Next Article in Journal
Catalytic Applications of CeO2-Based Materials
Previous Article in Journal
Adsorption and Photocatalytic Study of Phenol Using Composites of Activated Carbon Prepared from Onion Leaves (Allium fistulosum) and Metallic Oxides (ZnO and TiO2)
Open AccessArticle

Trimesoyl Chloride-Melamine Copolymer-TiO2 Nanocomposites as High-Performance Visible-Light Photocatalysts for Volatile Organic Compound Degradation

School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
*
Author to whom correspondence should be addressed.
Catalysts 2020, 10(5), 575; https://doi.org/10.3390/catal10050575
Received: 6 April 2020 / Revised: 18 May 2020 / Accepted: 18 May 2020 / Published: 20 May 2020
Benzene is a typical volatile organic compound (VOC) and is found widely in industrial waste gases. In this study, trimesoyl chloride-melamine copolymer (TMP)-TiO2 nanocomposites with excellent photocatalytic efficiency in visible-light degradation of gas-phase benzene were synthesized via an in situ hydrothermal synthesis. The optimal conditions for TMP-TiO2 nanocomposite synthesis were determined by orthogonal experiments. The structural, physiochemical, and optoelectronic properties of the samples were studied by various analytical techniques. Ultraviolet-visible diffuse reflectance spectroscopy and surface photovoltage spectra showed that the positions of the light-absorbance edges of the TMP-TiO2 nanocomposites were sharply red-shifted to the visible region relative to those of unmodified TiO2. The most efficient TMP-TiO2 nanocomposite was used for photocatalytic oxidative degradation of gas-phase benzene (initial concentration 230 mg m−3) under visible-light irradiation (380–800 nm); the degradation rate was 100% within 180 min. Under the same reaction conditions, the degradation rates of unmodified TiO2 (hydrothermally synthesized TiO2) and commercial material Degussa P25 were 19% and 23.6%, respectively. This is because the Ti–O–N and Ti–O–C bonds in TMP-modified TiO2 reduce the band gap of TMP-TiO2. The amide bonds in the TMP decrease the TiO2 nanoparticle size and thus increased the specific surface area. The conjugated structures in the TMP provide abundant active sites for trapping photogenerated electrons and promote the separation and transfer of photogenerated electrons and holes. View Full-Text
Keywords: TiO2; visible light; volatile organic compound; benzene; gas degradation TiO2; visible light; volatile organic compound; benzene; gas degradation
Show Figures

Graphical abstract

MDPI and ACS Style

Zhang, L.; Wang, C.; Sun, J.; An, Z. Trimesoyl Chloride-Melamine Copolymer-TiO2 Nanocomposites as High-Performance Visible-Light Photocatalysts for Volatile Organic Compound Degradation. Catalysts 2020, 10, 575.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop