Hole Doping to Enhance the Photocatalytic Activity of Bi4NbO8Cl
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Bi4Nb1−xWxO8Cl and Bi4Nb1−xZnxO8Cl (x = 0.1, 0.2, 0.3) Powder
2.2. Characterization
2.3. Photocatalytic Activity
2.4. Density Functional Theory (DFT) Calculation
3. Discussion
3.1. X-Ray Diffractogram (XRD) Patterns Analysis
3.2. Scanning Electron Microscopy (SEM)
3.3. X-Ray Photoelectron Spectroscopy
3.4. Ultraviolet–Visible (UV–Vis) Diffuse Reflectance Spectrum
3.5. Photocatalytic Activity
3.6. Computational Details
3.7. Possible Photocatalysis Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zangeneh, H.; Zinatizadeh, A.A.; Zinadini, S.; Feyzi, M.; Rafiee, E.; Bahnemann, D.W. A novel L-Histidine (C, N) codoped-TiO2-CdS nanocomposite for efficient visible photo-degradation of recalcitrant compounds from wastewater. J. Hazard. Mater. 2019, 369, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Li, T.T.; Zhao, L.H.; He, Y.M.; Cai, J.; Luo, M.F.; Lin, J.J. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B 2013, 129, 255–263. [Google Scholar] [CrossRef]
- Padervand, M.; Jalilian, E.; Majdani, R.; Goshadezehn, M. BiOCl/AgCl-BiOI/AgI quaternary nanocomposite for the efficient photodegradation of organic wastewaters and pathogenic bacteria under visible light. J. Water Process. Eng. 2019, 29, 100789–100796. [Google Scholar] [CrossRef]
- Pirhashemi, M.; Habibi-Yangjeh, A.; Pouran, S.R. Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 2018, 62, 1–25. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Y. A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts. Catal. Sci. Technol. 2012, 2, 694–706. [Google Scholar] [CrossRef]
- Fujito, H.; Kunioku, H.; Kato, D.; Suzuki, H.; Higashi, M.; Kageyama, H.; Abe, R. Layered Perovskite Oxychloride Bi4NbO8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting. J. Am. Chem. Soc. 2016, 138, 2082–2085. [Google Scholar] [CrossRef]
- You, Y.; Wang, S.; Xiao, K.; Ma, T.; Zhang, Y.; Huang, H. Z-Scheme g-C3N4/Bi4NbO8Cl Heterojunction for Enhanced Photocatalytic Hydrogen Production. ACS Sustain. Chem. Eng. 2018, 6, 16219–16227. [Google Scholar] [CrossRef]
- Ogawa, K.; Nakada, A.; Suzuki, H.; Tomita, O.; Higashi, M.; Saeki, A.; Kageyama, H.; Abe, R. Flux Synthesis of Layered Oxyhalide Bi4NbO8Cl Photocatalyst for Efficient Z-Scheme Water Splitting under Visible Light. ACS Appl. Mater. Interfaces 2019, 11, 5642–5650. [Google Scholar] [CrossRef]
- Lin, X.; Huang, T.; Huang, F.; Wang, W.; Shi, J. Photocatalytic activity of a Bi-based oxychloride Bi4NbO8Cl. J. Mater. Chem. 2007, 17, 2145–2150. [Google Scholar] [CrossRef]
- Bhat, S.S.M.; Sundaram, N.G. Photocatalysis of Bi4NbO8Cl hierarchical nanostructure for degradation of dye under Solar/UV irradiation. New J. Chem. 2015, 39, 3956–3966. [Google Scholar] [CrossRef]
- Xu, Y.; You, Y.; Huang, H.; Guo, Y.; Zhang, Y. Bi4NbO8Cl {001} nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction. J. Hazard. Mater. 2019, 381, 121159. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Gao, Z.; Zhao, X.; Shi, L.; Du, F.; Song, H. Construction of p-n type Bi2O3/Bi4NbO8Cl 0D/2D heterojunction with enhanced photodegradation performance for organic pollutants. Appl. Surf. Sci. 2020, 529, 147248. [Google Scholar] [CrossRef]
- Qu, X.; Liu, M.; Zhai, H.; Zhao, X.; Shi, L.; Du, F. Plasmonic Ag-promoted layered perovskite oxyhalide Bi4NbO8Cl for enhanced photocatalytic performance towards water decontamination. J. Alloy. Compd. 2019, 810, 151919. [Google Scholar] [CrossRef]
- Ruan, Y.; Zhang, N.; Zhu, Y.; Zhao, W.; Xu, J.; Chen, H. Photoelectrochemical Bioanalysis Platform of Gold Nanoparticles Equipped Perovskite Bi4NbO8Cl. Anal. Chem. 2017, 89, 7869–7875. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, Y.; Wang, K.; Zhang, S.; Qu, X.; Shi, L.; Du, F. In-situ construction of Bi/defective Bi4NbO8Cl for non-noble metal based Mott-Schottky photocatalysts towards organic pollutants removal. J. Hazard. Mater. 2020, 393, 122408. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Liu, J.; Fang, W.; Qin, Z.; Jiang, Z.; Shangguan, W. Enhanced photocatalytic hydrogen evolution using a novel in situ heterojunction yttrium-doped Bi4NbO8Cl@Nb2O5. Int. J. Hydrog. Energy 2018, 43, 14281–14292. [Google Scholar] [CrossRef]
- Medhi, R.; Marquez, M.D.; Lee, T.R. Visible-Light-Active Doped Metal Oxide Nanoparticles: Review of their Synthesis, Properties, and Applications. ACS Appl. Nano Mater. 2020, 3, 6156–6185. [Google Scholar] [CrossRef]
- Guo, G.; Yan, H. Zn-doped Bi2O2CO3: Synthesis, characterization and photocatalytic properties. Chem. Phys. 2020, 538, 110920. [Google Scholar] [CrossRef]
- Xu, K.; Shen, J.; Xu, D.; Li, Z.; Zhang, S.; Wu, Z.; Feng, W.; Xiao, X.; Zhang, S.; Liu, J. Molten-salt-mediated synthesis of bulk W doped BiOCl with highly enhanced visible-light photocatalytic performances. Appl. Surf. Sci. 2019, 459, 143595. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Madsen, G.; Kvasnicka, D.; Luitz, J. WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program forCalculating Crystal Properties; Vienna University of Technology: Vienna, Austria, 2001. [Google Scholar]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Liao, X.; Lee, M.; Hyett, G.; Huang, C.; Hewak, D.W.; Mailis, S.; Zhou, W.; Jiang, Z. Experimental and DFT insights of the Zn-doping effects on the visible-light photocatalytic water splitting and dye decomposition over Zn-doped BiOBr photocatalysts. Appl. Catal. B 2019, 243, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Truc, N.T.T.; Bach, L.G.; Hanh, N.T.; Pham, T.D.; Chi, N.T.P.L.; Tran, D.T.; Nguyen, M.V.; Nguyen, V.N. The superior photocatalytic activity of Nb doped TiO2/g-C3N4 direct Z-scheme system for efficient conversion of CO2 into valuable fuels. J. Colloid Interface Sci. 2019, 540, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Zhang, K.; Wu, D.; Ye, X.; Huang, W.; Zhou, B. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation. Chem. Eng. J. 2020, 383, 123148. [Google Scholar] [CrossRef]
- Zhong, X.; Cai, Y.; Bai, H.; Huang, W.; Zhou, B. Visible Light Driven Spherical CuBi2O4 with Surface Oxygen Vacancy Enhanced Photocatalytic Activity: Catalyst Fabrication, Performance, and Reaction Mechanism. Catalysts 2020, 10, 945. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Wang, W.; Pei, D.; Huang, G.; Chen, J.; Zhang, X.; Yu, H. Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Appl. Catal. B 2018, 121, 320–328. [Google Scholar] [CrossRef]
- Qu, X.; Liu, M.; Gao, Z.; Zhai, H.; Ren, W.; Shi, L.; Du, F. A novel ternary Bi4NbO8Cl/BiOCl/Nb2O5 architecture via in-situ solvothermal-induced electron-trap with enhanced photocatalytic activities. Appl. Surf. Sci. 2020, 506, 1446788. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, J.; Zhou, H.; Zhang, X. Facile synthesis of Zn(II)-doped g-C3N4 and their enhanced photocatalytic activity under visible light irradiation. Rare Met. 2019, 38, 459–467. [Google Scholar] [CrossRef]
- Lu, X.; Li, X.; Chen, F.; Chen, Z.; Qian, J.; Zhang, Q. Biotemplating synthesis of N-doped two-dimensional CeO2-TiO2 nanosheets with enhanced visible light photocatalytic desulfurization performance. J. Alloy. Compd. 2020, 815, 152326. [Google Scholar] [CrossRef]
- Lu, X.; Li, X.; Qian, J.; Miao, N.; Yao, C.; Chen, Z. Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. J. Alloy. Compd. 2016, 661, 363–371. [Google Scholar] [CrossRef]
- Gao, Z.; Qu, X. Construction of ZnTiO3/Bi4NbO8Cl heterojunction with enhanced photocatalytic performance. Nanoscale Res. Lett. 2020, 15, 64. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhu, W.; Lu, X.; Zuo, S.; Yao, C.; Ni, C. Integrated nanostructures of CeO2/attapulgite/g-C3N4 as efficient catalyst for photocatalytic desulfurization: Mechanism, kinetics and influencing factors. Chem. Eng. J. 2017, 326, 87–98. [Google Scholar] [CrossRef]
- Wang, Y.; Jung, D.W. Synthesis of novel BiOCl/LiBiO3 p-n heterojunction photocatalysts and their enhanced photocatalytic performance. Solid State Sci. 2019, 91, 42–48. [Google Scholar] [CrossRef]
- Li, W.; Huang, W.; Zhou, H.; Yin, H.; Zheng, Y.; Song, X. Synthesis of Zn2+ doped BiOCl hierarchical nanostructures and their exceptional visible light photocatalytic properties. J. Alloy. Compd. 2015, 638, 148–154. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, T.; Xu, Q.; Li, D.; Meng, S.; Chen, M. Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl. Catal. B 2017, 201, 617–628. [Google Scholar] [CrossRef]
- Gao, C.; Xue, J.; Zhang, L.; Cui, K.; Li, H.; Yu, J. Paper-Based Origami Photoelectrochemical Sensing Platform with TiO2/Bi4NbO8Cl/Co-Pi Cascade Structure Enabling of Bidirectional Modulation of Charge Carrier Separation. Anal. Chem. 2018, 90, 14116–14120. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Gong, Y.; Lin, B.; Mellott, N.P. Photodegradation of methylene blue in the visible spectrum: An efficient W6+ ion doped anatase titania photocatalyst via a solvothermal method. Vacuum 2016, 126, 63–69. [Google Scholar] [CrossRef]
- Zhen, S.; Zhu, L.; Dong, Z.; Fan, L.; Wang, B.; Zhang, Q. A New Bi-Based Oxychloride Bi4Ti0.5W0.5O8Cl as a Photocatalyst. Catal. Lett. 2018, 148, 2480–2486. [Google Scholar] [CrossRef]
- Han, N.; Xu, Q.; Beyenea, G.; Zhang, Q. Enhanced photocatalytic activity over g-C3N4/(BiO)2(OH)xCl2−x Z-scheme heterojunction. Appl. Surf. Sci. 2020, 521, 146464–146475. [Google Scholar] [CrossRef]
- Majumdar, A.; Ghosh, U.; Pal, A. Novel 2D/2D g-C3N4/Bi4NbO8Cl nano-composite for enhanced photocatalytic degradation of oxytetracycline under visible LED light irradiation. J. Colloid Interface Sci. 2021, 584, 320–331. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Han, N.; Gu, Y.; Lu, X.; Si, L.; Zhang, Q. Hole Doping to Enhance the Photocatalytic Activity of Bi4NbO8Cl. Catalysts 2020, 10, 1425. https://doi.org/10.3390/catal10121425
Sun J, Han N, Gu Y, Lu X, Si L, Zhang Q. Hole Doping to Enhance the Photocatalytic Activity of Bi4NbO8Cl. Catalysts. 2020; 10(12):1425. https://doi.org/10.3390/catal10121425
Chicago/Turabian StyleSun, Jingbang, Ni Han, Yan Gu, Xiaowang Lu, Liang Si, and Qinfang Zhang. 2020. "Hole Doping to Enhance the Photocatalytic Activity of Bi4NbO8Cl" Catalysts 10, no. 12: 1425. https://doi.org/10.3390/catal10121425