Direct Hydroxylation of Phenol to Dihydroxybenzenes by H2O2 and Fe-based Metal-Organic Framework Catalyst at Room Temperature
Abstract
1. Introduction
2. Results and discussion
2.1. Catalyst Characterization
2.2. Hydroxylation of Phenol
2.2.1. Influence of Operating Conditions
2.2.2. Stability and performance in continuous fixed-bed reactor
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Catalyst
3.3. Characterization of Catalyst
3.4. Hydroxylation Performance
3.5. Analytical Methods
- The conversion (X) of phenol and H2O2,
- The phenol selectivity (S),
- The phenol yield (Y),
- The effective conversion of H2O2 is expressed by,
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Romano, U.; Ricci, M. Industrial Applications. In Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications; Clerici, M.G., Kholdeeva, O.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 451–506. ISBN 9780470915523. [Google Scholar]
- Karakhanov, E.A.; Maximov, A.L.; Kardasheva, Y.S.; Skorkin, V.A.; Kardashev, S.V.; Ivanova, E.A.; Lurie-Luke, E.; Seeley, J.A.; Cron, S.L. Hydroxylation of Phenol by Hydrogen Peroxide Catalyzed by Copper(II) and Iron(III) Complexes: The Structure of the Ligand and the Selectivity of ortho-Hydroxylation. Ind. Eng. Chem. Res. 2010, 49, 4607–4613. [Google Scholar] [CrossRef]
- Li, S.; Li, G.; Li, G.; Wu, G.; Hu, C. Microporous carbon molecular sieve as a novel catalyst for the hydroxylation of phenol. Microporous Mesoporous Mater. 2011, 143, 22–29. [Google Scholar] [CrossRef]
- Bellussi, G.; Perego, C. Phenol Hydroxylation and Related Oxidations. In Handbook of Heterogeneous Catalysis; Major Reference Works; Wiley-VCH verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; pp. 3538–3547. ISBN 9783527610044. [Google Scholar]
- Perego, C.; Millini, R. Porous materials in catalysis: challenges for mesoporous materials. Chem. Soc. Rev. 2013, 42, 3956–3976. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lu, G.; Guo, Y.; Guo, Y.; Wang, J. Deactivation and regeneration of TS-1/diatomite catalyst for hydroxylation of phenol in fixed-bed reactor. Chem. Eng. J. 2005, 108, 187–192. [Google Scholar] [CrossRef]
- Poza-Nogueiras, V.; Rosales, E.; Pazos, M.; Sanroman, M.A. Current advances and trends in electro-Fenton process using heterogeneous catalysts – A review. Chemosphere 2018, 201, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla, A.; Casas, J.A.; Rodriguez, J. Hydrogen peroxide-promoted-CWAO of phenol with activated carbon. Appl. Catal. B: Environ. 2010, 93, 339–345. [Google Scholar] [CrossRef]
- Kavitha, V.; Palanivelu, K. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 2004, 55, 1235–1243. [Google Scholar] [CrossRef]
- Choi, J.-S.; Yoon, S.-S.; Jang, S.-H.; Ahn, W.-S. Phenol hydroxylation using Fe-MCM-41 catalysts. Catal. Today 2006, 111, 280–287. [Google Scholar] [CrossRef]
- Martínez, F.; Leo, P.; Orcajo, G.; Díaz-García, M.; Sanchez-Sanchez, M.; Calleja, G. Sustainable Fe-BTC catalyst for efficient removal of mehylene blue by advanced fenton oxidation. Catal. Today 2018, 313, 6–11. [Google Scholar] [CrossRef]
- Li, X.; Wang, B.; Cao, Y.; Zhao, S.; Wang, H.; Feng, X.; Zhou, J.; Ma, X. Water Contaminant Elimination Based on Metal–Organic Frameworks and Perspective on Their Industrial Applications. ACS Sustain. Chem. Eng. 2019, 7, 4548–4563. [Google Scholar] [CrossRef]
- Bhattacharjee, S. Hydroxylation of benzene and toluene by heterogeneous iron metal-organic framework (Fe-BTC). Indian J. Chem. -Section A 2018, 57, 778–783. [Google Scholar]
- Zhen, W.; Li, B.; Lu, G.; Ma, J. Enhancing catalytic activity and stability for CO 2 methanation on Ni@MOF-5 via control of active species dispersion. Chem. Commun. 2015, 51, 1728–1731. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhao, H.; Cao, T.; Qian, L.; Wang, Y.; Zhao, G. Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J. Mol. Catal. A: Chem. 2015, 400, 81–89. [Google Scholar] [CrossRef]
- Gao, Y.; Li, S.; Li, Y.; Yao, L.; Zhang, H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Appl. Catal. B: Environ. 2017, 202, 165–174. [Google Scholar] [CrossRef]
- Tsai, F.-C.; Xia, Y.; Ma, N.; Shi, J.-J.; Jiang, T.; Chiang, T.-C.; Zhang, Z.-C.; Tsen, W.-C. Adsorptive removal of acid orange 7 from aqueous solution with metal–organic framework material, iron (III) trimesate. Desalin. Water Treat. 2016, 57, 3218–3226. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, M.; Li, K.; Zuo, Y.; Han, Y.; Wang, J.; Song, C.; Zhang, G.; Guo, X. Facile synthesis of Fe-containing metal–organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature. CrystEngComm 2015, 17, 7160–7168. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Alvaro, M.; Horcajada, P.; Gibson, E.; Vishnuvarthan, M.; Vimont, A.; Greneche, J.-M.; Serre, C.; Daturi, M.; Garcia, H. Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catal. 2012, 2, 2060–2065. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172. [Google Scholar] [CrossRef]
- Kempahanumakkagari, S.; Vellingiri, K.; Deep, A.; Kwon, E.E.; Bolan, N.; Kim, K.-H. Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Co-ord. Chem. Rev. 2018, 357, 105–129. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Li, D.-S.; Bu, X.; Feng, P. Metal-Organic Frameworks for Separation. Adv. Mater. 2018, 30, 1705189. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 2018, 21, 108–121. [Google Scholar] [CrossRef]
- Cheng, M.; Lai, C.; Liu, Y.; Zeng, G.; Huang, D.; Zhang, C.; Qin, L.; Hu, L.; Zhou, C.; Xiong, W. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Co-ord. Chem. Rev. 2018, 368, 80–92. [Google Scholar] [CrossRef]
- Jian, L.; Chen, C.; Lan, F.; Deng, S.; Xiao, W.; Zhang, N. Catalytic activity of unsaturated coordinated Cu-MOF to the hydroxylation of phenol. Solid State Sci. 2011, 13, 1127–1131. [Google Scholar] [CrossRef]
- Xiang, B.-L.; Fu, L.; Li, Y.; Liu, Y. A New Fe(III)/MOF-5(Ni) Catalyst for Highly Selective Synthesis of Catechol from Phenol and Hydrogen Peroxide. Chem. 2019, 4, 1502–1509. [Google Scholar] [CrossRef]
- Xiang, B.-L.; Fu, L.; Li, Y.; Liu, Y. Preparation of Fe(II)/MOF-5 Catalyst for Highly Selective Catalytic Hydroxylation of Phenol by Equivalent Loading at Room Temperature. J. Chem. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Choi, J.-S.; Yang, S.-T.; Choi, S.B.; Kim, J.; Ahn, W.-S. Solvothermal synthesis of Fe-MOF-74 and its catalytic properties in phenol hydroxylation. J. Nanosci. Nanotechnol. 2010, 10, 135–141. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, M.; De Asua, I.; Ruano, D.; Diaz, K. Direct Synthesis, Structural Features, and Enhanced Catalytic Activity of the Basolite F300-like Semiamorphous Fe-BTC Framework. Cryst. Growth Des. 2015, 15, 4498–4506. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodríguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Dorosti, F.; Alizadehdakhel, A. Chemical Engineering Research and Design Fabrication and investigation of PEBAX / Fe-BTC, a high permeable and CO 2 selective mixed matrix membrane. Chem. Eng. Res. Des. 2017, 136, 119–128. [Google Scholar] [CrossRef]
- Quintanilla, A.; Casas, J.; Miranzo, P.; Osendi, M.; Belmonte, M. 3D-Printed Fe-doped silicon carbide monolithic catalysts for wet peroxide oxidation processes. Appl. Catal. B: Environ. 2018, 235, 246–255. [Google Scholar] [CrossRef]
- Centi, G.; Cavani, F.; Trifirò, F. Selective Oxidation by Heterogeneous Catalysis; Springer Science & Business Media: New York, NY, USA, 2001; ISBN 1461541751. [Google Scholar]
- Liu, H.; Lu, G.; Guo, Y.; Guo, Y.; Wang, J. Chemical kinetics of hydroxylation of phenol catalyzed by TS-1/diatomite in fixed-bed reactor. Chem. Eng. J. 2006, 116, 179–186. [Google Scholar] [CrossRef]
- Gao, C.; Chen, S.; Quan, X.; Yu, H.; Zhang, Y. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants. J. Catal. 2017, 356, 125–132. [Google Scholar] [CrossRef]
- Eisenberg, G. Colorimetric Determination of Hydrogen Peroxide. Ind. Eng. Chem. Anal. Ed. 1943, 15, 327–328. [Google Scholar] [CrossRef]
Entry | T (°C) | PHENOL :H2O2 | WCAT (g) | tINDUCTION (min) | CONVERSION (%) | SELECT.(%) | YIELD (%) | Felix (ppm) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
tR (min) | PHENOL | H2O2 | HQ | CTL | HQ+CTL | ||||||
1 | 50 | 1:1 | 0.01 | 0 | 10 | 52.3 | 100 | 33.0 | 41.7 | 39.7 | 26 |
2 | 25 | 1:1 | 0.01 | 25 | 60 | 51.0 | 68.5 | 20.3 | 37.4 | 29.4 | 17 |
3 | 20 | 1:1 | 0.01 | 25 | 60 | 29.4 | 31.4 | 17.4 | 27.5 | 13.2 | 0.4 |
4 | 20 | 1:1.8 | 0.01 | 25 | 60 | 37.0 | 14.8 | 18.0 | 29.5 | 17.6 | 1.2 |
5 | 20 | 1:0.5 | 0.01 | 25 | 60 | 26.0 | 34.2 | 25.0 | 32.7 | 15.0 | 0 |
6 | 20 | 1:1.8 | 0.01 | 25 | 180 | 61.7 | 55.0 | 24.7 | 36.7 | 37.9 | 10 |
7 | 20 | 1:1 | 0.01 | 25 | 180 | 50.7 | 78.6 | 23.6 | 35.0 | 29.7 | 1.6 |
8 | 20 | 1:0.5 | 0.01 | 25 | 180 | 37.8 | 93.9 | 25.2 | 39.0 | 24.3 | 2.0 |
9 | 20 | 1:1 | 0.02 | 20 | 60 | 34.1 | 46.2 | 30.2 | 44.2 | 25.4 | 2.0 |
10 | 20 | 1:1 | 0.05 | 15 | 60 | 52.2 | 95.2 | 35.0 | 44.3 | 41.4 | 24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar-Aguilar, A.D.; Vega, G.; Casas, J.A.; Vega-Díaz, S.M.; Tristan, F.; Meneses-Rodríguez, D.; Belmonte, M.; Quintanilla, A. Direct Hydroxylation of Phenol to Dihydroxybenzenes by H2O2 and Fe-based Metal-Organic Framework Catalyst at Room Temperature. Catalysts 2020, 10, 172. https://doi.org/10.3390/catal10020172
Salazar-Aguilar AD, Vega G, Casas JA, Vega-Díaz SM, Tristan F, Meneses-Rodríguez D, Belmonte M, Quintanilla A. Direct Hydroxylation of Phenol to Dihydroxybenzenes by H2O2 and Fe-based Metal-Organic Framework Catalyst at Room Temperature. Catalysts. 2020; 10(2):172. https://doi.org/10.3390/catal10020172
Chicago/Turabian StyleSalazar-Aguilar, Alma D., Gonzalo Vega, Jose A. Casas, Sofía Magdalena Vega-Díaz, Ferdinando Tristan, David Meneses-Rodríguez, Manuel Belmonte, and Asunción Quintanilla. 2020. "Direct Hydroxylation of Phenol to Dihydroxybenzenes by H2O2 and Fe-based Metal-Organic Framework Catalyst at Room Temperature" Catalysts 10, no. 2: 172. https://doi.org/10.3390/catal10020172
APA StyleSalazar-Aguilar, A. D., Vega, G., Casas, J. A., Vega-Díaz, S. M., Tristan, F., Meneses-Rodríguez, D., Belmonte, M., & Quintanilla, A. (2020). Direct Hydroxylation of Phenol to Dihydroxybenzenes by H2O2 and Fe-based Metal-Organic Framework Catalyst at Room Temperature. Catalysts, 10(2), 172. https://doi.org/10.3390/catal10020172