Facile Preparation of BaClxFy for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Preparation of Catalysts
3.2. Catalytic Activity
3.3. Catalyst Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ameduri, B. From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers: Recent Developments and Future Trends. Chem. Rev. 2009, 109, 6632–6686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Améduri, B.; Boutevin, B.; Kostov, G. Fluoroelastomers: Synthesis, properties and applications. Prog. Polym. Sci. 2001, 26, 105–187. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Tang, H.; Liu, H. CaBaFx composite as robust catalyst for the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride. Catal. Commun. 2019, 120, 42–45. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Liu, H. EDTA-assisted hydrothermal synthesis of cubic SrF2 particles and their catalytic performance for the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride. Crystengcomm 2019, 21, 1691–1700. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Jiang, Z.B.; Cui, Y.H.; Xie, G.Q.; Jin, Y.Z.; Guo, L.L.; Xu, Y.Q.; Zhang, Q.F.; Li, X.N. Catalytic performance of ionic liquid for dehydrochlorination reaction: Excellent activity and unparalled stability. Appl. Catal. B Environ. 2019, 255, 10. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; Qin, Y.C.; Qiang, L.; He, Y.P.; Su, D.S.; Song, L.J.; Sun, Z.L. Direct Conversion of Acetylene and 1,2-Dichloroethane to Vinyl Chloride Monomer over a Supported Carbon Nitride Catalyst: Tunable Activity Controlled by the Synthesis Temperature. Ind. Eng. Chem. Res. 2019, 58, 5404–5413. [Google Scholar] [CrossRef]
- Mao, W.; Bai, Y.; Wang, W.; Wang, B.; Xu, Q.; Shi, L.; Li, C.; Lu, J. Highly Selective Dehydrochlorination of 1,1,1,2-Tetrafluoro-2-chloropropane to 2,3,3,3-Tetrafluoropropene over Alkali Metal Fluoride Modified MgO Catalysts. ChemCatChem 2017, 9, 824–832. [Google Scholar] [CrossRef]
- Scharfe, M.; Zichittella, G.; Kondratenko, V.A.; Kondratenko, E.V.; Lopez, N.; Perez-Ramirez, J. Mechanistic origin of the diverging selectivity patterns in catalyzed ethane and ethene oxychlorination. J. Catal. 2019, 377, 233–244. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Zhang, C.; Zhou, S.; Wang, H.; Tang, H.; Liu, H. Preparation of N-Doped Activated Carbon for Catalytic Pyrolysis of 1-Chloro-1,1-difluoroethane to Vinylidene Fluoride. Chemistryselect 2018, 3, 1015–1018. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Tang, H.; Li, Y.; Liu, H. Preparation of N-doped ordered mesoporous carbon and catalytic performance for the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride. Microporous Mesoporous Mater. 2019, 275, 200–206. [Google Scholar] [CrossRef]
- Han, W.; Liu, B.; Kang, Y.; Wang, Z.; Yu, W.; Yang, H.; Liu, Y.; Lu, J.; Tang, H.; Li, Y.; et al. Experimental and DFT Mechanistic Study of Dehydrohalogenation of 1-Chloro-1,1-difluoroethane over Metal Fluorides. Ind. Eng. Chem. Res. 2019, 58, 18149–18159. [Google Scholar] [CrossRef]
- Han, W.; Zhang, C.; Wang, H.; Zhou, S.; Tang, H.; Yang, L.; Wang, Z. Sub-nano MgF2 embedded in carbon nanofibers and electrospun MgF2 nanofibers by one-step electrospinning as highly efficient catalysts for 1,1,1-trifluoroethane dehydrofluorination. Catal. Sci. Technol. 2017, 7, 6000–6012. [Google Scholar] [CrossRef]
- Han, W.; Wang, H.; Liu, B.; Li, X.; Tang, H.; Li, Y.; Liu, H. PVDF mediated fabrication of freestanding AlF3 sub-microspheres: Facile and controllable synthesis of alpha, beta and theta-AlF3. Mater. Chem. Phys. 2020, 240. [Google Scholar] [CrossRef]
- Liu, B.; Han, W.; Li, X.; Li, L.; Tang, H.; Lu, C.; Li, Y.; Li, X. Quasi metal organic framework with highly concentrated Cr2O3 molecular clusters as the efficient catalyst for dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Appl. Catal. B Environ. 2019, 257. [Google Scholar] [CrossRef]
- Calvo, B.; Marshall, C.P.; Krahl, T.; Krohnert, J.; Trunschke, A.; Scholz, G.; Braun, T.; Kemnitz, E. Comparative study of the strongest solid Lewis acids known: ACF and HS-AlF3. Dalton Trans. 2018, 47, 16461–16473. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.-X.; Wang, Y.; Jia, W.-Z.; Song, J.-D.; Wang, Y.-J.; Luo, M.-F.; Lu, J.-Q. Dehydrofluorination of 1, 1, 1, 3, 3-pentafluoropropane over C-AlF3 composite catalysts: Improved catalyst stability by the presence of pre-deposited carbon. Appl. Catal. Gen. 2019, 576, 39–46. [Google Scholar] [CrossRef]
- Teinz, K.; Wuttke, S.; Boerno, F.; Eicher, J.; Kemnitz, E. Highly selective metal fluoride catalysts for the dehydrohalogenation of 3-chloro-1,1,1,3-tetrafluorobutane. J. Catal. 2011, 282, 175–182. [Google Scholar] [CrossRef]
- Meissner, G.; Dirican, D.; Jager, C.; Braun, T.; Kemnitz, E. Et3GeH versus Et3SiH: Controlling reaction pathways in catalytic C-F bond activations at a nanoscopic aluminum chlorofluoride. Catal. Sci. Technol. 2017, 7, 3348–3354. [Google Scholar] [CrossRef]
- Krahl, T.; Kemnitz, E. The very strong solid Lewis acids aluminium chlorofluoride (ACF) and bromofluoride (ABF)—Synthesis, structure, and Lewis acidity. J. Fluor. Chem. 2006, 127, 663–678. [Google Scholar] [CrossRef]
- Yu, Y.; Jia, D.Z.; Ge, W.W.; Jin, C.F.; Xin, X.Q. Syhthesis of inorganic nano-materials by solid state reaction at low-heating temperatures. Chin. J. Inorg. Chem. 2004, 20, 881–888. [Google Scholar]
- Liu, X.H.; Yu, L. Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Mater. Lett. 2004, 58, 1327–1330. [Google Scholar] [CrossRef]
- Yu, X.H.; Li, F.; Ye, X.R.; Xin, X.Q.; Xue, Z.L. Synthesis of cerium(IV) oxide ultrafine particles by solid-state reactions. J. Am. Ceram. Soc. 2000, 83, 964–966. [Google Scholar] [CrossRef]
- Sun, Z.P.; Liu, L.; Zhang, L.; Jia, D.Z. Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology 2006, 17, 2266–2270. [Google Scholar] [CrossRef]
- Wang, X.L.; Liu, Z.Q.; Stevens-Kalceff, M.A.; Riesen, H. Mechanochemical Preparation of Nanocrystalline BaFCl Doped with Samarium in the 2+Oxidation State. Inorg. Chem. 2014, 53, 8839–8841. [Google Scholar] [CrossRef]
- Hagemann, H.; D’Anna, V.; Daku, M.L.; Kubel, F. Crystal Chemistry in the Barium Fluoride Chloride System. Cryst. Growth Des. 2012, 12, 1124–1131. [Google Scholar] [CrossRef]
- Chialanza, M.R.; Schneider, J.F.; Keuchkerian, R.; Romero, M.; Faccio, R.; Olivera, A.; Pereira, H.B. Structural analysis of oxyfluoride borate glass and BaF2 crystallization from phase separation. J. Am. Ceram. Soc. 2020, 103, 3126–3137. [Google Scholar] [CrossRef]
- Saowadee, N.; Agersted, K.; Bowen, J.R. Lattice constant measurement from electron backscatter diffraction patterns. J. Microsc. 2017, 266, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Radmilovic, V.; Ophus, C.; Marquis, E.A.; Rossell, M.D.; Tolley, A.; Gautam, A.; Asta, M.; Dahmen, U. Highly monodisperse core-shell particles created by solid-state reactions. Nat. Mater. 2011, 10, 710–715. [Google Scholar] [CrossRef]
- Lan, C.; Hong, K.Q.; Wang, W.Z.; Wang, G.H. Synthesis of ZnS nanorods by annealing precursor ZnS nanoparticles in NaCl flux. Solid State Commun. 2003, 125, 455–458. [Google Scholar] [CrossRef]
- Li, F.; Yu, X.H.; Pan, H.J.; Wang, M.L.; Xin, X.Q. Syntheses of MO2 (M = Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature. Solid State Sci. 2000, 2, 767–772. [Google Scholar] [CrossRef]
- Mao, W.; Bai, Y.; Wang, B.; Wang, W.; Ma, H.; Qin, Y.; Li, C.; Lu, J.; Liu, Z.W. A facile sol-gel synthesis of highly active nano alpha-aluminum fluoride catalyst for dehydrofluorination of hydrofluorocarbons. Appl. Catal. B Environ. 2017, 206, 65–73. [Google Scholar] [CrossRef]
- Jia, Z.H.; Mao, W.; Bai, Y.B.; Wang, B.; Ma, H.; Li, C.; Lu, J. Hollownano-MgF2 supported catalysts: Highly active and stable in gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Appl. Catal. B Environ. 2018, 238, 599–608. [Google Scholar] [CrossRef]
- Mozafari, M.; Moztarzadeh, F.; Tahriri, M. Green synthesis and characterisation of spherical PbS luminescent micro- and nanoparticles via wet chemical technique. Adv. Appl. Ceram. 2011, 110, 30–34. [Google Scholar] [CrossRef]
- Drits, V.; Srodon, J.; Eberl, D.D. XRD measurement of mean crystalline thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation. Clay Min. 1997, 45, 461–475. [Google Scholar] [CrossRef]
- Kesavamoorthy, R.; Sundarakkannan, B.; Rao, G.V.N.; Sastry, V.S. Thermal effect on BaFCl: High-temperature X-ray diffraction. Thermochim. Acta 1997, 307, 185–195. [Google Scholar] [CrossRef]
- Sundarakkannan, B.; Kesavamoorthy, R.; Nisha, J.A.; Sridharan, V.; Sivakumar, T. Antiferroelectric-to-paraelectric transition in BaFCl. Phys. Rev. B 1998, 57, 11632–11638. [Google Scholar] [CrossRef]
- Han, W.F.; Wang, Z.K.; Li, X.J.; Tang, H.D.; Xi, M.; Li, Y.; Liu, H.Z. Solution combustion synthesis of nano-chromia as catalyst for the dehydrofluorination of 1,1-difluoroethane. J. Mater. Sci. 2016, 51, 11002–11013. [Google Scholar] [CrossRef]
- Andrade, A.B.; Ferreira, N.S.; Valerio, M.E.G. Particle size effects on structural and optical properties of BaF2 nanoparticles. RSC Adv. 2017, 7, 26839–26848. [Google Scholar] [CrossRef] [Green Version]
- Au, C.T.; Chen, K.D.; Ng, C.F. Characterization of BaX2/Gd2O3 (X = F, Cl, Br) catalysts for the oxidative coupling of methane. Appl. Catal. Gen. 1998, 171, 283–291. [Google Scholar] [CrossRef]
- Laws, P.A.; Hayley, B.D.; Anthony, L.M.; Roscoe, J.M. Kinetic study of the mechanism of the low-temperature pyrolysis of vinyl bromide. J. Phys. Chem. 2001, 105, 1830–1837. [Google Scholar] [CrossRef]
- Kunsagi-Mate, S.; Vegh, E.; Nagy, G.; Kollar, L. Influence of the molecular environment on the three-center versus four-center elimination of HBr from vinyl bromide: A theoretical approach. J. Phys. Chem. 2002, 106, 6319–6324. [Google Scholar] [CrossRef]
- Hu, P.; Cao, Y.; Jia, D.; Li, Q.; Liu, R. Engineering the metathesis and oxidation-reduction reaction in solid state at room temperature for nanosynthesis. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Terkawi, A.A.; Scholz, G.; Emmerling, F.; Kemnitz, E. Mechanochemical Synthesis, Characterization, and Structure Determination of New Alkaline Earth Metal-Tetrafluoroterephthalate Frameworks. Cryst. Growth Des. 2016, 16, 1923–1933. [Google Scholar] [CrossRef]
Catalyst | Amounts, mol | ||
---|---|---|---|
Ba(OH)2·8H2O | NH4F | NH4Cl | |
BaF2 | 0.1 | 0.2 | 0 |
BaCl0.05F1.95 | 0.1 | 0.195 | 0.005 |
BaCl0.1F1.9 | 0.1 | 0.19 | 0.01 |
BaCl0.2F1.8 | 0.1 | 0.18 | 0.02 |
BaCl0.5F1.5 | 0.1 | 0.15 | 0.05 |
BaClF | 0.1 | 0.1 | 0.1 |
BaCl2 | 0.1 | 0 | 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Han, W.; Liu, Y.; Lu, J.; Yang, H.; Liu, B.; Tang, H.; Chen, A.; Li, Y. Facile Preparation of BaClxFy for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride. Catalysts 2020, 10, 377. https://doi.org/10.3390/catal10040377
Yu W, Han W, Liu Y, Lu J, Yang H, Liu B, Tang H, Chen A, Li Y. Facile Preparation of BaClxFy for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride. Catalysts. 2020; 10(4):377. https://doi.org/10.3390/catal10040377
Chicago/Turabian StyleYu, Wei, Wenfeng Han, Yongnan Liu, Jiaqin Lu, Hong Yang, Bing Liu, Haodong Tang, Aimin Chen, and Ying Li. 2020. "Facile Preparation of BaClxFy for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride" Catalysts 10, no. 4: 377. https://doi.org/10.3390/catal10040377
APA StyleYu, W., Han, W., Liu, Y., Lu, J., Yang, H., Liu, B., Tang, H., Chen, A., & Li, Y. (2020). Facile Preparation of BaClxFy for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride. Catalysts, 10(4), 377. https://doi.org/10.3390/catal10040377