Diffusive Plus Convective Mass Transport, Accompanied by Biochemical Reaction, Across Capillary Membrane
Abstract
:1. Introduction
2. Theoretical
2.1. The Solution When There Is No Sweeping Phase on the Permeate Side (dC/dR = 0 at R = Rm)
2.2. The Concentration Distribution in Presence of Sweeping Phase, dC/dR > 0 at R = Rm
3. Methods
4. Results and Discussion
4.1. Mass Transport without Sweeping Phase
4.1.1. Effect of Membrane Properties of Measures, i.e., Lumen Radius, Membrane Thickness
4.1.2. Mass Transport with Membrane Thickness as a Parameter
4.1.3. The effect of the Convective Flow, Peo
4.2. Mass Transport with Sweeping Phase on the Permeate Side
Effect of the Lumen Radius and the Reactor Thickness on the Enhancement
4.3. A Practical Example for Showing the Important Effect of the Lumen Radius and the Péclet Number
4.3.1. The Effect of the Lumen Radius
4.3.2. The Effect of the Péclet Number (Peo)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
C | Concentration in the membrane layer, kg/m3, mol/m3 |
CO | Inlet substrate concentration, kg/m3, mol/m3 |
Cm | Outlet reactant concentration, kg/m3, mol/m3 |
D | Diffusion coefficient, m2/s |
E | Enhancement |
Ha | Hatta number () |
J | Inlet mass transfer rate, kg/m2 s, mol/m2 s |
JO | Mass transfer rate without biochemical reaction, kg/m2 s, mol/m2 s |
km | Michaelis–Menten constant, kg/m3, mol/m3 |
N | Number of sublayers, (N = 1000) |
Peo | The inlet Péclet number, (=voro/d) |
Q | Reacted amount of substrate in a volume unit of catalytic membrane, mol/m3 s |
Qo | Reacted amount of substrate related to membrane volume at Peo = 0, mol/m3 s |
r | Radial coordinate, m |
ro | Lumen radius (cylindrical membrane inlet radius), m |
rm | =Ro + δ, m |
R | Dimensionless local coordinate, (r = r/ro) |
Average transport radius, m | |
S | Parameter of solution of a 2nd order differential equation, kg/m3, mol/m3 |
T | Parameter of solution of a 2nd order differential equation, kg/m3, mol/m3 |
vo | Inlet convective velocity, m/s |
vmax | Maximum reaction rate, kg/m2 s, mol/m2 s |
X | Conversion |
Greek Letters | |
δ | Biocatalytic membrane thickness, m |
ϑ | Reaction modulus |
Superscript | |
o | Bulk and interface; physical |
Subscript | |
i | ith sublayer |
m | Outlet |
Appendix A. Expressions for Calculation of the T1 and S1 Value
Appendix B. Prediction of the Ti and Si values (i = 2, …, N)
References
- Marcano, J.G.S.; Tsotsis, T.T. Catalytic Membranes and Membrane Reactors; Wiley-VCH: Veinheim, Germany, 2002. [Google Scholar]
- Giorno, L.; Drioli, E. Biocatalytic membrane reactors: Applications and perspectives. Trends Biotechnol. 2000, 18, 339–349. [Google Scholar] [CrossRef]
- Giorno, L.; Mazzei, R.; Drioli, E. Biochemical membrane reactors in industrial processes. In Membrane Operations: Innovative Separations and Transformations; Wiley-VCH Verlag: Weinheim, Germany, 2009; pp. 397–409. [Google Scholar]
- Charcosset, C. Membrane processes in biotechnology: An overview. Biotechnol. Adv. 2006, 24, 482–492. [Google Scholar] [CrossRef]
- Rios, G.M.; Belleville, M.-P.; Paolucci-Jeanjean, D. Membrane engineering in biotechnology: Quo vamus? Trends Biotechnol. 2007, 25, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Westermann, T.; Melin, T. Flow-through catalytic membrane reactors- Principles and applications. Chem. Eng. Process. 2012, 48, 17. [Google Scholar] [CrossRef]
- Asif, M.B.; Hai, F.I.; Jegatheesan, V.; Price, W.E.; Nghiem, L.D.; Yamamoto, K. Applications of membrane bioreactors in biotechnology processes. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Seidel-Morgenstein, A. Membrane Reactors; Wiley-WCH: Weiheim, Germany, 2010. [Google Scholar]
- Brunetti, A.; Caravella, A.; Barbiella, G.; Drioli, E. Simulation study of water shift reaction in a membrane reactor. J. Membr. Sci. 2007, 306, 329–340. [Google Scholar] [CrossRef]
- Dittmeyer, R.; Avajda, K.; Reif, M. A review of catalytic membrane layers for gas/liquid reactions. Top. Catal. 2004, 29, 3–27. [Google Scholar] [CrossRef]
- McLearely, E.E.; Jancen, J.C.; Kapteijn, F. Zeolite based films, membranes and membrane reactors. Progress and prospects. Microporous Mesoporous Mater. 2006, 90, 198–220. [Google Scholar] [CrossRef]
- Catalano, J.; Baschetti, M.G.; Sarti, G.C. Influence of the gas phase resistance on hydrogen flux through thin palladium–silver membranes. J. Membr. Sci. 2009, 339, 57–67. [Google Scholar] [CrossRef]
- Lüdtke, O.; Behling, R.-D.; Ohlrogge, K. Concentration polarization in gas permeation. J. Membr. Sci. 1998, 146, 145–157. [Google Scholar] [CrossRef]
- He, G.; Mi, Y.; Yue, P.L.; Chen, G. Theoretical study on concentration polarization in gas separation membrane processes. J. Membr. Sci. 1999, 153, 243–258. [Google Scholar] [CrossRef]
- Murmura, M.A.; Cerbelli, S.; Annesini, M.C. An equilibrium theory for catalytic steam reforming in membrane reactors. Chem. Eng. Sci. 2017, 160, 291–303. [Google Scholar] [CrossRef]
- Murmura, M.A.; Cerbelli, S.; Annesini, M.; Sheintuch, M. Derivation of an enhanced Sherwood number accounting for reaction rate in membrane reactors. Steam reforming of methane as case study. Catal. Today 2020. [Google Scholar] [CrossRef]
- Nagy, E. Mass transfer rate through a convection flow catalytic membrane layer with dispersed nanometer-sized catalyst. Ind. Eng. Chem. Res. 2010, 49, 1057–1062. [Google Scholar] [CrossRef]
- Chakraborty, S.; Rusli, H.; Nath, A.; Sikder, J.; Bhattacharjee, C.; Curcio, S.; Drioli, E. Immobilized biocatalytic process development and potential application in membrane separation: A review. Crit. Rev. Biotechnol. 2016, 36, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Irfan, M.; Ghazanfar, M.; Ur Rehman, A.; Asma, S. Approaches to Enhance Industrial Production of Fungal Cellulases. In Approaches to Enhance Industrial Production of Fungal Cellulases; Srivastava, M., Srivastava, N., Ramteke, P.W., Mishra, P.K., Eds.; Springer: Cham, Switzerland, 2019; pp. 37–52. [Google Scholar]
- Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulose Biomass. Chem 2019, 5, 2520–2546. [Google Scholar] [CrossRef]
- Mazzei, R.; Piacentini, E.; Gebreyohannes, A.; Giorno, L. Membrane Bioreactors in Food, Pharmaceutical and Biofuel Applications: State of the Art, Progresses and Perspectives. Curr. Org. Chem. 2017, 21, 1671–1701. [Google Scholar] [CrossRef]
- Zhou, M.; Ju, X.; Li, L.; Yan, L.; Xu, X.; Chen, J. Immobilization of cellulase in the non-natural ionic liquid environments to enhance cellulase activity and functional stability. Appl. Microbiol. Biotechnol. 2019, 103, 2483–2492. [Google Scholar] [CrossRef]
- Nagy, E.; Dudás, J.; Mazzei, R.; Giorno, L. Description of the diffusive-convective mass transport in a hollow-fiber biphasic biocatalytic membrane reactor. J. Membr. Sci. 2015, 482, 144–157. [Google Scholar] [CrossRef]
- Calabro, V.; Curcio, S.; Iorio, G. A theoretical analysis of transport phenomena in a hollow fiber membrane bioreactor with immobilized biocatalysts. J. Membr. Sci. 2002, 206, 217–341. [Google Scholar] [CrossRef]
- Godongwana, B.; Solomons, D.; Sheldon, M.S. A finite-difference solution of solute transport through a membrane bioreactor. Mech. Probl. Eng. 2010, 215, 810843. [Google Scholar] [CrossRef]
- Bird, B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena; Wiley & Sons: New York, NY, USA, 1960. [Google Scholar]
- Danckwerts, P.V. Gas-Liquid Reactions; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Westerterp, K.R.; van Swaaj, W.P.M.; Beenackers, A.A.C.M. Chemical Reactor Design and Operation; Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Mulder, M. Basic Principles of Membrane Technology, 2nd ed.; Kluwer Acad. Publisher: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Baker, R.W. Membrane Technology and Application, 2nd ed.; John Wiley and Sons: Chichester, UK, 2004. [Google Scholar]
- Nagy, E. Basic Equation of Mass Transfer through a Membrane Layer; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Nagy, E.; Kulcsar, E. Mass transport through biocatalytic membrane layer. Desalination 2009, 245, 422–436. [Google Scholar] [CrossRef]
- Nagy, E. Mass transfer through catalytic membrane layer. In Mass Transfer in Multiphase Systems and its Applications; El-Amin, A., Ed.; INTECH Open access Publisher: Rijeka, Croatia, 2011; pp. 677–716. [Google Scholar]
- Nagy, E. Convective and diffusive mass transport through anisotropic, cylindrical membrane layer. Chem. Eng. Process. Process. Intensif. 2010, 49, 716–721. [Google Scholar] [CrossRef]
- Nagy, E.; Lepossa, A.; Prettl, Z. Mass transfer through bio-catalytic membrane reactor. Ind. Eng. Chem. Res. 2012, 51, 1635–1646. [Google Scholar] [CrossRef]
- Nagy, E. Mass transport in biocatalytic membrane reactors. Chem. Eng. Trans. 2009, 17, 1047–1052. [Google Scholar]
- Perry, J. Chemical Engineers’ Handbook; McGraw Hill: Amsterdam, The Netherlands, 1968. [Google Scholar]
- O’Neil, P.V. Advanced Engineering Mathematics; Wadsworth Inc.: Belmont, CA, USA, 1987. [Google Scholar]
- Nagy, E. Mathematical modeling of biochemical membrane reactors. In Membrane Operations, Innovative Separation and Transformations; Drioli, E., Giorno, L., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2009; pp. 309–334. [Google Scholar]
- Nagy, E. Basic equations of mass transfer through biocatalytic membrane layer. Asia Pac. J. Chem. Eng. 2009, 21, 270–278. [Google Scholar] [CrossRef]
- Nagy, E. Survey on Biocatalytic Membrane Reactor and Membrane Aerated Biofilm Reactor. Org. Chem. 2017, 21, 1713–1724. [Google Scholar] [CrossRef]
- Nagy, E.; Vitai, M. Analysis of mass transport through anisotropic, catalytic/biocatalytic membrane reactors. Catalysts 2019, 9, 358. [Google Scholar] [CrossRef] [Green Version]
Péclet Number | C/CO, Measured | C/CO, Predicted |
---|---|---|
4.4 | 0.50 | 0.51 |
12.4 | 0.48 | 0.34 |
25 | 0.20 | 0.22 |
28 | 0.06 | 0.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, E.; Hegedüs, I. Diffusive Plus Convective Mass Transport, Accompanied by Biochemical Reaction, Across Capillary Membrane. Catalysts 2020, 10, 1115. https://doi.org/10.3390/catal10101115
Nagy E, Hegedüs I. Diffusive Plus Convective Mass Transport, Accompanied by Biochemical Reaction, Across Capillary Membrane. Catalysts. 2020; 10(10):1115. https://doi.org/10.3390/catal10101115
Chicago/Turabian StyleNagy, Endre, and Imre Hegedüs. 2020. "Diffusive Plus Convective Mass Transport, Accompanied by Biochemical Reaction, Across Capillary Membrane" Catalysts 10, no. 10: 1115. https://doi.org/10.3390/catal10101115
APA StyleNagy, E., & Hegedüs, I. (2020). Diffusive Plus Convective Mass Transport, Accompanied by Biochemical Reaction, Across Capillary Membrane. Catalysts, 10(10), 1115. https://doi.org/10.3390/catal10101115