Some Critical Insights into the Synthesis and Applications of Hydrophobic Solid Catalysts
Abstract
:1. Introduction
- Diffusion of the reaction media through the boundary layer on the catalyst surface.
- Pore diffusion.
- Adsorption of the reactants on the inner surface of the pores.
- Chemical reaction on the catalyst surface.
- Desorption of the products from the catalyst surface.
- Diffusion of the products out of the pores.
- Diffusion of the products away from the catalyst through the boundary layer and into the gas phase [3].
2. Synthesis of Hydrophobic Catalysts
2.1. Zeolites
2.2. Silicas
2.3. Polymeric Catalyst
3. Characterization of Hydrophobic Catalyst
3.1. Conctact Angle Measurements
- Solid–liquid;
- Solid–vapor;
- Liquid–vapor.
3.2. Adsorption Isotherms
3.3. Thermogravimetric Analysis
3.4. Infrared Spectroscopy
3.5. Characterization Hints for Solid–liquid Interfaces
4. Application of Hydrophobic Catalysts
4.1. Fatty Acid Esterification
4.2. Sorbitol Dehydration
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Zaccheria, F.; Ravasio, N. Solid Catalysts for the Upgrading of Renewable Sources; MDPI: Basel, Switzerland, 2019; Volume 9, ISBN 9783038975724. [Google Scholar]
- Sheldon, R.A.; Arends, I.W.C.E.; Hanefeld, U. Green Chemistry and Catalysis; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 9783527307159. [Google Scholar]
- Hagen, J. Industrial Catalysis: A Practical Approach; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 9783527331659. [Google Scholar]
- Sievers, C.; Scott, S.L.; Noda, Y.; Qi, L.; Albuquerque, E.M.; Rioux, R.M. Phenomena affecting catalytic reactions at solid−Liquid interfaces. ACS Catal. 2016, 6, 8286–8307. [Google Scholar] [CrossRef]
- Erbil, H.Y. Surface Chemistry: Of Solid and Liquid Interfaces; Blackwell Publishing: Oxford, UK, 2009; ISBN 1405119683. [Google Scholar]
- Gläser, R.; Weitkamp, J. Surface Hydrophobicity or Hydrophilicity of Porous Solids. In Handbook of Porous Solids; WILEY-VCH: Weinheim, Germany, 2008; ISBN 9783527302468. [Google Scholar]
- Myers, D. Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1999; ISBN 9780471234999. [Google Scholar]
- Wang, L.; Xiao, F.S. The importance of catalyst wettability. ChemCatChem 2014, 6, 3048–3052. [Google Scholar] [CrossRef]
- Li, T.; Wang, J.; Wang, F.; Zhang, L.; Jiang, Y.; Arandiyan, H.; Li, H. The Effect of Surface Wettability and Coalescence Dynamics in Catalytic Performance and Catalyst Preparation: A Review. ChemCatChem 2019, 11, 1576–1586. [Google Scholar] [CrossRef]
- Liu, F.; Huang, K.; Zheng, A.; Xiao, F.S.; Dai, S. Hydrophobic Solid Acids and Their Catalytic Applications in Green and Sustainable Chemistry. ACS Catal. 2018, 8, 372–391. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Peeters, E.; Makshina, E.V.; Parvulescu, V.I.; Sels, B.F. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem. Soc. Rev. 2019, 48, 2366–2421. [Google Scholar] [CrossRef] [PubMed]
- Okuhara, T. Water-tolerant solid acid catalysts. Chem. Rev. 2002, 102, 3641–3666. [Google Scholar] [CrossRef]
- Gounder, R. Hydrophobic microporous and mesoporous oxides as Brønsted and Lewis acid catalysts for biomass conversion in liquid water. Catal. Sci. Technol. 2014, 4, 2877–2886. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem. 2014, 16, 950–963. [Google Scholar] [CrossRef]
- Xu, C.H.; Jin, T.; Jhung, S.H.; Chang, J.S.; Hwang, J.S.; Park, S.E. Hydrophobicity and catalytic properties of Ti-MFI zeolites synthesized by microwave and conventional heating. Catal. Today 2006, 111, 366–372. [Google Scholar] [CrossRef]
- Rao, A.V.; Kulkarni, M.M.; Amalnerkar, D.P.; Seth, T. Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. J. Non-Cryst. Solids 2003, 330, 187–195. [Google Scholar]
- Yilmaz, B.; Müller, U. Catalytic applications of zeolites in chemical industry. Top. Catal. 2009, 52, 888–895. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.Y. Hydrophobic properties of zeolites. J. Phys. Chem. 1976, 80, 60–64. [Google Scholar] [CrossRef]
- Nakamoto, H.; Takahashi, H. Hydrophobic natures of zeolite ZSM-5. Zeolites 1982, 2, 67–68. [Google Scholar] [CrossRef]
- Lami, E.B.; Fajula, F.; Anglerot, D.; Des Courieres, T. Single step dealumination of zeolite beta precursors for the preparation of hydrophobic adsorbents. Microporous Mater. 1993, 1, 237–245. [Google Scholar] [CrossRef]
- Northcott, K.A.; Bacus, J.; Taya, N.; Komatsu, Y.; Perera, J.M.; Stevens, G.W. Synthesis and characterization of hydrophobic zeolite for the treatment of hydrocarbon contaminated ground water. J. Hazard. Mater. 2010, 183, 434–440. [Google Scholar] [CrossRef]
- Zapata, P.A.; Faria, J.; Ruiz, M.P.; Jentoft, R.E.; Resasco, D.E. Hydrophobic zeolites for biofuel upgrading reactions at the liquid-liquid interface in water/oil emulsions. J. Am. Chem. Soc. 2012, 134, 8570–8578. [Google Scholar] [CrossRef]
- Pino, N.; Bui, T.; Hincapié, G.; López, D.; Resasco, D.E. Hydrophobic zeolites for the upgrading of biomass-derived short oxygenated compounds in water/oil emulsions. Appl. Catal. A Gen. 2018, 559, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Wang, L.; Hu, Q.; Zhang, L.; Xu, S.; Dong, X.; Gao, X.; Ma, R.; Meng, X.; Xiao, F.S. Hydrophobic Zeolite Containing Titania Particles as Wettability-Selective Catalyst for Formaldehyde Removal. ACS Catal. 2018, 8, 5250–5254. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C.; Meng, X.; Yang, H.; Mesters, C.; et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science (80-) 2020, 367, 193–197. [Google Scholar]
- Vansant, E.E.; Van Der Voort, P.; Vrancken, K.C. Characterization and Chemical Modification of the Silica Surface; Elsevier: Amsterdam, The Netherlands, 1995; ISBN 0-444-81928-2. [Google Scholar]
- Blin, J.L.; Riachy, P.; Carteret, C.; Lebeau, B. Thermal and Hydrothermal Stability of Hierarchical Porous Silica Materials. Eur. J. Inorg. Chem. 2019, 2019, 3194–3202. [Google Scholar] [CrossRef]
- Veisi, H.; Sedrpoushan, A.; Faraji, A.R.; Heydari, M.; Hemmati, S.; Fatahi, B. A mesoporous SBA-15 silica catalyst functionalized with phenylsulfonic acid groups (SBA-15-Ph-SO3H) as a novel hydrophobic nanoreactor solid acid catalyst for a one-pot three-component synthesis of 2H-indazolo [2,1-b] phthalazine-triones and triazolo [1,2-a]. RSC Adv. 2015, 5, 68523–68530. [Google Scholar] [CrossRef]
- Siegel, R.; Domingues, E.; De Sousa, R.; Jérôme, F.; Morais, C.M.; Bion, N.; Ferreira, P.; Mafra, L. Understanding the high catalytic activity of propylsulfonic acid-functionalized periodic mesoporous benzenesilicas by high-resolution 1H solid-state NMR spectroscopy. J. Mater. Chem. 2012, 22, 7412–7419. [Google Scholar] [CrossRef]
- Yang, Y.; Du, Z.; Ma, J.; Lu, F.; Zhang, J.; Xu, J. Biphasic catalytic conversion of fructose by continuous hydrogenation of HMF over a hydrophobic ruthenium catalyst. ChemSusChem 2014, 7, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, F.; Ma, J.; Chen, C.; Shi, S.; Xu, J. Insights into support wettability in tuning catalytic performance in the oxidation of aliphatic alcohols to acids. Chem. Commun. 2013, 49, 6623–6625. [Google Scholar] [CrossRef] [PubMed]
- Omota, F.; Dimian, A.C.; Bliek, A. Partially hydrophobized silica supported Pd catalyst for hydrogenation reactions in aqueous media. Appl. Catal. A Gen. 2005, 294, 121–130. [Google Scholar] [CrossRef]
- Manangon-Perugachi, L.E.; Vivian, A.; Eloy, P.; Debecker, D.P.; Aprile, C.; Gaigneaux, E.M. Hydrophobic titania-silica mixed oxides for the catalytic epoxidation of cyclooctene. Catal. Today 2019, in press. [Google Scholar] [CrossRef]
- Kong, P.S.; Cognet, P.; Pérès, Y.; Esvan, J.; Daud, W.M.A.W.; Aroua, M.K. Development of a Novel Hydrophobic ZrO2-SiO2 Based Acid Catalyst for Catalytic Esterification of Glycerol with Oleic Acid. Ind. Eng. Chem. Res. 2018, 57, 9386–9399. [Google Scholar] [CrossRef] [Green Version]
- Itsuno, S. Polymer Catalysts. In Encyclopedia of Polymeric Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–9. ISBN 9783642361999. [Google Scholar]
- Harmer, M.A.; Sun, Q. Solid acid catalysis using ion-exchange resins. Appl. Catal. A Gen. 2001, 221, 45–62. [Google Scholar] [CrossRef]
- Alexandratos, S.D. Ion-Exchange resins: A retrospective from industrial and engineering chemistry research. Ind. Eng. Chem. Res. 2009, 48, 388–398. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, Q.; Han, P.; Xu, J.; Pan, L.; Wang, L.; Zou, J.-J. Hydrophobic Mesoporous Acidic Resin for Hydroxyalkylation/ Alkylation of 2-Methylfuran and Ketone to High-Density Biofuel. AIChE J. 2017, 63, 680–688. [Google Scholar] [CrossRef]
- Li, H.; Deng, Q.; Chen, H.; Cao, X.; Zheng, J.; Zhong, Y.; Zhang, P.; Wang, J.; Zeng, Z.; Deng, S. Benzenesulfonic acid functionalized hydrophobic mesoporous biochar as an efficient catalyst for the production of biofuel. Appl. Catal. A Gen. 2019, 580, 178–185. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Liu, F.; Meng, X.; Mao, J.; Xiao, F.S. Enhanced catalytic performance in dehydration of sorbitol to isosorbide over a superhydrophobic mesoporous acid catalyst. Catal. Today 2015, 242, 249–254. [Google Scholar] [CrossRef]
- Liu, F.; Kong, W.; Qi, C.; Zhu, L.; Xiao, F.S. Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity. ACS Catal. 2012, 2, 565–572. [Google Scholar] [CrossRef]
- Liu, F.; Zheng, A.; Noshadi, I.; Xiao, F.S. Design and synthesis of hydrophobic and stable mesoporous polymeric solid acid with ultra strong acid strength and excellent catalytic activities for biomass transformation. Appl. Catal. B Environ. 2013, 136–137, 193–201. [Google Scholar] [CrossRef]
- Young, T. An essay on cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar]
- Kwok, D.Y.; Neumann, A.W. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 1999, 81, 167–249. [Google Scholar] [CrossRef]
- Zhong, Y.; Deng, Q.; Zhang, P.; Wang, J.; Wang, R.; Zeng, Z.; Deng, S. Sulfonic acid functionalized hydrophobic mesoporous biochar: Design, preparation and acid-catalytic properties. Fuel 2019, 240, 270–277. [Google Scholar] [CrossRef]
- Protsak, I.; Pakhlov, E.; Tertykh, V.; Le, Z.C.; Dong, W. A new route for preparation of hydrophobic silica nanoparticles using a mixture of poly(dimethylsiloxane) and diethyl carbonate. Polymers 2018, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, H.; Liu, F.; Zheng, A.; Zhang, J.; Sun, Q.; Lewis, J.P.; Zhu, L.; Meng, X.; Xiao, F.S. Selective catalytic production of 5-hydroxymethylfurfural from glucose by adjusting catalyst wettability. ChemSusChem 2014, 7, 402–406. [Google Scholar] [CrossRef]
- Cavuoto, D.; Zaccheria, F.; Marelli, M.; Evangelisti, C.; Piccolo, O.; Ravasio, N. The Role of Support Hydrophobicity in the Selective Hydrogenation of Enones and Unsaturated Sulfones over Cu/SiO2 Catalysts. Catalysts 2020, 10, 515. [Google Scholar] [CrossRef]
- Pires, J.; Pinto, M.L.; Carvalho, A.; De Carvalho, M.B. Assessment of Hydrophobic-Hydrophilic Properties of Microporous Materials from Water Adsorption Isotherms. Adsorption 2003, 9, 303–309. [Google Scholar] [CrossRef]
- Pires, J.; Pinto, M.; Estella, J.; Echeverría, J.C. Characterization of the hydrophobicity of mesoporous silicas and clays with silica pillars by water adsorption and DRIFT. J. Colloid Interface Sci. 2008, 17, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.C.; Bui, N.Q.; Mascunan, P.; Vu, T.T.H.; Fongarland, P.; Essayem, N. Esterification of aqueous lactic acid solutions with ethanol using carbon solid acid catalysts: Amberlyst 15, sulfonated pyrolyzed wood and graphene oxide. Appl. Catal. A Gen. 2018, 552, 184–191. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Sun, Q.; Zhu, L.; Meng, X.; Xiao, F.S. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: Heterogeneous catalysts that are faster than homogeneous catalysts. J. Am. Chem. Soc. 2012, 134, 16948–16950. [Google Scholar] [CrossRef] [PubMed]
- Kamegawa, T.; Suzuki, N.; Tsuji, K.; Sonoda, J.; Kuwahara, Y.; Mori, K.; Yamashita, H. Preparation of hydrophobically modified single-site Ti-containing mesoporous silica (TiSBA-15) and their enhanced catalytic performances. Catal. Today 2011, 175, 393–397. [Google Scholar] [CrossRef]
- Olson, D.H.; Haag, W.O.; Borghard, W.S. Use of water as a probe of zeolitic properties: Interaction of water with HZSM-5. Microporous Mesoporous Mater. 2000, 35–36, 435–446. [Google Scholar] [CrossRef]
- Matsumoto, A.; Misran, H.; Tsutsumi, K. Adsorption characteristics of organosilica based mesoporous materials. Langmuir 2004, 20, 7139–7145. [Google Scholar] [CrossRef]
- Liu, S.; Chen, J.; Peng, Y.; Hu, F.; Li, K.; Song, H.; Li, X.; Zhang, Y.; Li, J. Studies on toluene adsorption performance and hydrophobic property in phenyl functionalized KIT-6. Chem. Eng. J. 2018, 334, 191–197. [Google Scholar] [CrossRef]
- Weitkamp, J.; Kleinschmit, P.; Kiss, A.; Berke, C.H. The Hydrophobicity Index- a valuable test for probing the surface properties of zeolitic adsorbents or catalysts. In Proceedings from the Ninth International Zeolite Conference; Butterworth-Heinemann: Oxford, UK, 1993. [Google Scholar]
- Guidotti, M.; Batonneau-Gener, I.; Gianotti, E.; Marchese, L.; Mignard, S.; Psaro, R.; Sgobba, M.; Ravasio, N. The effect of silylation on titanium-containing silica catalysts for the epoxidation of functionalised molecules. Microporous Mesoporous Mater. 2008, 111, 39–47. [Google Scholar] [CrossRef]
- Gabbott, P. Principles and Applications of Thermal Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9781405131711. [Google Scholar]
- Mueller, R.; Kammler, H.K.; Wegner, K.; Pratsinis, S.E. OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 2003, 19, 160–165. [Google Scholar] [CrossRef]
- Wisser, F.M.; Abele, M.; Gasthauer, M.; Müller, K.; Moszner, N.; Kickelbick, G. Detection of surface silanol groups on pristine and functionalized silica mixed oxides and zirconia. J. Colloid Interface Sci. 2012, 374, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, L.; Li, J.; Zhan, X.; Chen, J.; Yang, J. Tuning the hydrophobicity of ZSM-5 zeolites by surface silanization using alkyltrichlorosilane. Appl. Surf. Sci. 2011, 257, 9525–9531. [Google Scholar] [CrossRef]
- Ramakrishna Prasad, M.; Hamdy, M.S.; Mul, G.; Bouwman, E.; Drent, E. Efficient catalytic epoxidation of olefins with silylated Ti-TUD-1 catalysts. J. Catal. 2008, 260, 288–294. [Google Scholar] [CrossRef]
- Bhagiyalakshmi, M.; Vishnu Priya, S.; Herbert Mabel, J.; Palanichamy, M.; Murugesan, V. Effect of hydrophobic and hydrophilic properties of solid acid catalysts on the esterification of maleic anhydride with ethanol. Catal. Commun. 2008, 9, 2007–2012. [Google Scholar] [CrossRef]
- Arias, K.S.; Al-Resayes, S.I.; Climent, M.J.; Corma, A.; Iborra, S. From biomass to chemicals: Synthesis of precursors of biodegradable surfactants from 5-hydroxymethylfurfural. ChemSusChem 2013, 6, 123–131. [Google Scholar] [CrossRef]
- Bui, T.V.; Umbarila, S.J.; Wang, B.; Sooknoi, T.; Li, G.; Chen, B.; Resasco, D.E. High-Temperature Grafting Silylation for Minimizing Leaching of Acid Functionality from Hydrophobic Mesoporous Silicas Used as Catalysts in the Liquid Phase. Langmuir 2019, 35, 6838–6852. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Z.; Wang, L.; Dong, X.; Zhang, J.; Wang, G.; Han, S.; Meng, X.; Zheng, A.; Xiao, F.S. Importance of Zeolite Wettability for Selective Hydrogenation of Furfural over Pd@Zeolite Catalysts. ACS Catal. 2018, 8, 474–481. [Google Scholar] [CrossRef]
- Salvo, L.; Cloetens, P.; Maire, E.; Zabler, S.; Blandin, J.J.; Buffière, J.Y.; Ludwig, W.; Boller, E.; Bellet, D.; Josserond, C. X-ray micro-tomography an attractive characterisation technique in materials science. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2003, 200, 273–286. [Google Scholar] [CrossRef]
- Shi, H.; Lercher, J.A.; Yu, X.Y. Sailing into uncharted waters: Recent advances in the in situ monitoring of catalytic processes in aqueous environments. Catal. Sci. Technol. 2015, 5, 3035–3060. [Google Scholar] [CrossRef]
- Mezger, M.; Reichert, H.; Schöder, S.; Okasinski, J.; Schröder, H.; Dosch, H.; Palms, D.; Ralston, J.; Honkimäki, V. High-resolution in situ x-ray study of the hydrophobic gap at the water-octadecyl-trichlorosilane interface. Proc. Natl. Acad. Sci. USA 2006, 103, 18401–18404. [Google Scholar] [CrossRef] [Green Version]
- Cyran, J.D.; Donovan, M.A.; Vollmer, D.; Brigiano, F.S.; Pezzotti, S.; Galimberti, D.R.; Gaigeot, M.P.; Bonn, M.; Backus, E.H.G. Molecular hydrophobicity at a macroscopically hydrophilic surface. Proc. Natl. Acad. Sci. USA 2019, 116, 1520–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totland, C.; Nerdal, W. Experimental Determination of Water Molecular Orientation near a Silica Surface Using NMR Spectroscopy. J. Phys. Chem. C 2016, 120, 5052–5058. [Google Scholar] [CrossRef]
- Voïtchovsky, K.; Kuna, J.J.; Contera, S.A.; Tosatti, E.; Stellacci, F. Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. Nat. Nanotechnol. 2010, 5, 401–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gounder, R.; Davis, M.E. Beyond Shape Selective Catalysis with Zeolites: Hydrophobic Void Spaces in Zeolites Enable Catalysis in Liquid Water. AIChE J. 2013, 59, 3349–3358. [Google Scholar] [CrossRef]
- Tucker, M.H.; Crisci, A.J.; Wigington, B.N.; Phadke, N.; Alamillo, R.; Zhang, J.; Scott, S.L.; Dumesic, J.A. Acid-functionalized SBA-15-type periodic mesoporous organosilicas and their use in the continuous production of 5-hydroxymethylfurfural. ACS Catal. 2012, 2, 1865–1876. [Google Scholar] [CrossRef]
- Vjunov, A.; Hu, M.Y.; Feng, J.; Camaioni, D.M.; Mei, D.; Hu, J.Z.; Zhao, C.; Lercher, J.A. Following Solid-Acid-Catalyzed Reactions by MAS NMR Spectroscopy in Liquid Phase-Zeolite-Catalyzed Conversion of Cyclohexanol in Water. Angew. Chem. 2014, 126, 489–492. [Google Scholar] [CrossRef]
- Miao, S.; Lin, D. Monoglycerides: Categories, Structures, Properties, Preparations, and Applications in the Food Industry. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK, 2019; pp. 155–163. ISBN 978-0-12-814045-1. [Google Scholar]
- Díaz, I.; Márquez-Alvarez, C.; Mohino, F.; Pérez-Pariente, J.; Sastre, E. Combined Alkyl and Sulfonic Acid Functionalization of MCM-41-Type Silica. J. Catal. 2000, 193, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Bossaert, W.D.; De Vos, D.E.; Van Rhijn, W.M.; Bullen, J.; Grobet, P.J.; Jacobs, P.A. Mesoporous sulfonic acids as selective heterogeneous catalysts for the synthesis of monoglycerides. J. Catal. 1999, 182, 156–164. [Google Scholar] [CrossRef]
- Sánchez-Vázquez, R.; Pirez, C.; Iglesias, J.; Wilson, K.; Lee, A.F.; Melero, J.A. Zr-Containing Hybrid Organic-Inorganic Mesoporous Materials: Hydrophobic Acid Catalysts for Biodiesel Production. ChemCatChem 2013, 5, 994–1001. [Google Scholar] [CrossRef]
- Melero, J.A.; Bautista, L.F.; Morales, G.; Iglesias, J.; Sánchez-Vázquez, R. Acid-catalyzed production of biodiesel over arenesulfonic SBA-15: Insights into the role of water in the reaction network. Renew. Energy 2015, 75, 425–432. [Google Scholar] [CrossRef]
- Veiga, P.M.; Gomes, A.C.L.; Veloso, C.O.; Henriques, C.A. Acid zeolites for glycerol etherification with ethyl alcohol: Catalytic activity and catalyst properties. Appl. Catal. A Gen. 2017, 548, 2–15. [Google Scholar] [CrossRef]
- Veiga, P.M.; Gomes, A.C.L.; Veloso, C.D.O.; Henriques, C.A. Etherification of different glycols with ethanol or 1-octanol catalyzed by acid zeolites. Mol. Catal. 2018, 458, 261–271. [Google Scholar] [CrossRef]
- Rose, M.; Palkovits, R. Isosorbide as a renewable platform chemical for versatile applications-quo vadis? ChemSusChem 2012, 5, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Otomo, R.; Yokoi, T.; Tatsumi, T. Synthesis of isosorbide from sorbitol in water over high-silica aluminosilicate zeolites. Appl. Catal. A Gen. 2015, 505, 28–35. [Google Scholar] [CrossRef]
- Kobayashi, H.; Yokoyama, H.; Feng, B.; Fukuoka, A. Dehydration of sorbitol to isosorbide over H-beta zeolites with high Si/Al ratios. Green Chem. 2015, 17, 2732–2735. [Google Scholar] [CrossRef] [Green Version]
- Cubo, A.; Iglesias, J.; Morales, G.; Melero, J.A.; Moreno, J.; Sánchez-Vázquez, R. Dehydration of sorbitol to isosorbide in melted phase with propyl-sulfonic functionalized SBA-15: Influence of catalyst hydrophobization. Appl. Catal. A Gen. 2017, 531, 151–160. [Google Scholar] [CrossRef]
- Dacquin, J.P.; Cross, H.E.; Brown, D.R.; Düren, T.; Williams, J.J.; Lee, A.F.; Wilson, K. Interdependent lateral interactions, hydrophobicity and acid strength and their influence on the catalytic activity of nanoporous sulfonic acid silicas. Green Chem. 2010, 12, 1383–1391. [Google Scholar] [CrossRef]
- Yuan, D.; Zhao, N.; Wang, Y.; Xuan, K.; Li, F.; Pu, Y.; Wang, F.; Li, L.; Xiao, F. Dehydration of sorbitol to isosorbide over hydrophobic polymer-based solid acid. Appl. Catal. B Environ. 2019, 240, 182–192. [Google Scholar] [CrossRef]
- Cavuoto, D.; Ravasio, N.; Scotti, N.; Cappelletti, G.; Gervasini, A.; Zaccheria, F. The role of support wettability in the hydrogenation of Gamma Valero Lactone. 2020; in preparation. [Google Scholar]
Functional Group | Occurrence in Solids |
---|---|
-OH | Oxides, hydroxides |
-COOH | Carbons |
-C=O | Carbons |
-O- | Oxides, carbons |
Ionic species (i.e., H+, Na+, Mg2+) | Ion exchanger |
Solid Materials | Hydrophobization Method | |
---|---|---|
During Synthesis | Post-Synthesis | |
Zeolites | Modulation of Si/Al ratio Microwave crystallization [15] | Silane functionalization Organic Functionalization |
Silicas | Sol–gel process and supercritical drying of silica alcogels [16] | Silane functionalization Organic Functionalization |
Resins | Modulation of the number of polar functional groups |
Solid Materials | Hydrophobic Functionality | Reference |
---|---|---|
Zeolites | octadecyltrichlorosilane | [21] |
-CH3, -Ph, -CF3 | [24] | |
Silicas | dichlorodimethylsilane | [32] |
diphenyldichlorosilane | [28] | |
Tetra ethoxy silane combined with methyltriethoxysilane | [33] | |
trimethoxymethylsilane and 2‑(4‑chlorosulfonylphenyl)ethyltrimethoxysilane | [34] |
Catalyst | Sulfur Content a (mmol/g) | Contact Angle |
---|---|---|
H-PDVB-0.05-SO3H H-PDVB-0.10- SO3H H-PDVB-0.20- SO3H H-PDVB-0.33- SO3H H-PDVB-0.50- SO3H H-PDVB-1.00- SO3H H-PDVB-1.50- SO3H PDVB-SO3H | 0.31 0.60 0.88 1.31 1.78 1.06 2.36 3.64 | 152° 148° 143° 137° 128° 120° 118° 38° |
Surface/Bulk Composition Evaluation | Measures of Interactions |
---|---|
Thermogravimetric Analysis | Adsorption Isotherms |
IR-spectroscopy | Contact Angle Measurements |
Hydrophobic Index | |
IR-spectroscopy |
Sample | TEFS Loading Wt % | Relative Water Adsorption Capacity % |
---|---|---|
TiSBA-15 | 0 | 100 |
F2-TiSBA-15 | 2 | 62 |
F5-TiSBA-15 | 5 | 51 |
F10-TiSBA-15 | 10 | 41 |
F-20-TiSBA-15 | 20 | 15 |
Catalyst | Water Capacity (mg g−1) | Toluene Capacity (mg g−1) | HI |
---|---|---|---|
MCM-41 | 74 | 623 | 8.4 |
Ti-MCM-41 | 165 | 1380 | 8.4 |
Sil Ti-MCM-41 | 41 | 557 | 13.6 |
SiO2 | 60 | 277 | 4.6 |
Ti-SiO2 | 63 | 296 | 4.7 |
Sil Ti-SiO2 | 27 | 142 | 5.3 |
Catalyst | Conditions | Sorbitol Conversion (%) | Sorbitan Yield (%) | Isosorbide Yield (%) | Reference |
---|---|---|---|---|---|
Zeolite Beta (Si/Al = 13) | 200 °C, 2 h | 23 | 13.8 | 1.5 | [85] |
Zeolite Beta (Si/Al = 75) | 200 °C, 2 h 200 °C, 18 h | 87 100 | 38.3 9.4 | 28.7 80 | |
Zeolite H-Beta (Si/Al = 15) | 127 °C, 1 h | 44 | 11 | [86] | |
Zeolite H-Beta (Si/Al = 75) | 127 °C, 1 h 127 °C, 2 h | 96 >99 | 4.6 | 53 76 | |
SBA15-Pr-SO3H + -Si(CH3)3 | 150 °C, 24 h | 94 | 51 | 44 | [87] |
SBA15-Pr-SO3H + -Si(CH3)3 | 150 °C, 24 h | 90 | 20 | 70 | |
Amberlyst-15 P-SO3H | 140 °C, 10 h, 0.1 atm 140 °C, 10 h, 0,1 atm | 94 99 | 2.4 3.5 | 71.8 87.9 | [40] |
PDS (0.025) PDS (0.3) | 150 °C, 12 h, 0.3 atm 150 °C, 12 h, 0.3 atm | 79.1 94.1 | 66.9 10.4 | 11.4 81.7 | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavuoto, D.; Zaccheria, F.; Ravasio, N. Some Critical Insights into the Synthesis and Applications of Hydrophobic Solid Catalysts. Catalysts 2020, 10, 1337. https://doi.org/10.3390/catal10111337
Cavuoto D, Zaccheria F, Ravasio N. Some Critical Insights into the Synthesis and Applications of Hydrophobic Solid Catalysts. Catalysts. 2020; 10(11):1337. https://doi.org/10.3390/catal10111337
Chicago/Turabian StyleCavuoto, Denise, Federica Zaccheria, and Nicoletta Ravasio. 2020. "Some Critical Insights into the Synthesis and Applications of Hydrophobic Solid Catalysts" Catalysts 10, no. 11: 1337. https://doi.org/10.3390/catal10111337
APA StyleCavuoto, D., Zaccheria, F., & Ravasio, N. (2020). Some Critical Insights into the Synthesis and Applications of Hydrophobic Solid Catalysts. Catalysts, 10(11), 1337. https://doi.org/10.3390/catal10111337