A Zn-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Cathode with Enhanced ORR Catalytic Activity for SOFCs
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Powder synthesis
3.2. Cell preparation
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shao, Z.; Haile, S.M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 2004, 431, 170–173. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Y.; Hu, X.; Sun, L.; Ling, Y. High Performance Proton Conducting Solid Oxide Fuel Cells with a Layered Perovskite GdBaCuCoO5+x Cathode. Electron. Mater. Lett. 2018, 14, 147–153. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.; Dong, Y.; Mao, S.S.; Cheng, M. A High-Performance, Nanostructured Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathode for Solid-Oxide Fuel Cells. Adv. Energy Mater. 2011, 1, 343–346. [Google Scholar] [CrossRef]
- Kim, J.; Choi, S.; Jun, A.; Jeong, H.Y.; Shin, J.; Kim, G. Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ. ChemSusChem 2014, 7, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Dong, X.; Xiao, G.; Zhao, F.; Chen, F. A Novel Electrode Material for Symmetrical SOFCs. Adv. Mater. 2010, 22, 5478–5482. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Ding, H.; Dong, Y.; Wang, S.; Zhang, X.; Fang, D.; Meng, G. Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ –BaZr0.1Ce0.7Y0.2O3-δ composite cathode. J. Power Sources 2009, 186, 58–61. [Google Scholar] [CrossRef]
- Kan, W.H.; Samson, A.J.; Thangadurai, V. Trends in electrode development for next generation solid oxide fuel cells. J. Mater. Chem. A 2016, 4, 17913–17932. [Google Scholar] [CrossRef]
- Qiu, P.; Li, J.; Jia, L.; Chi, B.; Pu, J.; Li, J.; Chen, F. LaCoO3-δ coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for intermediate temperature solid oxide fuel cells. Electrochim. Acta 2019, 319, 981–989. [Google Scholar] [CrossRef]
- Li, M.; Zhao, M.; Li, F.; Zhou, W.; Peterson, V.K.; Xu, X.; Shao, Z.; Gentle, I.; Zhu, Z. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nat. Commun. 2017, 8, 13990. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.; Fronzi, M.; Wang, X.; Bi, L.; Traversa, E. Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 2019, 7, 20624–20632. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Zhang, W.; Wei, Z.; Guan, K.; Meng, J.; Meng, F.; Meng, J.; Liu, X. Enhancing catalysis activity of La0.6Sr0.4Co0.8Fe0.2O3-δ cathode for solid oxide fuel cell by a facile and efficient impregnation process. Int. J. Hydrogen Energy 2019, 44, 13757–13767. [Google Scholar] [CrossRef]
- Park, Y.M.; Kim, H. Porous Gd-doped ceria barrier layer on solid oxide fuel cell with Sm0.5Sr0.5CoO3−δ Cathodes. Ceram. Int. 2013, 39, 2037–2043. [Google Scholar] [CrossRef]
- Tarancón, A.; Burriel, M.; Santiso, J.; Skinner, S.J.; Kilner, J.A. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 2010, 20, 3799–3813. [Google Scholar] [CrossRef]
- Wei, K.; Li, N.; Wu, Y.; Song, W.; Wang, X.; Guo, L.; Khan, M.; Wang, S.; Zhou, F.; Ling, Y. Characterization and optimization of highly active and Ba-deficient BaCo0.4Fe0.4Zr0.1Y0.1O3-δ-based cathode materials for protonic ceramics fuel cells. Ceram. Int. 2019, 45, 18583–18591. [Google Scholar] [CrossRef]
- Zhou, W.; Ran, R.; Shao, Z. Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review. J. Power Sources 2009, 192, 231–246. [Google Scholar] [CrossRef]
- Wei, B.; Lv, Z.; Huang, X.; Miao, J.; Sha, X.; Xin, X.; Su, W. Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ (0.3≤x≤0.7). J. Eur. Ceram. Soc. 2006, 26, 2827–2832. [Google Scholar] [CrossRef]
- Chen, Z.; Ran, R.; Zhou, W.; Shao, Z.; Liu, S. Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y=0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane. Electrochim. Acta 2007, 52, 7343–7351. [Google Scholar] [CrossRef]
- Liu, B.; Jia, L.; Ouyang, R.; Li, J. Preparation and Electrochemical Properties of La0.8Sr0.2MnO3-σ Coated Ba0.5Sr0.5Co0.8Fe0.2O3-σ Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. J. Ceram. 2019, 40, 99–102. (In Chinese) [Google Scholar]
- Liu, B.; Zhang, Y.; Zhang, L. Oxygen reduction mechanism at Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for solid oxide fuel cell. Int. J. Hydrogen Energy 2009, 34, 1008–1014. [Google Scholar] [CrossRef]
- Zhang, X.; Motuzas, J.; Liu, S.; da Costa, J.C.D. Zinc-doped BSCF perovskite membranes for oxygen separation. Sep. Purif. Technol. 2017, 189, 399–404. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, G.; Liu, Z.; Chu, Z.; Jin, W.; Xu, N. Unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation. Adv. Mater. 2016, 28, 3511–3515. [Google Scholar] [CrossRef] [PubMed]
- Leo, A.; Smart, S.; Liu, S.; da Costa, J.C.D. High performance perovskite hollow fibres for oxygen separation. J. Membr. Sci. 2011, 368, 64–68. [Google Scholar] [CrossRef]
- Qiu, P.; Wang, A.; Li, J.; Li, Z.; Jia, L.; Chi, B.; Pu, J.; Li, J. Promoted CO2-poisoning resistance of La0.8Sr0.2MnO3-coated Ba0.5Sr0.5Co0.8Fe0.2O3 cathode for intermediate temperature solid oxide fuel cells. J. Power Sources 2016, 327, 408–413. [Google Scholar] [CrossRef]
- Gasparyan, H.; Claridge, J.B.; Rosseinsky, M.J. Oxygen permeation and stability of Mo-substituted BSCF membranes. J. Mater. Chem. A 2015, 3, 65–18272. [Google Scholar] [CrossRef]
- Fang, S.M.; Yoo, C.-Y.; Bouwmeester, H.J.M. Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3 − δ membranes. Solid State Ionics 2011, 195, 1–6. [Google Scholar] [CrossRef]
- Wang, F.; Nakamura, T.; Yashiro, K.; Mizusaki, J.; Amezawa, K. Effect of Nb doping on the chemical stability of BSCF-based solid solutions. Solid State Ionics 2014, 262, 719–723. [Google Scholar] [CrossRef]
- Ravkina, O.; Klande, T.; Feldhoff, A. Investigation of Zr-doped BSCF perovskite membrane for oxygen separation in the intermediate temperature range. J. Solid State Chem. 2013, 201, 101–106. [Google Scholar] [CrossRef]
- Chen, X.; Liu, H.; Wei, Y.; Caro, J.; Wang, H. A novel zincum-doped perovskite-type ceramic membrane for oxygen separation. J. Alloy. Compd. 2009, 484, 386–389. [Google Scholar] [CrossRef]
- Almar, L.; Störmer, H.; Meffert, M.; Szász, J.; Wankmüller, F.; Gerthsen, D.; Ivers-Tiffée, E. Improved Phase Stability and CO2 Poisoning Robustness of Y-Doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ SOFC Cathodes at Intermediate Temperatures. ACS Appl. Energy Mater. 2018, 1, 1316–1327. [Google Scholar] [CrossRef]
- Meffert, M.; Unger, L.-S.; Störmer, H.; Sigloch, F.; Wagner, S.F.; Ivers-Tiffée, E.; Gerthsen, D. The effect of B-site Y substitution on cubic phase stabilization in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ. J. Am. Ceram. Soc. 2019, 102, 4929–4942. [Google Scholar] [CrossRef]
- Wang, H.; Tablet, C.; Feldhoff, A.; Caro, J. A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3−δ. Adv. Mater. 2005, 17, 1785–1788. [Google Scholar] [CrossRef]
- Zeng, P.; Chen, Z.; Zhou, W.; Gu, H.; Shao, Z.; Liu, S. Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite as oxygen semi-permeable membrane. J. Membr. Sci. 2007, 291, 148–156. [Google Scholar] [CrossRef]
- Shiiba, H.; Bishop, C.L.; Rushton, M.J.D.; Nakayama, M.; Nogami, M.; Kilner, J.A.; Grimes, R.W. Effect of A-site cation disorder on oxygen diffusion in perovskite-type Ba0.5Sr0.5Co1-xFexO2.5. J. Mater. Chem. A 2013, 1, 10345–10352. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Tang, L. X-ray photoelectron spectroscopic studies of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for solid oxide fuel cells. Int. J. Hydrogen Energy 2009, 34, 435–439. [Google Scholar] [CrossRef]
- Cui, X.; O’Hayre, R.; Pylypenko, S.; Zhang, L.; Zeng, L.; Zhang, X.; Hua, Z.; Chen, H.; Shi, J. Fabrication of a mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite as a low-cost and efficient catalyst for oxygen reduction. Dalton Trans. 2017, 46, 13903–13911. [Google Scholar] [CrossRef]
- Ungera, L.-S.; Niedrig, C.; Wagner, S.F.; Menesklou, W.; Baumann, S.; Meulenberg, W.A.; Ivers-Tiffée, E. Yttrium doping of Ba0.5Sr0.5Co0.8Fe0.2O3-δ part I: Influence on oxygen permeation, electrical properties, reductive stability, and lattice parameters. J. Eur. Ceram. Soc. 2018, 38, 2378–2387. [Google Scholar] [CrossRef]
- Wei, B.; Lü, Z.; Li, S.; Liu, Y.; Liu, K.; Su, W. Thermal and Electrical Properties of New Cathode Material Ba0.5Sr0.5Co0.8Fe0.2O3 − δ for Solid Oxide Fuel Cells. Electrochem. Solid-State Lett. 2005, 8, A428–A431. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20 (Version 4.1); US Department of Commerce: Washington, DC, USA, 2012. [CrossRef]
- Kao, W.-X.; Lee, M.-C.; Lin, T.-N.; Wang, C.-H.; Chang, Y.-C. Fabrication and characterization of a Ba0.5Sr0.5Co0.8Fe0.2O3 − δ-Gadolinia-doped ceria cathode for an anode-supported solid-oxide fuel cell. J. Power Sources 2010, 195, 2220–2223. [Google Scholar] [CrossRef]
- Li, J.; Yang, C.; Liu, M. High performance intermediate temperature solid oxide fuel cells with Ba0.5Sr0.5Co0.8Fe0.1Nb0.1O3-δ as cathode. Ceram. Int. 2016, 42, 19397–19401. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, M.; Yan, A.; Hou, Z.; Dong, Y.; Chong, Y.; Cheng, M.; Yang, W. Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a cathode for IT-SOFCs with a GDC interlayer. J. Power Sources 2006, 160, 57–64. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, C.; Xiong, B.; Han, M.; Chen, F. BaCo0.7Fe0.2Nb0.1O3−δ as cathode material for intermediate temperature solid oxide fuel cells. J. Power Sources 2011, 196, 9164–9168. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Zhang, X.; Wang, W.; Zhang, D.; Jiang, Y.; Zhou, X.; Lin, B. A Zn-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Cathode with Enhanced ORR Catalytic Activity for SOFCs. Catalysts 2020, 10, 235. https://doi.org/10.3390/catal10020235
Zeng Q, Zhang X, Wang W, Zhang D, Jiang Y, Zhou X, Lin B. A Zn-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Cathode with Enhanced ORR Catalytic Activity for SOFCs. Catalysts. 2020; 10(2):235. https://doi.org/10.3390/catal10020235
Chicago/Turabian StyleZeng, Qiannan, Xiaozhen Zhang, Wei Wang, Dandan Zhang, Yuhua Jiang, Xiaojian Zhou, and Bin Lin. 2020. "A Zn-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Cathode with Enhanced ORR Catalytic Activity for SOFCs" Catalysts 10, no. 2: 235. https://doi.org/10.3390/catal10020235
APA StyleZeng, Q., Zhang, X., Wang, W., Zhang, D., Jiang, Y., Zhou, X., & Lin, B. (2020). A Zn-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Cathode with Enhanced ORR Catalytic Activity for SOFCs. Catalysts, 10(2), 235. https://doi.org/10.3390/catal10020235