- Sotoodeh, F.; Smith, K.J. An overview of the kinetics and catalysis of hydrogen storage on organic liquids. Can. J. Chem. Eng. 2013, 91, 1477–1490. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, J.; Fang, T. Current situation and prospect for hydrogen storage technology with new organic liquid. Prog. Chem. 2012, 31, 315–322. [Google Scholar] [CrossRef]
- Bader, N.; Ouederni, A. Optimization of biomass-based carbon materials for hydrogen storage. J. Energy Storage 2016, 5, 77–84. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.; Wang, Y.; Xue, R.; Shen, Z.; Li, X. The mechanism of hydrogen storage in carbon materials. Int. J. Hydrog. Energy 2017, 32, 2513–2517. [Google Scholar] [CrossRef]
- Eberle, U.; Felderhoff, M.; Schueth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 2009, 48, 6608–6630. [Google Scholar] [CrossRef] [PubMed]
- Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Hao, L.L.; Li, J.F.; Lin, P.H.; Dong, R.F.; Shuang, S.M.; Dong, C. A novel carbazole-based fluorescent probe: 3, 6-Bis-[(N-ethylcarbazole-3-yl)-propene-1-keto]-N-ethylcarbazole. Chin. Chem. Lett. 2010, 21, 9–12. [Google Scholar] [CrossRef]
- Aakko-Saksa, P.T.; Cook, C.; Kiviaho, J.; Repo, T. Liquid organic hydrogen carriers for transportation and storing of renewable energy–Review and discussion. J. Power Sources 2018, 396, 803–823. [Google Scholar] [CrossRef]
- Gleichweit, C.; Amende, M.; Schernich, S.; Zhao, W.; Lorenz, M.P.A.; Höfert, O.; Brückner, N.; Wasserscheid, P.; Libuda, J.; Steinrück, H.P.; et al. Dehydrogenation of Dodecahydro-N-ethylcarbazole on Pt (111). ChemSusChem 2013, 6, 974–977. [Google Scholar] [CrossRef] [PubMed]
- Kinashi, K.; Wang, Y.; Nonomura, A.; Tsujimura, S.; Sakai, W.; Tsutsumi, N. Dynamic holographic images using poly (N-vinylcarbazole)-based photorefractive composites. Polym. J. 2013, 45, 665–670. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Hao, L.; Li, J.; Lin, P.; Li, D.; Shuang, S.; Dong, C. Photophysical processes of an intramolecular charge transfer fluorescent dye with carbazole units. Luminescence 2013, 28, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Giridhar, T.; Cho, W.; Park, J.; Park, J.S.; Gal, Y.S.; Kang, S.; Lee, J.Y.; Jin, S.H. Facile synthesis and characterization of iridium (III) complexes containing an N-ethylcarbazole–thiazole main ligand using a tandem reaction for solution processed phosphorescent organic light-emitting diodes. J. Phys. Chem. C 2013, 1, 2368–2378. [Google Scholar] [CrossRef]
- Sotoodeh, F.; Smith, K.J. Analysis of H2 release from organic polycyclics over Pd catalysts using DFT. J. Phys. Chem. C 2013, 117, 194–204. [Google Scholar] [CrossRef]
- Clot, E.; Eisenstein, O.; Crabtree, R.H. Computational structure–activity relationships in H2 storage: How placement of N atoms affects release temperatures in organic liquid storage materials. Chem. Commun. 2007, 22, 2231–2233. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.L.; Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 2015, 8, 478–512. [Google Scholar] [CrossRef]
- Cacciola, G.; Giordano, N.; Restuccia, G. Cyclohexane as a liquid phase carrier in hydrogen storage and transport. Int. J. Hydrog. Energy 1984, 9, 411–419. [Google Scholar] [CrossRef]
- Shukla, A.A.; Gosavi, P.V.; Pande, J.V.; Kumar, V.P.; Chary, K.V.; Biniwale, R.B. Efficient hydrogen supply through catalytic dehydrogenation of methylcyclohexane over Pt/metal oxide catalysts. Int. J. Hydrog. Energy 2010, 35, 4020–4026. [Google Scholar] [CrossRef]
- Kariya, N.; Fukuoka, A.; Utagawa, T.; Sakuramoto, M.; Goto, Y.; Ichikawa, M. Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts. Appl. Catal. A Gen. 2003, 247, 247–259. [Google Scholar] [CrossRef]
- Kustov, L.M.; Tarasov, A.L.; Tarasov, B.P. Intermetallide catalysts for hydrogen storage on the basis of reversible aromatics hydrogenation/dehydrogenation reactions. Int. J. Hydrog. Energy 2013, 38, 5713–5716. [Google Scholar] [CrossRef]
- Sotoodeh, F.; Zhao, L.; Smith, K.J. Kinetics of H2 recovery from dodecahydro-N-ethylcarbazole over a supported Pd catalyst. Appl. Catal. A Gen. 2009, 362, 155–162. [Google Scholar] [CrossRef]
- Copper, A.C.; Campbell, K.M.; Perez, G.P. An integrated hydrogen storage and delivery approach using organic liquid-phase carriers. In Proceedings of the 16th World Hydrogen Energy Conference, Lyon, France, 13–16 June 2006; pp. 2164–2175. [Google Scholar]
- Moores, A.; Poyatos, M.; Luo, Y.; Crabtree, R.H. Catalysed low temperature H2 release from nitrogen heterocycles. New J. Chem. 2006, 30, 1675–1678. [Google Scholar] [CrossRef]
- Cui, Y.; Kwok, S.; Bucholtz, A.; Davis, B.; Whitney, R.A.; Jessop, P.G. The effect of substitution on the utility of piperidines and octahydroindoles for reversible hydrogen storage. New J. Chem. 2008, 32, 1027–1037. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K.I. Homogeneous catalytic system for reversible dehydrogenation-hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species. J. Am. Chem. Soc. 2009, 131, 8410–8412. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.I.; Tanaka, Y.; Kobayashi, M.; Yamaguchi, R. Homogeneous perdehydrogenation and perhydrogenation of fused bicyclic N-heterocycles catalyzed by iridium complexes bearing a functional bipyridonate ligand. J. Am. Chem. Soc. 2014, 136, 4829–4832. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.G.; Zakharov, L.N.; Grant, D.J.; Dixon, D.A.; Liu, S.Y. Hydrogen Storage by Boron−Nitrogen Heterocycles: A Simple Route for Spent Fuel Regeneration. J. Am. Chem. Soc. 2010, 132, 3289–3291. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Campbell, P.G.; Zakharov, L.N.; Liu, S.Y. A single-component liquid-phase hydrogen storage material. J. Am. Chem. Soc. 2011, 133, 19326–19329. [Google Scholar] [CrossRef] [PubMed]
- Hodoshima, S.; Takaiwa, S.; Shono, A.; Satoh, K.; Saito, Y. Hydrogen storage by decalin/naphthalene pair and hydrogen supply to fuel cells by use of superheated liquid-film-type catalysis. Appl. Catal. A Gen. 2005, 283, 235–242. [Google Scholar] [CrossRef]
- Morawa Eblagon, K.; Tam, K.; Yu, K.K.; Zhao, S.L.; Gong, X.Q.; He, H.; Ye, L.; Wang, L.C.; Ramirez-Cuesta, A.J.; Tsang, S.C. Study of catalytic sites on ruthenium for hydrogenation of N-ethylcarbazole: Implications of hydrogen storage via reversible catalytic hydrogenation. J. Phys. Chem. C 2010, 114, 9720–9730. [Google Scholar] [CrossRef]
- Eblagon, K.M.; Tam, K.; Tsang, S.C.E. Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications. Energy Environ. Sci. 2012, 5, 8621–8630. [Google Scholar] [CrossRef]
- Kinashi, K.; Shinkai, H.; Sakai, W.; Tsutsumi, N. Photorefractive device using self-assembled monolayer coated indium-tin-oxide electrodes. Org. Electron. 2013, 14, 2987–2993. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Emel’yanenko, V.N.; Heintz, A.; Stark, K.; Arlt, W. Liquid Organic Hydrogen Carriers: An Upcoming Alternative to Conventional Technologies Thermochemical Studies. Ind. Eng. Chem. Res. 2012, 51, 12150–12153. [Google Scholar] [CrossRef]
- Shi, H.-P.; Dai, J.-X.; Shi, L.-W.; Xu, L.; Zhou, Z.-B.; Zhang, Y.; Zhou, W.; Dong, C. Synthesis, photophysical and electrochemical properties of a carbazole dimer-based derivative with benzothiazole units. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 93, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Dong, Y.; Fei, S.; Ke, H.; Cheng, H. A comparative study of catalytic dehydrogenation of perhydro-N-ethylcarbazole over noble metal catalysts. Int. J. Hydrog. Energy 2014, 39, 18976–18983. [Google Scholar] [CrossRef]
- Wan, C.; An, Y.; Xu, G.; Kong, W. Study of catalytic hydrogenation of N-ethylcarbazole over ruthenium catalyst. Int. J. Hydrog. Energy 2012, 37, 13092–13096. [Google Scholar] [CrossRef]
- Wan, C.; An, Y.; Chen, F.; Cheng, D.; Wu, F.; Xu, G. Kinetics of N-ethylcarbazole hydrogenation over a supported Ru catalyst for hydrogen storage. Int. J. Hydrog. Energy 2013, 38, 7065–7069. [Google Scholar] [CrossRef]
- Yu, H.; Yang, X.; Wu, Y.; Guo, Y.; Li, S.; Lin, W.; Li, X.G.; Zheng, J. Bimetallic Ru-Ni/TiO2 catalysts for hydrogenation of N-ethylcarbazole: Role of TiO2 crystal structure. J. Energy Chem. 2020, 40, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Erginer, M.; Sezer, E.; Ustamehmetoğlu, B.; Heinze, J. Voltammetric, electrochemical quartz crystal microbalance and in situ conductance studies of conducting polymers based on ethylenedioxythiophene and N-ethylcarbazole. Electrochim. Acta 2012, 67, 181–186. [Google Scholar] [CrossRef]
- Sotoodeh, F.; Huber, B.J.; Smith, K.J. The effect of the N atom on the dehydrogenation of heterocycles used for hydrogen storage. Appl. Catal. A-Gen. 2012, 419, 67–72. [Google Scholar] [CrossRef]
- Mosnáček, J.; Nicolaÿ, R.; Kar, K.K.; Fruchey, S.O.; Cloeter, M.D.; Harner, R.S.; Matyjaszewski, K. Efficient polymerization inhibition systems for acrylic acid distillation: New liquid-phase inhibitors. Ind. Eng. Chem. Res. 2012, 51, 3910–3915. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Hua, T.Q.; Peng, J.K. On-board and off-board performance of hydrogen storage options for light-duty vehicles. Int. J. Hydrog. Energy 2012, 37, 2891–2910. [Google Scholar] [CrossRef]
- Gong, X.; Jiang, Z.; Fang, T. Enhancing selectivity and reducing cost for dehydrogenation of dodecahydro-N-ethylcarbazole by supporting platinum on titanium dioxide. Int. J. Hydrog. Energy 2020, 45, 6838–6847. [Google Scholar] [CrossRef]
- Ghinet, A.; Van Hijfte, N.; Gautret, P.; Rigo, B.; Oulyadi, H.; Rousseau, J. Studies on pyrrolidinones. Reaction of pyroglutamic acid and vinylogues with aromatics in Eaton’s reagent. Tetrahedron 2012, 68, 1109–1116. [Google Scholar] [CrossRef]
- Zhao, L.; Qian, C.; Gong, L.; Chen, X.Z. Synthesis of 1-{6-(2-methylbenzoyl)-N-ethylcarbazole-3-yl}-ethane-1-one oxime O-acetate. Res. Chem. Intermed. 2012, 38, 105–111. [Google Scholar] [CrossRef]
- Masuo, S.; Yamane, Y.; Machida, S.; Itaya, A. Fluorescence behavior of individual charge-transfer complexes revealed by single-molecule fluorescence spectroscopy: Influence of the host polymer matrix. J. Photochem. Photobiol. A-Chem. 2012, 227, 65–70. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, H.; Hojo, M.; Shuang, S.; Dong, C. Synthesis and spectral studies of 2- [(N-ethyl carbazole)-3-sulfonyl ethylenediamine]-1-N, N-2-(2-methypyridy) as a fluorescence probe for Zn2+. Bioorg. Med. Chem. Lett. 2012, 22, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Xiaoyan, Y.; Xiaobo, C.; Jing, W.; Hongjun, Z. Synthesis methods for a series of acetyl aromatic compounds. Spec. Petrochem. 2011, 6, 6. [Google Scholar]
- Shi, H.P.; Xu, L.; Cheng, Y.; He, J.Y.; Dai, J.X.; Xing, L.W.; Chen, B.Q.; Fang, L. Experimental and theoretical study of three new benzothiazole-fused carbazole derivatives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 81, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Sotoodeh, F.; Huber, B.J.; Smith, K.J. Dehydrogenation kinetics and catalysis of organic heteroaromatics for hydrogen storage. Int. J. Hydrog. Energy 2012, 37, 2715–2722. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.T.; Chang, T.Y.; Jiang, Z.; Huang, Z.Q.; Wang, S.Y.; Chang, C.R.; Chen, Y.S.; Wei, J.J.; Yang, S.; et al. Facet-dependent catalytic activities of Pd/rGO: Exploring dehydrogenation mechanism of dodecahydro-N-ethylcarbazole. Appl. Catal. B-Environ. 2020, 266, 118658. [Google Scholar] [CrossRef]
- Forberg, D.; Schwob, T.; Zaheer, M.; Friedrich, M.; Miyajima, N.; Kempe, R. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia. Nat. Commun. 2016, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yan, T.; Jiang, Z.; Chang, T.Y.; Wei, J.J.; Zhou, Q.; Fang, T. Palladium supported on reduced graphene oxide as a high-performance catalyst for the dehydrogenation of dodecahydro-Nethylcarbazole. Carbon 2017, 122, 9–18. [Google Scholar] [CrossRef]
- Wang, B.; Chang, T.Y.; Gong, X.; Jiang, Z.; Yang, S.; Chen, Y.S.; Fang, T. One-Pot Synthesis of Au/Pd Core/Shell Nanoparticles Supported on Reduced Graphene Oxide with Enhanced Dehydrogenation Performance for Dodecahydro-N-ethylcarbazole. ACS Sustain. Chem. Eng. 2019, 7, 1760–1768. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, S.; Fang, T. Enhancing the catalytic activity and selectivity of PdAu/SiO2 bimetallic catalysts for dodecahydro-N-ethylcarbazole dehydrogenation by controlling the particle size and dispersion. ACS Appl. Energy Mater. 2019, 2, 7233–7243. [Google Scholar] [CrossRef]
- Eblagon, K.M.; Rentsch, D.; Friedrichs, O.; Remhof, A.; Zuettel, A.; Ramirez-Cuesta, A.J.; Tsang, S.C. Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier. Int. J. Hydrog. Energy 2010, 35, 11609–11621. [Google Scholar] [CrossRef]
- Amende, M.; Schernich, S.; Sobota, M.; Nikiforidis, I.; Hieringer, W.; Assenbaum, D.; Görling, A. Dehydrogenation mechanism of liquid organic hydrogen carriers: Dodecahydro-N-ethylcarbazole on Pd (111). Chem.-Eur. J. 2013, 19, 10854–10865. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; An, Y.; Xu, G. Kinetics of 9-ethylcarbazole hydrogenation over Raney–Ni catalyst for hydrogen storage. J. Alloys Compd. 2010, 509, 152–156. [Google Scholar] [CrossRef]
- Sobota, M.; Nikiforidis, I.; Amende, M.; Zanón, B.S.; Staudt, T.; Höfert, O.; Lykhach, Y.; Papp, C.; Hieringer, W.; Laurin, M.; et al. Dehydrogenation of Dodecahydro-N-ethylcarbazole on Pd/Al2O3 Model Catalysts. Chem.-Eur. J. 2011, 17, 11542–11552. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Y.; Zhang, Y.; Miao, F.; Wang, G.; Zhao, H.; Yu, X.; Liu, H.; Wong, W.Y. A2, 7-carbazole-based dicationic salt for fluorescence detection of nucleic acids and two-photon fluorescence imaging of RNA in nucleoli and cytoplasm. Org. Biomol. Chem. 2011, 9, 3615–3618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotoodeh, F.; Smith, K.J. Structure sensitivity of dodecahydro-N-ethylcarbazole dehydrogenation over Pd catalysts. J. Catal. 2010, 279, 36–47. [Google Scholar] [CrossRef]
- Ates, M. A comparative study of redox parameters and electrochemical impedance spectroscopy of polycarbazole derivatives on carbon fiber microelectrode. Fiber. Polym. 2010, 11, 1094–1100. [Google Scholar] [CrossRef]
- Geng, W.Q.; Li, X.L.; Yin, J.H.; Zhou, H.P.; Wu, J.Y.; Tian, Y.P. Synthesis, crystal structure and photoluminescence of a new Cd (II) coordination polymer with unusual geometry. Inorg. Chem. Commun. 2010, 13, 1285–1288. [Google Scholar] [CrossRef]
- Kustov, L.M.; Tarasov, A.L.; Kirichenko, O.A. Microwave-activated dehydrogenation of perhydro-N-ethylcarbazol over bimetallic Pd-M/TiO2 catalysts as the second stage of hydrogen storage in liquid substrates. Int. J. Hydrog. Energy 2017, 42, 26723–26729. [Google Scholar] [CrossRef]
- Gong, L.; Qian, C.; Chen, X. Synthesis of 3-acetyl-6-(o-methyl benzoyl)-N-ethylcarbazole. Res. Chem. Intermed. 2010, 36, 383–387. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, Q.; Zhang, D.D.; Cao, J.; Han, B.H. Triphenylamine-based fluorescent conjugated copolymers with pendant terpyridyl ligands as chemosensors for metal ions. J. Polym. Sci. Pol. Chem. 2010, 48, 1310–1316. [Google Scholar] [CrossRef]
- Park, M.J.; Kwak, J.; Lee, J.; Jung, I.H.; Kong, H.; Lee, C.; Hwang, D.H.; Shim, H.K. Single chain white-light-emitting polyfluorene copolymers containing iridium complex coordinated on the main chain. Macromolecules 2010, 43, 1379–1386. [Google Scholar] [CrossRef]
- Sotoodeh, F.; Smith, K.J. Kinetics of hydrogen uptake and release from heteroaromatic compounds for hydrogen storage. Ind. Eng. Chem. Res. 2010, 49, 1018–1026. [Google Scholar] [CrossRef]
- Shi, H.P.; Cheng, Y.; Jing, W.J.; Chao, J.B.; Fang, L.; Dong, X.; Dong, C. Experimental and theoretical study of a new carbazole derivative having terminal benzimidazole rings. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 75, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.H.; Xu, Q. Recent progress in boron-and nitrogen-based chemical hydrogen storage. Funct. Mater. Lett. 2012, 5, 1230001. [Google Scholar] [CrossRef]
Hydrogen Storage Mode | Hydrogen Storage Capacity/% | Ref. |
---|---|---|
Pressurized gaseous hydrogen storage | 1–3 | [15] |
Low temperature liquefaction hydrogen storage | >10 | [75] |
Carbon hydrogen storage | 3–10 | [76] |
Metal alloy hydrogen storage | 1–8 | [78] |
Glass microspheres for hydrogen storage | >15 | [79] |
Complex hydrogen storage | 5.5–18.5 | [80] |
Organic liquid hydrogen storage | 5–10 | [83] |
Entry | Storage Media | Density | Calculated (and Experimental) | Hydrogen Content | Ref. | |
---|---|---|---|---|---|---|
wt% | gL | |||||
Cycloalkanes | ||||||
1 | Cyclohexane | 0.779 | 15.6(16.42) | 7.2 | 56 | [89] |
2 | Methylcyclohexane | 0.77 | 16.3 | 6.2 | 47.4 | [90] |
3 | Decalin | 0.896 | (cis-)15.1(15.29)(trans-)15.8(15.91) | 7.3 | 65.3 | [91] |
4 | Bicyclohexyl | 0.883 | 16 | 7.3 | 64.2 | [92] |
N-substituted heterocycles | ||||||
5 | Dodecahydrocarbazole | 1.298 | 12.2 | 6.7 | 87 | [93] |
6 | Dodecahydro-N-ethylcarbazole | 0.931 | 12.1(12.4) a | 5.8 | 54 | [94] |
7 | Indoline | 1.063 | 13.3 | 1.7 | 18.1 | [95] |
8 | 4-Aminopiperidine | 0.945 | - | 6 | 57 | [96] |
9 | Piperidine-4-carboxamide | - | - | 4.7 | - | [96] |
10 | Perhydro-4,7-phenanthroline | 0.958 | - | 7.2 | 69 | [94] |
11 | 2-Methyl-1,2,3,4-tetrahydroquinoline | - | - | 2.7 | - | [97] |
12 | 2,6-Dimethyldecahydro-1,5naphthyridine | - | - | 6 | - | [98] |
1,2-BN-heterocycles | ||||||
13 | 1,2-BN-cyclohexane | 1.011 | - | 4.7 | - | [99] |
14 | 3-Methyl-1,2-BN-cyclopentane | 0.894 | - | 4.7 | 48 | [99] |
Other organic chemical hydrides | ||||||
15 | Methanol | 0.791 | - | 12.6(12.1) | 98.8 | [100] |
16 | Formic acid | 1.22 | - | 4.4 | 53 | [101] |
Inorganic chemical hydrides | ||||||
17 | Ammonia borane | 0.78 | - | 19.6(9.0) | 153 | [101] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Sun, L.; Xu, L.; Wan, C.; An, Y.; Ye, M. Recent Developments of Effective Catalysts for Hydrogen Storage Technology Using N-Ethylcarbazole. Catalysts 2020, 10, 648. https://doi.org/10.3390/catal10060648
Zhou L, Sun L, Xu L, Wan C, An Y, Ye M. Recent Developments of Effective Catalysts for Hydrogen Storage Technology Using N-Ethylcarbazole. Catalysts. 2020; 10(6):648. https://doi.org/10.3390/catal10060648
Chicago/Turabian StyleZhou, Liu, Lin Sun, Lixin Xu, Chao Wan, Yue An, and Mingfu Ye. 2020. "Recent Developments of Effective Catalysts for Hydrogen Storage Technology Using N-Ethylcarbazole" Catalysts 10, no. 6: 648. https://doi.org/10.3390/catal10060648
APA StyleZhou, L., Sun, L., Xu, L., Wan, C., An, Y., & Ye, M. (2020). Recent Developments of Effective Catalysts for Hydrogen Storage Technology Using N-Ethylcarbazole. Catalysts, 10(6), 648. https://doi.org/10.3390/catal10060648