Activated Carbon Supported Hafnium(IV) Chloride as an Efficient, Recyclable, and Facile Removable Catalyst for Expeditious Parallel Synthesis of Benzimidazoles
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. General Procedure for Preparation of HfCl4/C Catalyst
3.3. General Procedure for Preparation of Other Supported HfCl4 Catalysts
3.4. General Synthetic Procedure and Characterization of Benzimidazoles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sreerama, R.; Barnali, M.; Balamurali, M.M.; Chanda, K. Synthesis and medicinal applications of benzimidazoles: An overview. Curr. Org. Synth. 2017, 14, 40–60. [Google Scholar]
- Carvalho, L.C.R.; Fernandes, E.; Marques, M.M.B. Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles. Chem. Eur. J. 2011, 17, 12544–12555. [Google Scholar] [CrossRef] [PubMed]
- Preston, P.N. Synthesis, reactions, and spectroscopic properties of benzimidazoles. Chem. Rev. 1974, 74, 279–314. [Google Scholar] [CrossRef]
- Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem. 2015, 97, 419–443. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Chhabra, S.; Shrivastava, S.K.; Mishra, P. Benzimidazole: A promising pharmacophore. Med. Chem. Res. 2013, 22, 5077–5104. [Google Scholar] [CrossRef]
- Bansal, Y.; Silakari, O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem. 2012, 20, 6208–6236. [Google Scholar] [CrossRef]
- Alamgir, M.; Black, D.S.C.; Kumar, N. Synthesis, reactivity and biological activity of benzimidazoles. Top. Heterocycl. Chem. 2007, 21, 87–118. [Google Scholar]
- Wallace, M.B.; Feng, J.; Zhang, Z.; Skene, R.J.; Shi, L.; Caster, C.L.; Kassel, D.B.; Xu, R.; Gwaltney, S.L., II. Structure-based design and synthesis of benzimidazole derivatives as dipeptidyl peptidase IV inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 2362–2367. [Google Scholar] [CrossRef]
- Nagawade, R.R.; Shinde, D.B. BF3OEt2 Promoted solvent-free synthesis of benzimidazole derivative. Chin. Chem. Lett. 2006, 17, 453–456. [Google Scholar]
- Mayer, J.P.; Lewis, G.S.; McGee, C.; Bankaitis-Davis, D. Solid-phase synthesis of benzimidazoles. Tetrahedron Lett. 1998, 39, 6655–6658. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, K.H.; Chung, Y.K. Manganese (IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation. Chem. Commun. 2005, 1321–1323. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, P.; Konwar, D. An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon–nitrogen bonds in water. Tetrahedron Lett. 2006, 47, 79–82. [Google Scholar] [CrossRef]
- Beaulieu, P.L.; Hache, B.; von Moos, E. A practical oxone®-mediated, high-throughput, solution-phase synthesis of benzimidazoles from 1,2-phenylenediamines and aldehydes and its application to preparative scale synthesis. Synthesis 2003, 11, 1683–1692. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, R.; Cai, S.; Lin, Y.; Sellers, L.; Sakamoto, K.; He, B.; Peterson, B.R. Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV. J. Med. Chem. 2011, 54, 1126–1139. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, C.-J.; Gong, S.-S.; Ai, Y.-J.; Sun, H.-B. Cp2ZrCl2-catalyzed synthesis of 2-aminovinyl benzimidazoles under microwave conditions. Chin. Chem. Lett. 2015, 26, 297–300. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Luo, Y.; Wang, J.; Jian, Y.; Sun, H.; Zhang, G.; Zhang, W.; Gao, Z. Solvent strategy for unleashing the Lewis acidity of titanocene dichloride for rapid Mannich reactions. RSC Adv. 2016, 6, 15298–15303. [Google Scholar] [CrossRef]
- Qiu, R.; Xu, X.; Peng, L.; Zhao, Y.; Li, N.; Yin, S. Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s as high-efficiency catalysts for carbonyl-group transformation reactions. Chem. Eur. J. 2012, 18, 6172–6182. [Google Scholar] [CrossRef]
- Ishihara, K.; Ohara, S.; Yamamoto, H. Direct condensation of carboxylic acids with alcohols catalyzed by hafnium (IV) salts. Science 2000, 290, 1140–1142. [Google Scholar] [CrossRef]
- Ishihara, K.; Nakayama, M.; Ohara, S.; Yamamoto, H. Direct ester condensation from a 1:1 mixture of carboxylic acids and alcohols catalyzed by hafnium (IV) or zirconium (IV) salts. Tetrahedron 2002, 58, 8179–8188. [Google Scholar] [CrossRef]
- Lundberg, H.; Adolfsson, H. Hafnium-catalyzed direct amide formation at room temperature. ACS Catal. 2015, 5, 3271–3277. [Google Scholar] [CrossRef]
- Li, X.-C.; Gong, S.-S.; Zeng, D.-Y.; You, Y.-H.; Sun, Q. Highly efficient synthesis of α-aminophosphonates catalyzed by hafnium(IV) chloride. Tetrahedron Lett. 2016, 57, 1782–1785. [Google Scholar] [CrossRef]
- Wang, R.; Chen, J.-Z.; Zheng, X.-A.; Kong, R.; Gong, S.-S.; Sun, Q. Hafnium (IV) triflate as a potent catalyst for selective 1-O-deacetylation of peracetylated saccharides. Carbohydr. Res. 2018, 455, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Han, S.-B.; Wei, J.-Y.; Peng, X.-C.; Xie, Z.-B.; Gong, S.-S.; Sun, Q. Highly efficient synthesis of substituted 3,4-dihydropyrimidin-2-(1H)-ones (DHPMs) catalyzed by Hf(OTf)4: Mechanistic insights into reaction pathways under metal Lewis acid catalysis and solvent-free conditions. Molecules 2019, 24, 364. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-B.; Wei, J.-Y.; Peng, X.-C.; Liu, R.; Gong, S.-S.; Sun, Q. Hf(OTf)4 as a highly potent catalyst for the synthesis of Mannich bases under solvent-free conditions. Molecules 2020, 25, 388. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Yin, L.; Wang, Y.-M. An expeditious synthesis of benzimidazole derivatives catalyzed by Lewis acids. Catal. Commun. 2007, 8, 1126–1131. [Google Scholar] [CrossRef]
- Nagawade, R.R.; Shinde, D.B. Zirconyl (IV) chloride-promoted synthesis of benzimidazole derivatives. Russ. J. Org. Chem. 2006, 42, 453–454. [Google Scholar] [CrossRef]
- Wei, J.-Y.; Han, S.-B.; Peng, X.-C.; Wang, C.-J.; Zeng, D.-Y.; Gong, S.-S.; Sun, Q. Efficient synthesis of fluorinated benzimidazolines, benzoxazolines and benzothiazolines catalyzed by Hf(OTf)4. Heterocycles 2020, 100, 371–382. [Google Scholar]
- Trivedi, R.; De, S.K.; Gibbs, R.A. A convenient one-pot synthesis of 2-substituted benzimidazoles. J. Mol. Catal. A Chem. 2006, 245, 8–11. [Google Scholar] [CrossRef]
- Sharghi, H.; Aberi, M.; Doroodmanda, M.M. Reusable cobalt(III)-salen complex supported on activated carbon as an efficient heterogeneous catalyst for synthesis of 2-arylbenzimidazole derivatives. Adv. Synth. Catal. 2008, 350, 2380–2390. [Google Scholar] [CrossRef]
- Chakrabarty, M.; Karmakar, S.; Mukherjee, R.; Arima, S.; Harigaya, Y. A mild and expedient one-pot synthesis of substituted benzimidazoles in water using a phase-transfer catalyst. Monatsh. Chem. 2009, 140, 375–380. [Google Scholar] [CrossRef]
Entry | Catalyst | Reaction Time (h) | Isolated Yield of 3{1,1} (%) |
---|---|---|---|
1 | No | 120 | 82 |
2 | TiCl4 | 20 | 67 |
3 | ZrOCl2·8H2O | 20 | 89 |
4 | ZrCp2Cl2 | 20 | 92 |
5 | ZrCl4 | 16 | 90 |
6 | HfCl4 | 12 | 96 |
Entry | Temperature (°C) | Solvent | Reaction Time (h) | Isolated Yield of 3{1,1} (%) |
---|---|---|---|---|
1 | 20 | EtOH | 16 | 96 |
2 | 40 | EtOH | 12 | 97 |
3 | 60 | EtOH | 4 | 97 |
4 | 80 | EtOH | 1 | 97 |
5 | 80 | DMF | 1 | 88 |
6 | 80 | CH3CN | 1.5 | 92 |
7 | 80 | DCE | 24 | 90 |
8 | 70 | THF | 6 | 64 |
Entry | Solid Support | Reaction Time 1st/2nd (h) | Isolated Yield of 3{1,1} 1st/2nd (%) |
---|---|---|---|
1 | SiO2 | 2/4 | 92/78 |
2 | activated carbon | 1/1 | 96/96 |
3 | Al2O3 | 1/4 | 93/75 |
4 | K-10 montmorillonite | 1/4 | 94/79 |
Method | Weight Loss (mg) | |||||
---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | |
A a | 8 | 7 | 5 | 3 | 1 | 0 |
B b | 0 | 0 | 0 | 0 | 0 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.-C.; Gong, S.-S.; Zeng, D.-Y.; Duo, S.-W.; Sun, Q. Activated Carbon Supported Hafnium(IV) Chloride as an Efficient, Recyclable, and Facile Removable Catalyst for Expeditious Parallel Synthesis of Benzimidazoles. Catalysts 2020, 10, 436. https://doi.org/10.3390/catal10040436
Peng X-C, Gong S-S, Zeng D-Y, Duo S-W, Sun Q. Activated Carbon Supported Hafnium(IV) Chloride as an Efficient, Recyclable, and Facile Removable Catalyst for Expeditious Parallel Synthesis of Benzimidazoles. Catalysts. 2020; 10(4):436. https://doi.org/10.3390/catal10040436
Chicago/Turabian StylePeng, Xiao-Chong, Shan-Shan Gong, De-Yun Zeng, Shu-Wang Duo, and Qi Sun. 2020. "Activated Carbon Supported Hafnium(IV) Chloride as an Efficient, Recyclable, and Facile Removable Catalyst for Expeditious Parallel Synthesis of Benzimidazoles" Catalysts 10, no. 4: 436. https://doi.org/10.3390/catal10040436
APA StylePeng, X.-C., Gong, S.-S., Zeng, D.-Y., Duo, S.-W., & Sun, Q. (2020). Activated Carbon Supported Hafnium(IV) Chloride as an Efficient, Recyclable, and Facile Removable Catalyst for Expeditious Parallel Synthesis of Benzimidazoles. Catalysts, 10(4), 436. https://doi.org/10.3390/catal10040436