Influences of MgO(001) and TiO2(101) Supports on the Structures and Properties of Au Nanoclusters
Abstract
1. Introduction
2. Results and Discussion
2.1. Geometric Structures of Au
2.2. PDOS
2.3. Charge Transfer
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ∘C. Chem. Lett. 1987, 16, 405–408. [Google Scholar] [CrossRef]
- Chang, C.M.; Chou, M.Y. Alternative Low-Symmetry Structure for 13 Atom Metal Clusters. Phys. Rev. Lett. 2004, 93, 133401. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, G.; Zhao, J. Density-functional study of Aun (n = 2–20) clusters: Lowest-energy structures and electronic properties. Phys. Rev. B 2002, 66, 035418. [Google Scholar] [CrossRef]
- Fernandez, E.M.; Soler, J.M.; Balbás, L.C. Planar and cagelike structures of gold clusters: Density-functional pseudopotential calculations. Phys. Rev. B 2006, 73, 235433. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, J.; Chen, H.; Wang, X.; Huang, Q.; Shan, Z. Preparation of noble metallic nanoclusters and its application in biological detection. Prog. Chem. 2011, 23, 880–892. [Google Scholar]
- Yan, F.; Liu, X.; Zhao, D.; Bao, W.; Xi, F. Application of Fluorescent Gold Nanoclusters for the Determination of Small Molecules. Prog. Chem. 2013, 25, 799–808. [Google Scholar]
- Shang, L.; Dong, S.; Nienhaus, G.U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401–418. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; House, S.D.; Zhao, S.; Wahab, Z.; Yang, J.C.; Jin, R. Interface Engineering of Gold Nanoclusters for CO Oxidation Catalysis. ACS Appl. Mater. Interfaces 2018, 10, 29425–29434. [Google Scholar] [CrossRef]
- Moon, Y.K.; Jeong, S.Y.; Kang, Y.C.; Lee, J.H. Metal Oxide Gas Sensors with Au Nanocluster Catalytic Overlayer: Toward Tuning Gas Selectivity and Response Using a Novel Bilayer Sensor Design. ACS Appl. Mater. Interfaces 2019, 11, 32169–32177. [Google Scholar] [CrossRef]
- Burgos, J.C.; Mejia, S.M.; Metha, G.F. Effect of Charge and Phosphine Ligands on the Electronic Structure of the Au8 Cluster. ACS Omega 2019, 4, 9169–9180. [Google Scholar] [CrossRef]
- Haekkinen, H.; Yoon, B.; Landman, U.; Li, X.; Zhai, H.J.; Wang, L.S. On the Electronic and Atomic Structures of Small Aun(n = 4–14) Clusters: A Photoelectron Spectroscopy and Density Functional Study. Chem. Inf. 2003, 107, 6168–6175. [Google Scholar] [CrossRef]
- Min, B.J.; Shin, W.C.; Park, J.I. Plane-wave Density Functional Theory Study of the Electronic and Structural Properties of Ionized and Neutral Small Gold Clusters. New Phys. Sae Mulli 2017, 67, 480–484. [Google Scholar] [CrossRef]
- Mao, H.P.; Wang, H.Y.; Ni, Y.; Xu, G.L.; Ma, M.Z.; Zhu, Z.H.; Tang, Y.J. Geometry and electronic properties of Aun(n = 2–9) clusters. Acta Phys Sin. 2004, 53, 1766–1771. [Google Scholar]
- Bulusu, S.; Zeng, X.C. Structures and relative stability of neutral gold clusters: Aun (n = 15–19). J. Chem. Phys. 2006, 125, 154303. [Google Scholar] [CrossRef]
- Fa, W.; Luo, C.; Dong, J. Bulk-fragment and tube-like structures of Aun (n = 2–26). Phys. Rev. B 2005, 72, 3182–3184. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Ning, H.; Wang, J.; Su, X.J.; Guo, X.G.; Liu, Y. Structural evolution of Aun (n = 20–32) clusters: Lowest-lying structures and relativistic effects. Phys. Lett. A 2010, 374, 1033–1038. [Google Scholar] [CrossRef]
- Yoon, B. Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO. Science 2005, 307, 403–407. [Google Scholar] [CrossRef]
- Liu, J.; Shunfang, L.I.; Haisheng, L.I. Study on First-Pinciples Calculations of Adsorption of Gold Clusters Aun (n ≤ 8) on MgO(001) Surface. Mater. Rev. 2008, 2, 232–236. [Google Scholar]
- Roldan, A.; Ricart, J.M.; Illas, F.; Pacchioni, G. O2 Activation by Au5 Clusters Stabilized on Clean and Electron-Rich MgO Stepped Surfaces. J. Phys. Chem. C 2010, 114, 16973–16978. [Google Scholar] [CrossRef]
- Stamatakis, M.; Christiansen, M.A.; Vlachos, D.G.; Mpourmpakis, G. Multiscale Modeling Reveals Poisoning Mechanisms of MgO-Supported Au Clusters in CO Oxidation. Nano Lett. 2012, 12, 3621–3626. [Google Scholar] [CrossRef]
- Kim, Y.D.; Fischer, M.; Gantefor, G. Origin of unusual catalytic activities of Au-based catalysts. Chem. Phys. Lett. 2003, 377, 170–176. [Google Scholar] [CrossRef][Green Version]
- Pabisiak, T.; Kiejna, A. Stability of gold nanostructures on rutile TiO2(110) surface. Surf. Sci. 2011, 605, 668–674. [Google Scholar] [CrossRef]
- Asakura, K.; Takakusagi, S.; Ariga, H.; Chun, W.J.; Suzuki, S.; Koike, Y.; Uehara, H.; Miyazaki, K.; Iwasawa, Y. Preparation and structure of a single Au atom on the TiO2(110) surface: Control of the Au–metal oxide surface interaction. Faraday Discuss. 2013, 162, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, Y.; Li, H.; Zhao, Y.; Pei, Y.; Chen, Z.; Zeng, X.C. CO Oxidation on TiO2(110) Supported Subnanometer Gold Clusters: Size and Shape Effects. J. Am. Chem. Soc. 2013, 135, 19336–19346. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Cao, Y.; Hu, S.; Yu, M.; Wang, T.; Huang, S.; Yan, S. Manipulating the charge state of Au clusters on rutile TiO2(110) single crystal surfaces through molecular reactions probed by infrared spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 17660–17665. [Google Scholar]
- Kohn, W.; Sham, L.J. Quantum Density Oscillations in an Inhomogeneous Electron Gas. Phys. Rev. 1965, 137, 1697–1706. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Pacchioni, G.; Giordano, L.; Baistrocchi, M. Charging of metal atoms on ultrathin MgO/Mo(100) films. Phys. Rev. Lett. 2005, 94, 226104. [Google Scholar] [CrossRef]
- Yulikov, M.; Sterrer, M.; Heyde, M.; Rust, H.P.; Risse, T.; Freund, H.J.; Pacchioni, G.; Scagnelli, A. Binding of Single Gold Atoms on Thin MgO(001) Films. Phys. Rev. Lett. 2006, 96, 146804. [Google Scholar] [CrossRef]
- Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.J. Gold atoms and clusters on MgO(100) films; an EPR and IRAS study. Surf. Sci. 2009, 603, 1622–1628. [Google Scholar] [CrossRef]
- Ankudinov, A.L.; Rehr, J.J.; Low, J.J.; Bare, S.R. Sensitivity of Pt X-ray absorption near edge structure to the morphology of small Pt clusters. J. Chem. Phys. 2002, 116, 1911–1919. [Google Scholar] [CrossRef]
- Boyanov, B.I.; Morrison, T.I. Support and Temperature Effects in Platinum Clusters. 1. Spatial Structure. J. Phys. Chem. 1996, 100, 16310–16317. [Google Scholar] [CrossRef]
- Wang, L.L.; Khare, S.V.; Chirita, V.; Johnson, D.D.; Rockett, A.A.; Frenkel, A.I.; Mack, N.H.; Nuzzo, R.G. Origin of Bulklike Structure and Bond Length Disorder of Pt37 and Pt6Ru31 Clusters on Carbon: Comparison of Theory and Experiment. J. Am. Chem. Soc. 2006, 128, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Costello, C.K.; Kung, M.C.; Oh, H.S.; Wang, Y.; Kung, H.H. Nature of the active site for CO oxidation on highly active Au/γ-Al2O3. Appl. Catal. A 2002, 232, 159–168. [Google Scholar] [CrossRef]
- Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science 2003, 301, 935–938. [Google Scholar] [CrossRef]
- Guzman, J. Structure and reactivity of a mononuclear gold complex catalyst supported on magnesium oxide. Angew. Chem. Int. Ed. Engl. 2003, 42, 690–693. [Google Scholar] [CrossRef]
- Matsuzawa, N.; Seto, J.; Dixon, D.A. Density Functional Theory Predictions of Second-Order Hyperpolarizabilities of Metallocenes. J. Phys. Chem. A 1997, 101, 9391–9398. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Aikens, C.M. Modelling small gold and silver nanoparticles with electronic structure methods. Mol. Simul. 2012, 38, 607–614. [Google Scholar] [CrossRef]
- Ferrando, R.; Barcaro, G.; Fortunelli, A. Structures of small Au clusters on MgO(001) studied by density-functional calculations. Phys. Rev. B 2011, 83, 045418. [Google Scholar] [CrossRef]
- Henry, C.R. Surface studies of supported model catalysts. Surf. Sci. Rep. 1998, 31, 231–325. [Google Scholar] [CrossRef]
- Henry, C.R. Morphology of supported nanoparticles. Prog. Surf. Sci. 2005, 80, 92–116. [Google Scholar] [CrossRef]
- You, H.; Liu, C.J.; Ge, Q. Interaction of Pt clusters with the anatase TiO2(101) surface: A first principles study. J. Phys. Chem. B 2006, 110, 7463–7472. [Google Scholar]
- Gong, X.Q.; Selloni, A.; Dulub, O.; Jacobson, P.; Diebold, U. Small Au and Pt Clusters at the Anatase TiO2(101) Surface: Behavior at Terraces, Steps, and Surface Oxygen Vacancies. J. Am. Chem. Soc. 2008, 130, 370–381. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Han, Y.; Li, W.; Meng, X.; Zong, B. Nucleation and Growth of Palladium Clusters on Anatase TiO2(101) Surface: A First Principle Study. J. Phys. Chem. C 2008, 112, 19506–19515. [Google Scholar] [CrossRef]
- Pabisiak, T.; Kiejna, A. Energetics of oxygen vacancies at rutile TiO2(110) surface. Solid State Commun. 2007, 144, 324–328. [Google Scholar] [CrossRef]
- Kiejna, A.; Pabisiak, T.; Gao, S.W. The energetics and structure of rutile TiO2(110). J. Phys. Condens. Matter 2006, 18, 4207. [Google Scholar] [CrossRef]
Au | Au/MgO(001) | Au/TiO(101) | |||
---|---|---|---|---|---|
Au-Au (Å) | Mg-O (Å) | Au-Au (Å) | Ti-O (Å) | Au-Au (Å) | |
0 | – | 2.101 | – | 2.035 | – |
2 | 2.558 | 2.173 | 2.557 | 2.110 | 2.549 |
3 | 2.589 | 2.192 | 2.631 | 2.077 | 2.618 |
4 | 2.656 | 2.187 | 2.691 | 2.082 | 2.667 |
5 | 2.717 | 2.169 | 2.741 | 2.019 | 2.698 |
6 | 2.714 | 2.198 | 2.740 | 2.067 | 2.718 |
7 | 2.723 | 2.210 | 2.731 | 2.071 | 2.729 |
8 | 2.700 | 2.198 | 2.720 | 2.043 | 2.725 |
9 | 2.738 | 2.199 | 2.750 | 2.054 | 2.744 |
10 | 2.743 | 2.175 | 2.768 | 2.038 | 2.745 |
11 | 2.743 | 2.213 | 2.766 | 2.039 | 2.757 |
12 | 2.746 | 2.187 | 2.767 | 2.048 | 2.772 |
13 | 2.747 | 2.186 | 2.769 | 2.048 | 2.764 |
14 | 2.807 | 2.177 | 2.832 | 2.041 | 2.848 |
15 | 2.822 | 2.157 | 2.831 | 2.047 | 2.851 |
Adsorption Site | Central Site | Total | |
---|---|---|---|
Au | −0.06 | 0.09 | 0.00 |
Au | −0.08 | 0.08 | 0.00 |
Au/TiO(101) | 0.06 | 0.03 | 0.23 |
Au/MgO(001) | −0.31 | −0.13 | −1.16 |
Au/MgO(001) | −0.36 | −0.11 | −1.88 |
Au/MgO(001) | −0.23 | −0.21 | −0.44 |
Au/MgO(001) | −0.30 | −0.20 | −0.80 |
Au/MgO(001) | −0.39 | −0.18 | −1.01 |
Au/MgO(001) | −0.35 | −0.12 | −1.36 |
Au/MgO(001) | −0.37 | −0.11 | −1.66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Ren, Y.; Han, Q.; Wen, H.; Jiang, Z. Influences of MgO(001) and TiO2(101) Supports on the Structures and Properties of Au Nanoclusters. Catalysts 2020, 10, 16. https://doi.org/10.3390/catal10010016
Gao J, Ren Y, Han Q, Wen H, Jiang Z. Influences of MgO(001) and TiO2(101) Supports on the Structures and Properties of Au Nanoclusters. Catalysts. 2020; 10(1):16. https://doi.org/10.3390/catal10010016
Chicago/Turabian StyleGao, Jinhua, Yuehong Ren, Qingzhen Han, Hao Wen, and Zhaotan Jiang. 2020. "Influences of MgO(001) and TiO2(101) Supports on the Structures and Properties of Au Nanoclusters" Catalysts 10, no. 1: 16. https://doi.org/10.3390/catal10010016
APA StyleGao, J., Ren, Y., Han, Q., Wen, H., & Jiang, Z. (2020). Influences of MgO(001) and TiO2(101) Supports on the Structures and Properties of Au Nanoclusters. Catalysts, 10(1), 16. https://doi.org/10.3390/catal10010016