A Trimetallic Pt2NiCo/C Electrocatalyst with Enhanced Activity and Durability for Oxygen Reduction Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties of the Pt2NiCo/C Nanocatalyst
2.2. Catalytic Activity for the ORR
2.3. Catalytic Stability for the ORR
3. Materials and Methods
3.1. Reagents
3.2. Synthesis of Pt2NiCo Nanoparticles
3.3. Preparation of the Pt2NiCo/C Nanocatalyst
3.4. Physical Characterization
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brouzgou, A.; Song, S.Q.; Tsiakaras, P. Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges and prospects. Appl. Catal. B 2012, 127, 371–388. [Google Scholar] [CrossRef]
- Sharaf, O.Z.; Orhan, M.F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sust. Energ. Rev. 2014, 32, 810–853. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energ. 2011, 88, 981–1007. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Martínez, H.; Tellez-Cruz, M.M.; Guerrero-Gutiérrez, O.X.; Ramírez-Herrera, C.A.; Salinas-Juárez, M.G.; Velázquez-Osorio, A.; Solorza-Feria, O. Mexican contributions for the improvement of electrocatalytic properties for the oxygen reduction reaction in PEM fuel cells. Int. J. Hydrogen Energy 2019, 44, 477–491. [Google Scholar] [CrossRef]
- Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. [Google Scholar] [CrossRef]
- Jacob, T. The mechanism of forming H2O from H2 and O2 over a Pt catalyst via direct oxygen reduction. Fuel Cells 2006, 6, 159–181. [Google Scholar] [CrossRef]
- Yin, H.-J.; Zhou, J.-H.; Zhang, Y.-W. Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: Advances and perspectives. Inorg. Chem. Front. 2019, 6, 2582–2618. [Google Scholar] [CrossRef]
- Huang, S.; Shan, A.; Wang, R. Low Pt alloyed nanostructures for fuel cells catalysts. Catalysts 2018, 8, 538. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857. [Google Scholar] [CrossRef]
- Shao, M.; Chang, Q.; Dodelet, J.P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Pukazhselvan, D.; Da Silva, E.L.; Santos, M.C.; Meng, L.; Ramasamy, D.; Jothi, S.; Graça, V.; Shi, S. Highly branched PtCu nanodandelion with high activity for oxygen reduction reaction. Int. J. Hydrogen Energy 2019, 44, 174–179. [Google Scholar] [CrossRef]
- Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Zhang, X.; Zhu, W.; He, K.; Su, D.; Mendoza-Garcia, A.; Ho, S.F.; Lu, G.; Sun, S. Nanocatalyst superior to Pt for oxygen reduction reactions: The case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 2014, 136, 15026–15033. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Martínez, H.; Tellez-Cruz, M.M.; Rojas-Chávez, H.; Ramírez-Herrera, C.A.; Calaminici, P.; Solorza-Feria, O. NiPdPt trimetallic nanoparticles as efficient electrocatalysts towards the oxygen reduction reaction. Int. J. Hydrogen Energy 2019, 44, 12463–12469. [Google Scholar] [CrossRef]
- Loukrakpam, R.; Wanjala, B.N.; Yin, J.; Fang, B.; Luo, J.; Shao, M.; Protsailo, L.; Kawamura, T.; Chen, Y.; Petkov, V.; et al. Structural and electrocatalytic properties of PtIrCo/C catalysts for oxygen reduction reaction. ACS Catal. 2011, 1, 562–572. [Google Scholar] [CrossRef]
- Jia, Q.; Zhao, Z.; Cao, L.; Li, J.; Ghoshal, S.; Davies, V.; Stavitski, Y.E.; Attenkofer, K.; Liu, Z.; Li, M.; et al. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles. Nano Lett. 2018, 18, 798–804. [Google Scholar] [CrossRef]
- Antolini, E. The oxygen reduction on Pt-Ni and Pt-Ni-M catalysts for low-temperature acidic fuel cells: A review. Int. J. Energ Res. 2018, 42, 3747–3769. [Google Scholar] [CrossRef]
- Chou, S.W.; Shyue, J.J.; Chien, C.H.; Chen, C.C.; Chen, Y.Y.; Chou, P.T. Surfactant-directed synthesis of ternary nanostructures: Nanocubes, polyhedrons, octahedrons, and nanowires of PtNiFe. Their shape-dependent oxygen reduction activity. Chem. Mater. 2012, 24, 2527–2533. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Wakabayashi, R.H.; Yang, M.; Abruña, H.D.; DiSalvo, F.J. Synthesis of carbon supported ordered tetragonal pseudo-ternary Pt2M′M″ (M= Fe, Co, Ni) nanoparticles and their activity for oxygen reduction reaction. J. Power Sources 2015, 280, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yao, X.; Kang, Y.; Xia, D.; Gan, L. Rational development of structurally ordered platinum ternary intermetallic electrocatalysts for oxygen reduction reaction. Catalysts 2019, 9, 569. [Google Scholar] [CrossRef] [Green Version]
- Wanjala, B.N.; Loukrakpam, R.; Luo, J.; Njoki, P.N.; Mott, D.; Zhong, C.J.; Shao, M.; Protsailo, L.; Kawamura, T. Thermal treatment of PtNiCo electrocatalysts: Effects of nanoscale strain and structure on the activity and stability for the oxygen reduction reaction. J. Phys. Chem. C 2010, 114, 17580–17590. [Google Scholar] [CrossRef]
- Arán-Ais, R.M.; Dionigi, F.; Merzdorf, T.; Gocyla, M.; Heggen, M.; Dunin-Borkowski, R.E.; Gliech, M.; Solla-Gullón, J.; Herrero, E.; Feliu, J.M.; et al. Elemental anisotropic growth and atomic-scale structure of shape-controlled octahedral Pt-Ni-Co alloy nanocatalysts. Nano Lett. 2015, 15, 7473–7480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhao, Q.; Su, Y.; Zhang, G.; Xu, G.; Li, Y.; Liu, B.; Zheng, D.; Zhang, J. Hierarchical carbon and nitrogen adsorbed PtNiCo nanocomposites with multiple active sites for oxygen reduction and methanol oxidation reactions. J. Mat. Chem. A 2016, 4, 12296–12307. [Google Scholar] [CrossRef]
- Lokanathan, M.; Patil, I.M.; Usman, A.K.; Swami, A.; Walke, P.; Navaneethan, M.; Kakade, B. Unusual enhancement in the electroreduction of oxygen by NiCoPt by surface tunability through potential cycling. RSC Adv. 2017, 7, 11777–11785. [Google Scholar] [CrossRef] [Green Version]
- Lokanathan, M.; Patil, I.M.; Navaneethan, M.; Parey, V.; Thapa, R.; Kakade, B. Designing of stable and highly efficient ordered Pt2CoNi ternary alloy electrocatalyst: The origin of dioxygen reduction activity. Nano Energy 2018, 43, 219–227. [Google Scholar] [CrossRef]
- Lokanathan, M.; Patil, I.M.; Kakade, B. Trimetallic PtNiCo nanoflowers as efficient electrocatalysts towards oxygen reduction reaction. Int. J. Hydrogen Energy 2018, 43, 8983–8990. [Google Scholar] [CrossRef]
- Flores-Rojas, E.; Cruz-Martínez, H.; Tellez-Cruz, M.M.; Pérez-Robles, J.F.; Leyva-Ramírez, M.A.; Calaminici, P.; Solorza-Feria, O. Electrocatalysis of oxygen reduction on CoNi-decorated-Pt nanoparticles: A theoretical and experimental study. Int. J. Hydrogen Energy 2016, 41, 23301–23311. [Google Scholar] [CrossRef]
- Flores-Rojas, E.; Cruz-Martínez, H.; Rojas-Chávez, H.; Tellez-Cruz, M.M.; Reyes-Rodríguez, J.L.; Cabañas-Moreno, J.G.; Calaminici, P.; Solorza-Feria, O. A combined DFT and experimental investigation of Pt-wrapped CoNi nanoparticles for the oxygen reduction reaction. Electrocatalysis 2018, 9, 662–672. [Google Scholar] [CrossRef]
- Choi, S.I.; Xie, S.; Shao, M.; Odell, J.H.; Lu, N.; Peng, H.C.; Protsailo, L.; Guerrero, S.; Park, J.; Xia, X.; et al. Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 2013, 13, 3420–3425. [Google Scholar] [CrossRef]
- Choi, S.I.; Xie, S.; Shao, M.; Lu, N.; Guerrero, S.; Odell, J.H.; Park, J.; Wang, J.; Kim, M.J.; Xia, Y. Controlling the size and composition of nanosized Pt-Ni octahedra to optimize their catalytic activities toward the oxygen reduction reaction. ChemSusChem 2014, 7, 1476–1483. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, J.; Xuan, C.; Xiao, W.; Xia, K.; Xia, W.; Lai, C.; Xin, H.L.; Wang, D. Effects of crystal phase and composition on structurally ordered Pt-Co-Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. J. Mat. Chem. A 2018, 6, 5848–5855. [Google Scholar] [CrossRef]
- Bruker AXS. TOPAS V3: General Profile and Structure Analysis Software for Powder Diffraction Data; User manual; Bruker AXS: Karlsruhe, Germany, 2005. [Google Scholar]
- Bott-Neto, J.L.; Ticianelli, E.A. Activity and Electrochemical Stability of Pt-and Pt2Ni-α-WC/C Catalysts for the Oxygen Reduction Reaction in Acid Media. ChemElectroChem 2018, 5, 1364–1372. [Google Scholar] [CrossRef]
- Lindström, R.W.; Kortsdottir, K.; Wesselmark, M.; Oyarce, A.; Lagergren, C.; Lindbergh, G. Active Area Determination of Porous Pt Electyrodes Used Polymer Electrolyte Fuel Cells: Temperature and Humidity Effects. J. Electrochem. Soc. 2010, 157, B1795–B1801. [Google Scholar] [CrossRef]
- Brightman, E.; Hinds, G.; O’Malley, R. In situ measurement of active catalyst surface area in fuel cell stacks. J. Power Sources 2013, 242, 244–254. [Google Scholar] [CrossRef]
- Garsany, Y.; Baturina, O.A.; Swider-Lyons, K.E.; Kocha, S.S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 2010, 82, 6321–6328. [Google Scholar] [CrossRef]
- Maillard, F.; Schreier, S.; Hanzlik, M.; Savinova, E.R.; Weinkauf, S.; Stimminga, U. Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 2005, 7, 385–393. [Google Scholar] [CrossRef]
- Ciapina, E.G.; Santos, S.F.; Gonzalez, E.R. Electrochemical CO stripping on nanosized Pt surfaces in acid media: A review on the issue of peak multiplicity. J. Electroanal. Chem. 2018, 815, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Tellez-Cruz, M.M.; Padilla-Islas, M.A.; Godínez-Salomón, J.F.; Lartundo-Rojas, L.; Solorza-Feria, O. Y-OH-decorated-Pt/C electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 2016, 41, 23318–23328. [Google Scholar] [CrossRef]
- Flores-Rojas, E.; Reyes-Rodríguez, J.L.; Cruz-Martínez, H.; Rojas-Chávez, H.; Samaniego-Benítez, J.E.; Solorza-Feria, O. Applications of cathodic Co100-XNiX (x = 0, 30, 70, and 100) electrocatalysts chemically coated with Pt for PEM fuel cells. Int. J. Hydrogen Energy 2020. [Google Scholar] [CrossRef]
- Solla-Gullón, J.; Montiel, V.; Aldaz, A.; Clavilier, J. Electrochemical characterisation of platinum nanoparticles prepared by microemulsion: How to clean them without loss of crystalline surface structure. J. Electroanal. Chem. 2000, 491, 69–77. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Y.; Xin, H.L.; Hovden, R.; Ercius, P.; Mundy, J.A.; Chen, H.; Richard, J.H.; Muller, D.A.; DiSalvo, F.J.; et al. Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 2012, 12, 5230–5238. [Google Scholar] [CrossRef] [PubMed]
- Kocha, S.S.; Shinozaki, K.; Zack, J.W.; Myers, D.J.; Kariuki, N.N.; Nowicki, T.; Stamenkovic, V.; Kang, Y.; Li, D.; Papageorgopoulos, D. Best practices and testing protocols for benchmarking ORR activities of fuel cell electrocatalysts using rotating disk electrode. Electrocatalysis 2017, 8, 366–374. [Google Scholar] [CrossRef]
Catalyst | ECSA (m2 g−1Pt) | [email protected] V (mA cm−2Pt) | [email protected] V (A mg−1Pt) | E1/2 (V) | Tafel slope (mV dec−1) | Bo (mA cm−2 rpm−1/2) |
---|---|---|---|---|---|---|
Pt2NiCo/C | 29.88 ± 1.74 | 1.78 ± 0.11 | 0.53 ± 0.05 | 0.91 | −56.2 | 0.1163 |
Pt/C | 87.1 | 0.28 | 0.24 | 0.89 | −55.5 | 0.1380 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfaro-López, H.M.; Valdés-Madrigal, M.A.; Rojas-Chávez, H.; Cruz-Martínez, H.; Padilla-Islas, M.A.; Tellez-Cruz, M.M.; Solorza-Feria, O. A Trimetallic Pt2NiCo/C Electrocatalyst with Enhanced Activity and Durability for Oxygen Reduction Reaction. Catalysts 2020, 10, 170. https://doi.org/10.3390/catal10020170
Alfaro-López HM, Valdés-Madrigal MA, Rojas-Chávez H, Cruz-Martínez H, Padilla-Islas MA, Tellez-Cruz MM, Solorza-Feria O. A Trimetallic Pt2NiCo/C Electrocatalyst with Enhanced Activity and Durability for Oxygen Reduction Reaction. Catalysts. 2020; 10(2):170. https://doi.org/10.3390/catal10020170
Chicago/Turabian StyleAlfaro-López, Hilda M., Manuel A. Valdés-Madrigal, Hugo Rojas-Chávez, Heriberto Cruz-Martínez, Miguel A. Padilla-Islas, Miriam M. Tellez-Cruz, and Omar Solorza-Feria. 2020. "A Trimetallic Pt2NiCo/C Electrocatalyst with Enhanced Activity and Durability for Oxygen Reduction Reaction" Catalysts 10, no. 2: 170. https://doi.org/10.3390/catal10020170