Facile Preparation of BaClxFy for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride
Abstract
1. Introduction
2. Results
3. Materials and Methods
3.1. Preparation of Catalysts
3.2. Catalytic Activity
3.3. Catalyst Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ameduri, B. From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers: Recent Developments and Future Trends. Chem. Rev. 2009, 109, 6632–6686. [Google Scholar] [CrossRef] [PubMed]
- Améduri, B.; Boutevin, B.; Kostov, G. Fluoroelastomers: Synthesis, properties and applications. Prog. Polym. Sci. 2001, 26, 105–187. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Tang, H.; Liu, H. CaBaFx composite as robust catalyst for the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride. Catal. Commun. 2019, 120, 42–45. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Liu, H. EDTA-assisted hydrothermal synthesis of cubic SrF2 particles and their catalytic performance for the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride. Crystengcomm 2019, 21, 1691–1700. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Jiang, Z.B.; Cui, Y.H.; Xie, G.Q.; Jin, Y.Z.; Guo, L.L.; Xu, Y.Q.; Zhang, Q.F.; Li, X.N. Catalytic performance of ionic liquid for dehydrochlorination reaction: Excellent activity and unparalled stability. Appl. Catal. B Environ. 2019, 255, 10. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; Qin, Y.C.; Qiang, L.; He, Y.P.; Su, D.S.; Song, L.J.; Sun, Z.L. Direct Conversion of Acetylene and 1,2-Dichloroethane to Vinyl Chloride Monomer over a Supported Carbon Nitride Catalyst: Tunable Activity Controlled by the Synthesis Temperature. Ind. Eng. Chem. Res. 2019, 58, 5404–5413. [Google Scholar] [CrossRef]
- Mao, W.; Bai, Y.; Wang, W.; Wang, B.; Xu, Q.; Shi, L.; Li, C.; Lu, J. Highly Selective Dehydrochlorination of 1,1,1,2-Tetrafluoro-2-chloropropane to 2,3,3,3-Tetrafluoropropene over Alkali Metal Fluoride Modified MgO Catalysts. ChemCatChem 2017, 9, 824–832. [Google Scholar] [CrossRef]
- Scharfe, M.; Zichittella, G.; Kondratenko, V.A.; Kondratenko, E.V.; Lopez, N.; Perez-Ramirez, J. Mechanistic origin of the diverging selectivity patterns in catalyzed ethane and ethene oxychlorination. J. Catal. 2019, 377, 233–244. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Zhang, C.; Zhou, S.; Wang, H.; Tang, H.; Liu, H. Preparation of N-Doped Activated Carbon for Catalytic Pyrolysis of 1-Chloro-1,1-difluoroethane to Vinylidene Fluoride. Chemistryselect 2018, 3, 1015–1018. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Tang, H.; Li, Y.; Liu, H. Preparation of N-doped ordered mesoporous carbon and catalytic performance for the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride. Microporous Mesoporous Mater. 2019, 275, 200–206. [Google Scholar] [CrossRef]
- Han, W.; Liu, B.; Kang, Y.; Wang, Z.; Yu, W.; Yang, H.; Liu, Y.; Lu, J.; Tang, H.; Li, Y.; et al. Experimental and DFT Mechanistic Study of Dehydrohalogenation of 1-Chloro-1,1-difluoroethane over Metal Fluorides. Ind. Eng. Chem. Res. 2019, 58, 18149–18159. [Google Scholar] [CrossRef]
- Han, W.; Zhang, C.; Wang, H.; Zhou, S.; Tang, H.; Yang, L.; Wang, Z. Sub-nano MgF2 embedded in carbon nanofibers and electrospun MgF2 nanofibers by one-step electrospinning as highly efficient catalysts for 1,1,1-trifluoroethane dehydrofluorination. Catal. Sci. Technol. 2017, 7, 6000–6012. [Google Scholar] [CrossRef]
- Han, W.; Wang, H.; Liu, B.; Li, X.; Tang, H.; Li, Y.; Liu, H. PVDF mediated fabrication of freestanding AlF3 sub-microspheres: Facile and controllable synthesis of alpha, beta and theta-AlF3. Mater. Chem. Phys. 2020, 240. [Google Scholar] [CrossRef]
- Liu, B.; Han, W.; Li, X.; Li, L.; Tang, H.; Lu, C.; Li, Y.; Li, X. Quasi metal organic framework with highly concentrated Cr2O3 molecular clusters as the efficient catalyst for dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Appl. Catal. B Environ. 2019, 257. [Google Scholar] [CrossRef]
- Calvo, B.; Marshall, C.P.; Krahl, T.; Krohnert, J.; Trunschke, A.; Scholz, G.; Braun, T.; Kemnitz, E. Comparative study of the strongest solid Lewis acids known: ACF and HS-AlF3. Dalton Trans. 2018, 47, 16461–16473. [Google Scholar] [CrossRef]
- Fang, X.-X.; Wang, Y.; Jia, W.-Z.; Song, J.-D.; Wang, Y.-J.; Luo, M.-F.; Lu, J.-Q. Dehydrofluorination of 1, 1, 1, 3, 3-pentafluoropropane over C-AlF3 composite catalysts: Improved catalyst stability by the presence of pre-deposited carbon. Appl. Catal. Gen. 2019, 576, 39–46. [Google Scholar] [CrossRef]
- Teinz, K.; Wuttke, S.; Boerno, F.; Eicher, J.; Kemnitz, E. Highly selective metal fluoride catalysts for the dehydrohalogenation of 3-chloro-1,1,1,3-tetrafluorobutane. J. Catal. 2011, 282, 175–182. [Google Scholar] [CrossRef]
- Meissner, G.; Dirican, D.; Jager, C.; Braun, T.; Kemnitz, E. Et3GeH versus Et3SiH: Controlling reaction pathways in catalytic C-F bond activations at a nanoscopic aluminum chlorofluoride. Catal. Sci. Technol. 2017, 7, 3348–3354. [Google Scholar] [CrossRef]
- Krahl, T.; Kemnitz, E. The very strong solid Lewis acids aluminium chlorofluoride (ACF) and bromofluoride (ABF)—Synthesis, structure, and Lewis acidity. J. Fluor. Chem. 2006, 127, 663–678. [Google Scholar] [CrossRef]
- Yu, Y.; Jia, D.Z.; Ge, W.W.; Jin, C.F.; Xin, X.Q. Syhthesis of inorganic nano-materials by solid state reaction at low-heating temperatures. Chin. J. Inorg. Chem. 2004, 20, 881–888. [Google Scholar]
- Liu, X.H.; Yu, L. Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Mater. Lett. 2004, 58, 1327–1330. [Google Scholar] [CrossRef]
- Yu, X.H.; Li, F.; Ye, X.R.; Xin, X.Q.; Xue, Z.L. Synthesis of cerium(IV) oxide ultrafine particles by solid-state reactions. J. Am. Ceram. Soc. 2000, 83, 964–966. [Google Scholar] [CrossRef]
- Sun, Z.P.; Liu, L.; Zhang, L.; Jia, D.Z. Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology 2006, 17, 2266–2270. [Google Scholar] [CrossRef]
- Wang, X.L.; Liu, Z.Q.; Stevens-Kalceff, M.A.; Riesen, H. Mechanochemical Preparation of Nanocrystalline BaFCl Doped with Samarium in the 2+Oxidation State. Inorg. Chem. 2014, 53, 8839–8841. [Google Scholar] [CrossRef]
- Hagemann, H.; D’Anna, V.; Daku, M.L.; Kubel, F. Crystal Chemistry in the Barium Fluoride Chloride System. Cryst. Growth Des. 2012, 12, 1124–1131. [Google Scholar] [CrossRef]
- Chialanza, M.R.; Schneider, J.F.; Keuchkerian, R.; Romero, M.; Faccio, R.; Olivera, A.; Pereira, H.B. Structural analysis of oxyfluoride borate glass and BaF2 crystallization from phase separation. J. Am. Ceram. Soc. 2020, 103, 3126–3137. [Google Scholar] [CrossRef]
- Saowadee, N.; Agersted, K.; Bowen, J.R. Lattice constant measurement from electron backscatter diffraction patterns. J. Microsc. 2017, 266, 200–210. [Google Scholar] [CrossRef]
- Radmilovic, V.; Ophus, C.; Marquis, E.A.; Rossell, M.D.; Tolley, A.; Gautam, A.; Asta, M.; Dahmen, U. Highly monodisperse core-shell particles created by solid-state reactions. Nat. Mater. 2011, 10, 710–715. [Google Scholar] [CrossRef]
- Lan, C.; Hong, K.Q.; Wang, W.Z.; Wang, G.H. Synthesis of ZnS nanorods by annealing precursor ZnS nanoparticles in NaCl flux. Solid State Commun. 2003, 125, 455–458. [Google Scholar] [CrossRef]
- Li, F.; Yu, X.H.; Pan, H.J.; Wang, M.L.; Xin, X.Q. Syntheses of MO2 (M = Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature. Solid State Sci. 2000, 2, 767–772. [Google Scholar] [CrossRef]
- Mao, W.; Bai, Y.; Wang, B.; Wang, W.; Ma, H.; Qin, Y.; Li, C.; Lu, J.; Liu, Z.W. A facile sol-gel synthesis of highly active nano alpha-aluminum fluoride catalyst for dehydrofluorination of hydrofluorocarbons. Appl. Catal. B Environ. 2017, 206, 65–73. [Google Scholar] [CrossRef]
- Jia, Z.H.; Mao, W.; Bai, Y.B.; Wang, B.; Ma, H.; Li, C.; Lu, J. Hollownano-MgF2 supported catalysts: Highly active and stable in gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Appl. Catal. B Environ. 2018, 238, 599–608. [Google Scholar] [CrossRef]
- Mozafari, M.; Moztarzadeh, F.; Tahriri, M. Green synthesis and characterisation of spherical PbS luminescent micro- and nanoparticles via wet chemical technique. Adv. Appl. Ceram. 2011, 110, 30–34. [Google Scholar] [CrossRef]
- Drits, V.; Srodon, J.; Eberl, D.D. XRD measurement of mean crystalline thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation. Clay Min. 1997, 45, 461–475. [Google Scholar] [CrossRef]
- Kesavamoorthy, R.; Sundarakkannan, B.; Rao, G.V.N.; Sastry, V.S. Thermal effect on BaFCl: High-temperature X-ray diffraction. Thermochim. Acta 1997, 307, 185–195. [Google Scholar] [CrossRef]
- Sundarakkannan, B.; Kesavamoorthy, R.; Nisha, J.A.; Sridharan, V.; Sivakumar, T. Antiferroelectric-to-paraelectric transition in BaFCl. Phys. Rev. B 1998, 57, 11632–11638. [Google Scholar] [CrossRef]
- Han, W.F.; Wang, Z.K.; Li, X.J.; Tang, H.D.; Xi, M.; Li, Y.; Liu, H.Z. Solution combustion synthesis of nano-chromia as catalyst for the dehydrofluorination of 1,1-difluoroethane. J. Mater. Sci. 2016, 51, 11002–11013. [Google Scholar] [CrossRef]
- Andrade, A.B.; Ferreira, N.S.; Valerio, M.E.G. Particle size effects on structural and optical properties of BaF2 nanoparticles. RSC Adv. 2017, 7, 26839–26848. [Google Scholar] [CrossRef]
- Au, C.T.; Chen, K.D.; Ng, C.F. Characterization of BaX2/Gd2O3 (X = F, Cl, Br) catalysts for the oxidative coupling of methane. Appl. Catal. Gen. 1998, 171, 283–291. [Google Scholar] [CrossRef]
- Laws, P.A.; Hayley, B.D.; Anthony, L.M.; Roscoe, J.M. Kinetic study of the mechanism of the low-temperature pyrolysis of vinyl bromide. J. Phys. Chem. 2001, 105, 1830–1837. [Google Scholar] [CrossRef]
- Kunsagi-Mate, S.; Vegh, E.; Nagy, G.; Kollar, L. Influence of the molecular environment on the three-center versus four-center elimination of HBr from vinyl bromide: A theoretical approach. J. Phys. Chem. 2002, 106, 6319–6324. [Google Scholar] [CrossRef]
- Hu, P.; Cao, Y.; Jia, D.; Li, Q.; Liu, R. Engineering the metathesis and oxidation-reduction reaction in solid state at room temperature for nanosynthesis. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Al-Terkawi, A.A.; Scholz, G.; Emmerling, F.; Kemnitz, E. Mechanochemical Synthesis, Characterization, and Structure Determination of New Alkaline Earth Metal-Tetrafluoroterephthalate Frameworks. Cryst. Growth Des. 2016, 16, 1923–1933. [Google Scholar] [CrossRef]
Catalyst | Amounts, mol | ||
---|---|---|---|
Ba(OH)2·8H2O | NH4F | NH4Cl | |
BaF2 | 0.1 | 0.2 | 0 |
BaCl0.05F1.95 | 0.1 | 0.195 | 0.005 |
BaCl0.1F1.9 | 0.1 | 0.19 | 0.01 |
BaCl0.2F1.8 | 0.1 | 0.18 | 0.02 |
BaCl0.5F1.5 | 0.1 | 0.15 | 0.05 |
BaClF | 0.1 | 0.1 | 0.1 |
BaCl2 | 0.1 | 0 | 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Han, W.; Liu, Y.; Lu, J.; Yang, H.; Liu, B.; Tang, H.; Chen, A.; Li, Y. Facile Preparation of BaClxFy for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride. Catalysts 2020, 10, 377. https://doi.org/10.3390/catal10040377
Yu W, Han W, Liu Y, Lu J, Yang H, Liu B, Tang H, Chen A, Li Y. Facile Preparation of BaClxFy for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride. Catalysts. 2020; 10(4):377. https://doi.org/10.3390/catal10040377
Chicago/Turabian StyleYu, Wei, Wenfeng Han, Yongnan Liu, Jiaqin Lu, Hong Yang, Bing Liu, Haodong Tang, Aimin Chen, and Ying Li. 2020. "Facile Preparation of BaClxFy for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride" Catalysts 10, no. 4: 377. https://doi.org/10.3390/catal10040377
APA StyleYu, W., Han, W., Liu, Y., Lu, J., Yang, H., Liu, B., Tang, H., Chen, A., & Li, Y. (2020). Facile Preparation of BaClxFy for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride. Catalysts, 10(4), 377. https://doi.org/10.3390/catal10040377