Recent Advances in Niobium-Based Materials for Photocatalytic Solar Fuel Production
Abstract
:1. Introduction
2. H2 Evolution and Water Splitting
2.1. Niobium Pentoxide (Nb2O5)
2.2. Niobium Layered Compounds
2.3. Nb-Doped Materials
3. Photoreduction of CO2
Artificial Photosynthesis
4. Concluding Remarks and Perspectives
Funding
Conflicts of Interest
References
- BP Statistical Review of World Energy. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (accessed on 13 November 2019).
- Christoforidis, K.C.; Fornasiero, P. Photocatalysis for Hydrogen Production and CO2 Reduction: The Case of Copper-Catalysts. ChemCatChem 2019, 11, 368–382. [Google Scholar] [CrossRef]
- Li, K.; Peng, B.; Peng, T.Y. Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catal. 2016, 6, 7485–7527. [Google Scholar] [CrossRef]
- Kim, J.H.; Hansora, D.; Sharma, P.; Jang, J.W.; Lee, J.S. Toward practical solar hydrogen production—An artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48, 1908–1971. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Nico, C.; Monteiro, T.; Graça, M.P.F. Niobium oxides and niobates physical properties: Review and prospects. Prog. Mater. Sci. 2016, 80, 1–37. [Google Scholar] [CrossRef]
- Lopes, O.F.; de Mendonça, V.R.; Silva, F.B.F.; Paris, E.C.; Ribeiro, C. Niobium oxides: An overview of the synthesis of Nb2O5 and its application in heterogeneous photocatalysis. Quim. Nova 2014, 38, 106–117. [Google Scholar] [CrossRef]
- Nunes, B.N.; Faustino, L.A.; Muller, A.V.; Polo, A.S.; Patrocinio, A.O.T. Nb2O5 dye-sensitized solar cells. In Nanomaterials for Solar Cell Application, 2nd ed.; Thomas, S., Sakho, E.H.M., Kalarikkal, N., Oluwafemi, S.O., Wu, J., Eds.; Elsevier: Oxford, UK, 2019; pp. 287–322. [Google Scholar]
- Nowak, I.; Ziolek, M. Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis. Chem. Rev. 1999, 99, 3603–3624. [Google Scholar] [CrossRef]
- Ziolek, M. Niobium-containing catalysts—The state of the art. Catal. Today 2003, 78, 47–64. [Google Scholar] [CrossRef]
- Bizeto, M.A.; Shiguihara, A.L.; Constantino, V.R.L. Layered niobate nanosheets: Building blocks for advanced materials assembly. J. Mater. Chem. 2009, 19, 2512–2525. [Google Scholar] [CrossRef]
- Sarahan, M.C.; Carroll, E.C.; Allen, M.; Larsen, D.S.; Browning, N.D.; Osterloh, F.E. K4Nb6O17-derived photocatalysts for hydrogen evolution from water: Nanoscrolls versus nanosheets. J. Solid State Chem. 2008, 181, 1678–1683. [Google Scholar] [CrossRef]
- Ebina, Y.; Sasaki, T.; Watanabe, M. Study on exfoliation of layered perovskite-type niobates. Solid State Ion. 2002, 151, 177–182. [Google Scholar] [CrossRef]
- Shiguihara, A.L.; Bizeto, M.A.; Constantino, V.R.L. Exfoliation of layered hexaniobate in tetra(n-butyl)ammonium hydroxide aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2007, 295, 123–129. [Google Scholar] [CrossRef]
- Ravishankar, T.N.; Vaz, M.d.O.; Ramakrishnappa, T.; Teixeira, S.R.; Dupont, J. Ionic liquid–assisted hydrothermal synthesis of Nb/TiO2 nanocomposites for efficient photocatalytic hydrogen production and photodecolorization of Rhodamine B under UV-visible and visible light illuminations. Mater. Today Chem. 2019, 12, 373–385. [Google Scholar] [CrossRef]
- Yang, M.; Kim, D.; Jha, H.; Lee, K.; Paul, J.; Schmuki, P. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem. Commun. 2011, 47, 2032–2034. [Google Scholar] [CrossRef]
- Emeline, A.V.; Furubayashi, Y.; Zhang, X.; Jin, M.; Murakami, T.; Fujishima, A. Photoelectrochemical behavior of Nb-doped TiO2 electrodes. J. Phys. Chem. B 2005, 109, 24441–24444. [Google Scholar] [CrossRef]
- Singh, R.; Ryu, I.; Yadav, H.; Park, J.; Jo, J.W.; Yim, S.; Lee, J.J. Non-hydrolytic sol-gel route to synthesize TiO2 nanoparticles under ambient condition for highly efficient and stable perovskite solar cells. Sol. Energy 2019, 185, 307–314. [Google Scholar] [CrossRef]
- El-Shazly, T.S.; Hassan, W.M.I.; Abdel Rahim, S.T.; Allam, N.K. Unravelling the interplay of dopant concentration and band structure engineering of monoclinic niobium pentoxide: A model photoanode for water splitting. Int. J. Hydrogen Energy 2015, 40, 13867–13875. [Google Scholar] [CrossRef]
- Kulkarni, A.K.; Praveen, C.S.; Sethi, Y.A.; Panmand, R.P.; Arbuj, S.S.; Naik, S.D.; Ghule, A.V.; Kale, B.B. Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Trans. 2017, 46, 14859–14868. [Google Scholar] [CrossRef]
- Huang, Q.Z.; Wang, J.C.; Wang, P.P.; Yao, H.C.; Li, Z.J. In-situ growth of mesoporous Nb2O5 microspheres on g-C3N4 nanosheets for enhanced photocatalytic H2 evolution under visible light irradiation. Int. J. Hydrogen Energy 2017, 42, 6683–6694. [Google Scholar] [CrossRef]
- Wen, P.H.; Ai, L.L.; Liu, T.T.; Hu, D.W.; Yao, F.Y. Hydrothermal topological synthesis and photocatalyst performance of orthorhombic Nb2O5 rectangle nanosheet crystals with dominantly exposed (010) facet. Mater. Des. 2017, 117, 346–352. [Google Scholar] [CrossRef]
- Wen, P.H.; Ai, L.L.; Wei, F.Y.; Hu, D.W.; Guo, J.J.; Yao, F.Y.; Liu, T.T. In-situ synthesis of crystalline Ag-Nb2O5 nanobelt clusters with enhanced solar photo-electrochemical performance for splitting water. Mater. Des. 2017, 131, 219–225. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, R.; Yang, G.; Meng, X.; Wu, L.Z.; Tung, C.H.; Zhang, T. Spatial separation of charge carriers in Nb2O5 nanorod superstructures for enhanced photocatalytic H2 production activity. Mater. Today Chem. 2018, 10, 259–263. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Zhao, X.F.; Lin, J.N.; Li, N.; Huo, Z.Y.; Yan, Z.F.; Zhang, M.; Hu, S. Narrow-bandgap Nb2O5 nanowires with enclosed pores as high-performance photocatalyst. Sci. China Mater. 2019, 62, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Islam, R.; Pramanik, D.; Saraswat, K. On the limit of defect doping in transition metal oxides. J. Vac. Sci. Technol. A 2019, 37. [Google Scholar] [CrossRef]
- Zhao, W.L.; Zhao, W.; Zhu, G.L.; Lin, T.Q.; Xu, F.F.; Huang, F.Q. Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity. Dalton Trans. 2016, 45, 3888–3894. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhou, J.; Zhou, J.; Zhu, M.S. Structure-retentive synthesis of a highly ordered mesoporous Nb2O5/N-doped graphene nanocomposite with superior interfacial contacts and improved visible-light photocatalysis. Catal. Sci. Technol. 2019, 9, 3373–3379. [Google Scholar] [CrossRef]
- Khan, I.; Baig, N.; Qurashi, A. Graphitic carbon nitride impregnated niobium oxide (g-C3N4/Nb2O5) type (II) heterojunctions and its synergetic solar-driven hydrogen generation. ACS Appl. Energy Mater. 2019, 2, 607–615. [Google Scholar] [CrossRef]
- Idrees, F.; Dillert, R.; Bahnemann, D.; Butt, F.; Tahir, M. In-Situ Synthesis of Nb2O5/g-C3N4 Heterostructures as Highly Efficient Photocatalysts for Molecular H2 Evolution under Solar Illumination. Catalysts 2019, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Nunes, B.N.; Patrocinio, A.O.T.; Bahnemann, D.W. Influence of the preparation conditions on the morphology and photocatalytic performance Pt-modified hexaniobate composites. J. Phys. Condens. Matter 2019, 31, 394001. [Google Scholar] [CrossRef]
- Reisman, A.; Holtzberg, F. Phase Equilibria in the System K2CO3-Nb2O5 by the Method of Differential Thermal Analysis. J. Am. Chem. Soc. 1955, 77, 2115–2119. [Google Scholar] [CrossRef]
- Nassau, K.; Shiever, J.W.; Bernstein, J.L. Crystal Growth and Properties of Nica-Like Potassium Niobates. J. Electrochem. Soc. 1969, 116, 348–353. [Google Scholar] [CrossRef]
- Dion, M.; Ganne, M.; Tournoux, M. Nouvelles familles de phases MIMII2Nb3O10 a feuillets “perovskites”. Mater. Res. Bull. 1981, 16, 1429–1435. [Google Scholar] [CrossRef]
- Jacobson, A.J.; Johnson, J.W.; Lewandowski, J.T. Interlayer Chemistry between Thick Transition-Metal Oxide Layers: Synthesis and Intercalation Reactions of K[Ca2Nan-3NbnO3n+1] (3 ≤ n ≤ 7). Inorg. Chem. 1985, 24, 3727–3729. [Google Scholar] [CrossRef]
- Nunes, B.N.; Haisch, C.; Emeline, A.V.; Bahnemann, D.W.; Patrocinio, A.O.T. Photocatalytic properties of layer-by-layer thin films of hexaniobate nanoscrolls. Catal. Today 2019, 326, 60–67. [Google Scholar] [CrossRef]
- Oshima, T.; Lu, D.; Maeda, K. Preparation of Pt-Intercalated KCa2Nb3O10 Nanosheets and Their Photocatalytic Activity for Overall Water Splitting. ChemNanoMat 2016, 2, 748–755. [Google Scholar] [CrossRef]
- Kulischow, N.; Ladasiu, C.; Marschall, R. Layered Dion-Jacobson type niobium oxides for photocatalytic hydrogen production prepared via molten salt synthesis. Catal. Today 2017, 287, 65–69. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Wen, T.; Guo, Y.Z.; Yang, B.C.; Wang, Y.G. Controllable doping of nitrogen and tetravalent niobium affords yellow and black calcium niobate nanosheets for enhanced photocatalytic hydrogen evolution. RSC Adv. 2016, 6, 64930–64936. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Wen, T.; Zhang, X.F.; Chang, B.B.; Kong, W.Q.; Guo, Y.Z.; Yang, B.C.; Wang, Y.G. A Multiple Structure-Design Strategy towards Ultrathin Niobate Perovskite Nanosheets with Thickness-Dependent Photocatalytic Hydrogen-Evolution Performance. Chem. Asian J. 2017, 12, 2727–2733. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.H.; Jing, K.Q.; Zou, J.H.; Liang, S.J.; Wu, L. A hybrid of CdS/HCa2Nb3O10 ultrathin nanosheets for promoting photocatalytic hydrogen evolution. Dalton Trans. 2017, 46, 13935–13942. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.C.; Li, G.S.; Zong, S.C.; Shi, J.W.; Guo, L.J. Self-assembled nanohybrid of cadmium sulfide and calcium niobate: Photocatalyst with enhanced charge separation for efficient visible light induced hydrogen generation. Catal. Today 2018, 315, 117–125. [Google Scholar] [CrossRef]
- Xiong, J.H.; Liu, Y.H.; Liang, S.J.; Zhang, S.Y.; Li, Y.H.; Wu, L. Insights into the role of Cu in promoting photocatalytic hydrogen production over ultrathin HNb3O8 nanosheets. J. Catal. 2016, 342, 98–104. [Google Scholar] [CrossRef]
- Xia, Y.Z.; Liang, S.J.; Wu, L.; Wang, X.X. Ultrasmall NiS decorated HNb3O8 nanosheeets as highly efficient photocatalyst for H2 evolution reaction. Catal. Today 2019, 330, 195–202. [Google Scholar] [CrossRef]
- Wang, J.J.; Teng, J.; Pu, L.Z.; Huang, J.; Wang, Y.; Li, Q.X. Double-hole-mediated coupling of anionic dopants in perovskite NaNbO3 for efficient solar water splitting. Int. J. Quantum Chem. 2019, 119, e25930. [Google Scholar] [CrossRef]
- Kaneko, M.; Mishima, K.; Yamashita, K. First-principles study on visible light absorption of defected SrNbO3. J. Photochem. Photobiol. A Chem. 2019, 375, 175–180. [Google Scholar] [CrossRef]
- Yu, J.X.; Chen, Z.Q.; Chen, Q.Q.; Wang, Y.; Lin, H.J.; Hu, X.; Zhao, L.H.; He, Y.M. Giant enhancement of photocatalytic H2 production over KNbO3 photocatalyst obtained via carbon doping and MoS2 decoration. Int. J. Hydrogen Energy 2018, 43, 4347–4354. [Google Scholar] [CrossRef]
- Huang, S.S.; Lang, J.Y.; Du, C.F.; Bian, F.G.; Su, Y.G.; Wang, X.J. Enhanced driving force and charge separation efficiency in disordered SnNbxOy: Boosting photocatalytic activity toward water reduction. Chem. Eng. J. 2017, 309, 313–320. [Google Scholar] [CrossRef]
- Kamimura, S.; Abe, S.; Tsubota, T.; Ohno, T. Solar-driven H2 evolution over CuNb2O6: Effect of two polymorphs (monoclinic and orthorhombic) on optical property and photocatalytic activity. J. Photochem. Photobiol. A Chem. 2018, 356, 263–271. [Google Scholar] [CrossRef]
- Chun, Y.T.; Yue, M.F.; Jiang, P.F.; Chen, S.J.; Gao, W.L.; Cong, R.H.; Yang, T. Optimizing the performance of photocatalytic H2 generation for ZnNb2O6 synthesized by a two-step hydrothermal method. RSC Adv. 2018, 8, 13857–13864. [Google Scholar] [CrossRef] [Green Version]
- Betzler, S.B.; Podjaski, F.; Beetz, M.; Handloser, K.; Wisnet, A.; Handloser, M.; Hartschuh, A.; Lotsch, B.V.; Scheu, C. Titanium Doping and Its Effect on the Morphology of Three-Dimensional Hierarchical Nb3O7(OH) Nanostructures for Enhanced Light-Induced Water Splitting. Chem. Mater. 2016, 28, 7666–7672. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Hui, D.P.; Li, Y.X.; Zhao, H.; Wang, C.Y. Synthesis and photocatalytic hydrogen production activity of the Ni-CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7 hybrid layered perovskite. Chin. J. Catal. 2017, 38, 2039–2047. [Google Scholar] [CrossRef]
- Grodziuk, G.Y.; Shcherban, N.D.; Shvalagin, V.V.; Korzhak, A.V.; Andryushina, N.S.; Skoryk, M.A.; Kuchmiy, S.Y. Photocatalytic activity of nanostructured composites based on layered niobates and C3N4 in the hydrogen evolution reaction from electron donor solutions under visible light. Int. J. Hydrogen Energy 2017, 42, 24108–24116. [Google Scholar] [CrossRef]
- Thaweesak, S.; Lyu, M.; Peerakiatkhajohn, P.; Butburee, T.; Luo, B.; Chen, H.J.; Wang, L.Z. Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2017, 202, 184–190. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Li, J.; Zhang, G. Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation. Appl. Catal. B Environ. 2019, 263, 117730. [Google Scholar] [CrossRef]
- Chen, P.F.; Xing, P.X.; Chen, Z.Q.; Hu, X.; Lin, H.J.; Zhao, L.H.; He, Y.M. In-situ synthesis of AgNbO3/g-C3N4 photocatalyst via microwave heating method for efficiently photocatalytic H2 generation. J. Colloid Interface Sci. 2019, 534, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Q.; Chen, P.F.; Xing, P.X.; Hu, X.; Lin, H.J.; Wu, Y.; Zhao, L.H.; He, Y.M. Rapid fabrication of KTa0.75Nb0.25/g-C3N4 composite via microwave heating for efficient photocatalytic H2 evolution. Fuel 2019, 241, 1–11. [Google Scholar] [CrossRef]
- Fujito, H.; Kunioku, H.; Kato, D.; Suzuki, H.; Higashi, M.; Kageyama, H.; Abe, R. Layered Perovskite Oxychloride Bi4NbO8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting. J. Am. Chem. Soc. 2016, 138, 2082–2085. [Google Scholar] [CrossRef]
- Wakayama, H.; Hibino, K.; Fujii, K.; Oshima, T.; Yanagisawa, K.; Kobayashi, Y.; Kimoto, K.; Yashima, M.; Maeda, K. Synthesis of a Layered Niobium Oxynitride, Rb2NdNb2O6NH2O, Showing Visible-Light Photocatalytic Activity for H2 Evolution. Inorg. Chem. 2019, 58, 6161–6166. [Google Scholar] [CrossRef]
- Tian, Z.L.; Cui, H.L.; Xu, J.J.; Zhu, G.L.; Shao, F.; He, J.Q.; Huang, F.Q. Efficient Charge Separation of In-Situ Nb-Doped TiO2 Nanowires for Photoelectrochemical Water–splitting. ChemistrySelect 2017, 2, 2822–2827. [Google Scholar] [CrossRef]
- Kong, L.; Wang, C.H.; Zheng, H.; Zhang, X.T.; Liu, Y.C. Defect-Induced Yellow Color in Nb-Doped TiO2 and Its Impact on Visible-Light Photocatalysis. J. Phys. Chem. C 2015, 119, 16623–16632. [Google Scholar] [CrossRef]
- Caudillo-Flores, U.; Muñoz-Batista, M.J.; Cortés, J.A.; Fernández-García, M.; Kubacka, A. UV and visible light driven H2 photo-production using Nb-doped TiO2: Comparing Pt and Pd co-catalysts. Mol. Catal. 2017, 437, 1–10. [Google Scholar] [CrossRef]
- Flores, E.; Ares, J.R.; Sánchez, C.; Ferrer, I.J. Ternary transition titanium-niobium trisulfide as photoanode for assisted water splitting. Catal. Today 2019, 321–322, 107–112. [Google Scholar] [CrossRef]
- Zoellner, B.; O’Donnell, S.; Wu, Z.; Itanze, D.; Carbone, A.; Osterloh, F.E.; Geyer, S.; Maggard, P.A. Impact of Nb(V) Substitution on the Structure and Optical and Photoelectrochemical Properties of the Cu5(Ta1−xNbx)11O30 Solid Solution. Inorg. Chem. 2019, 58, 6845–6857. [Google Scholar] [CrossRef] [PubMed]
- Thanh Truc, N.T.; Tran, D.T.; Hanh, N.T.; Pham, T.D. Novel visible light-driven Nb-doped Ta3N5 sensitized/protected by PPy for efficient overall water splitting. Int. J. Hydrogen Energy 2018, 43, 15898–15906. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Chen, P.F.; Xing, P.X.; Hu, X.; Lin, H.J.; Wu, Y.; Zhao, L.H.; He, Y.M. Novel carbon modified KTa0.75Nb0.25O3 nanocubes with excellent efficiency in photocatalytic H2 evolution. Fuel 2018, 233, 486–496. [Google Scholar] [CrossRef]
- Monfort, O.; Sfaelou, S.; Satrapinskyy, L.; Plecenik, T.; Roch, T.; Plesch, G.; Lianos, P. Comparative study between pristine and Nb-modified BiVO4 films employed for photoelectrocatalytic production of H2 by water splitting and for photocatalytic degradation of organic pollutants under simulated solar light. Catal. Today 2017, 280, 51–57. [Google Scholar] [CrossRef]
- Fontelles-Carceller, O.; Muñoz-Batista, M.J.; Conesa, J.C.; Kubacka, A.; Fernández-García, M. H2 photo-production from methanol, ethanol and 2-propanol: Pt-(Nb)TiO2 performance under UV and visible light. Mol. Catal. 2018, 446, 88–97. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Yoo, I.H.; Cho, I.S.; Seo, H. Niobium incorporated WO3 nanotriangles: Band edge insights and improved photoelectrochemical water splitting activity. Ceram. Int. 2019, 45, 8157–8165. [Google Scholar] [CrossRef]
- Patel, P.P.; Hanumantha, P.J.; Velikokhatnyi, O.I.; Datta, M.K.; Gattu, B.; Poston, J.A.; Manivannan, A.; Kumta, P.N. Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes—Robust photoanodes for hydrogen generation by photoelectrochemical water splitting. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2016, 208, 1–14. [Google Scholar] [CrossRef] [Green Version]
- IPCC The Intergovernmental Panel on Climate Change. Available online: http://www.ipcc.ch/ (accessed on 20 November 2019).
- Lim, C.H.; Holder, A.M.; Hynes, J.T.; Musgrave, C.B. Catalytic Reduction of CO2 by Renewable Organohydrides. J. Phys. Chem. Lett. 2015, 6, 5078–5092. [Google Scholar] [CrossRef]
- Mondal, B.; Song, J.; Neese, F.; Ye, S. Bio-inspired mechanistic insights into CO2 reduction. Curr. Opin. Chem. Biol. 2015, 25, 103–109. [Google Scholar] [CrossRef]
- Mao, Z.Y.; Chen, J.J.; Yang, Y.F.; Wang, D.J.; Bie, L.J.; Fahlman, B.D. Novel g-C3N4/CoO Nanocomposites with Significantly Enhanced Visible-Light Photocatalytic Activity for H2 Evolution. ACS Appl. Mater. Interfaces 2017, 9, 12427–12435. [Google Scholar] [CrossRef]
- Gutierrez-Guerra, N.; Moreno-Lopez, L.; Serrano-Ruiz, J.C.; Valverde, J.L.; de Lucas-Consuegra, A. Gas phase electrocatalytic conversion of CO2 to syn-fuels on Cu based catalysts-electrodes. Appl. Catal. B Environ. 2016, 188, 272–282. [Google Scholar] [CrossRef]
- Ciamician, G. The Photochemistry of the Future. Science 1912, 36, 385–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638. [Google Scholar] [CrossRef]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon dioxide capture: Prospects for new materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauffman, D.R.; Thakkar, J.; Siva, R.; Matranga, C.; Ohodnicki, P.R.; Zeng, C.; Jin, R. Efficient Electrochemical CO2 Conversion Powered by Renewable Energy. ACS Appl. Mater. Interfaces 2015, 7, 15626–15632. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.C.; Senanayake, S.D.; Zhang, Y.; Xu, W.Q.; Polyansky, D.E. Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for CO2 Electroreduction. ACS Catal. 2015, 5349–5356. [Google Scholar] [CrossRef]
- Kortlever, R.; Shen, J.; Schouten, K.J.P.; Calle-Vallejo, F.; Koper, M.T.M. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, X.L.; Jia, Y.S.; Chen, X.B.; Han, H.X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987–10043. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Shi, H.F.; Wang, T.Z.; Chen, J.; Zhu, C.; Ye, J.H.; Zou, Z.G. Photoreduction of carbon dioxide over NaNbO3 nanostructured photocatalysts. Catal. Lett. 2011, 141, 525–530. [Google Scholar] [CrossRef]
- Li, P.; Ouyang, S.; Zhang, Y.J.; Kako, T.; Ye, J.H. Surface-coordination-induced selective synthesis of cubic and orthorhombic NaNbO3 and their photocatalytic properties. J. Mater. Chem. A 2013, 1, 1185–1191. [Google Scholar] [CrossRef]
- Li, P.; Ouyang, S.; Xi, G.C.; Kako, T.; Ye, J.H. The Effects of Crystal Structure and Electronic Structure on Photocatalytic H2 Evolution and CO2 Reduction over Two Phases of Perovskite-Structured NaNbO3. J. Phys. Chem. C 2012, 116, 7621–7628. [Google Scholar] [CrossRef] [Green Version]
- Fresno, F.; Jana, P.; Reñones, P.; Coronado, J.M.; Serrano, D.P.; De La Peña O’Shea, V.A. CO2 reduction over NaNbO3 and NaTaO3 perovskite photocatalysts. Photochem. Photobiol. Sci. 2017, 16, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. J. Catal. 2001, 86, 82–86. [Google Scholar] [CrossRef]
- Li, P.; Xu, H.; Liu, L.Q.; Kako, T.; Umezawa, N.; Abe, H.; Ye, J.H. Constructing cubic-orthorhombic surface-phase junctions of NaNbO3 towards significant enhancement of CO2 photoreduction. J. Mater. Chem. A 2014, 2, 5606–5609. [Google Scholar] [CrossRef]
- Low, J.X.; Cao, S.W.; Yu, J.G.; Wageh, S. Two-dimensional layered composite photocatalysts. Chem. Commun. 2014, 50, 10768–10777. [Google Scholar] [CrossRef]
- Li, X.K.; Kikugawa, N.; Ye, J.H. Nitrogen-doped lamellar niobic acid with visible light-responsive photocatalytic activity. Adv. Mater. 2008, 20, 3816–3819. [Google Scholar] [CrossRef]
- Li, X.K.; Pan, H.Q.; Li, W.; Zhuang, Z.J. Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts. Appl. Catal. A Gen. 2012, 413–414, 103–108. [Google Scholar] [CrossRef]
- Li, X.K.; Li, W.; Zhuang, Z.J.; Zhong, Y.S.; Li, Q.; Wang, L.Y. Photocatalytic Reduction of Carbon Dioxide to Methane over SiO2-Pillared HNb3O8. J. Phys. Chem. C 2012, 116, 16047–16053. [Google Scholar] [CrossRef]
- Kormányos, A.; Thomas, A.; Huda, M.N.; Sarker, P.; Liu, J.P.; Poudyal, N.; Janáky, C.; Rajeshwar, K. Solution Combustion Synthesis, Characterization, and Photoelectrochemistry of CuNb2O6 and ZnNb2O6 Nanoparticles. J. Phys. Chem. C 2016, 120, 16024–16034. [Google Scholar] [CrossRef] [Green Version]
- da Silva, G.T.S.T.; Nogueira, A.E.; Oliveira, J.A.; Torres, J.A.; Lopes, O.F.; Ribeiro, C. Acidic surface niobium pentoxide is catalytic active for CO2 photoreduction. Appl. Catal. B Environ. 2019, 242, 349–357. [Google Scholar] [CrossRef]
- Shi, H.F.; Chen, G.Q.; Zhang, C.L.; Zou, Z.G. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal. 2014, 4, 3637–3643. [Google Scholar] [CrossRef]
- Shi, H.F.; Zhang, C.L.; Zhou, C.P.; Chen, G.Q. Conversion of CO2 into renewable fuel over Pt-g-C3N4/KNbO3 composite photocatalyst. RSC Adv. 2015, 5, 93615–93622. [Google Scholar] [CrossRef]
- Yu, H.J.; Li, J.Y.; Zhang, Y.H.; Yang, S.Q.; Han, K.; Dong, F.; Ma, T.Y.; Huang, H.W. Three-in-One Oxygen Vacancies: Whole Visible-Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO2 Photoreduction. Angew. Chem. Int. Ed. 2019, 58, 3880–3884. [Google Scholar] [CrossRef]
- Yang, X.Y.; Min, Y.X.; Li, S.B.; Wang, D.W.; Mei, Z.W.; Liang, J.; Pan, F. Conductive Nb-doped TiO2 thin films with whole visible absorption to degrade pollutants. Catal. Sci. Technol. 2018, 8, 1357–1365. [Google Scholar] [CrossRef]
- Mattsson, A.; Leideborg, M.; Larsson, K.; Westing, G.; Österlund, L. Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. J. Phys. Chem. B 2006, 110, 1210–1220. [Google Scholar] [CrossRef]
- Yang, J.K.; Zhang, X.T.; Wang, C.H.; Sun, P.P.; Wang, L.L.; Xia, B.; Liu, Y.C. Solar photocatalytic activities of porous Nb-doped TiO2 microspheres prepared by ultrasonic spray pyrolysis. Solid State Sci. 2012, 14, 139–144. [Google Scholar] [CrossRef]
- Nogueira, M.V.; Lustosa, G.M.M.M.; Kobayakawa, Y.; Kogler, W.; Ruiz, M.; Monteiro Filho, E.S.; Zaghete, M.A.; Perazolli, L.A. Nb-Doped TiO2 Photocatalysts Used to Reduction of CO2 to Methanol. Adv. Mater. Sci. Eng. 2018, 2018, 7326240. [Google Scholar] [CrossRef] [Green Version]
- Thanh Truc, N.T.; Giang Bach, L.; Thi Hanh, N.; Pham, T.D.; Thi Phuong Le Chi, N.; Tran, D.T.; Nguyen, M.V.; Nguyen, V.N. The superior photocatalytic activity of Nb doped TiO2/g-C3N4 direct Z-scheme system for efficient conversion of CO2 into valuable fuels. J. Colloid Interface Sci. 2019, 540, 1–8. [Google Scholar] [CrossRef]
- Faustino, L.A.; Souza, B.L.; Nunes, B.N.; Duong, A.T.; Sieland, F.; Bahnemann, D.W.; Patrocinio, A.O.T. Photocatalytic CO2 Reduction by Re(I) Polypyridyl Complexes Immobilized on Niobates Nanoscrolls. ACS Sustain. Chem. Eng. 2018, 6, 6073–6083. [Google Scholar] [CrossRef]
Niobate | Co-Catalyst | Light Source | Sacrificial Reagent | H2 Formation Rate | Ref. |
---|---|---|---|---|---|
HCa2Nb3O10 | CdS, Pt | 300 W Xe, >400 nm | Lactic acid | 52.6 μmol h−1 | [41] |
HCa2Nb3O10 | CdS | 300 W Xe, >420 nm | methanol | 450 μmol g−1 h−1 | [42] |
HNb3O8 | Cu2+ | 300 W Xe | methanol | 98.2 µmol h−1 | [43] |
HNb3O8 | NiS | 300 W Xe | triethanolamine | 1519.4 μmol g−1 h−1 | [44] |
C-doped KNbO3 | MoS2, Pt | 300 W Xe | methanol | 1300 µmol g−1 h−1 | [47] |
H1.78Sr0.78Bi0.22Nb2O7 | Ni-CH3CH2NH2 | 300 W Xe | methanol | 372.67 μmol h−1 | [52] |
KNb3O8 | g-C3N4 | 1000 W Hg λ > 400 nm | dimethylhydrazine | 25.0 µmol h−1 g−1 | [53] |
K3H3Nb10.8O30 | g-C3N4 | 1000 W Hg λ > 400 nm | dimethylhydrazine | 27.0 µmol h−1 g−1 | [53] |
HNb3O8 | g-C3N4 | 1000 W Hg λ > 400 nm | dimethylhydrazine | 37.0 µmol h−1 g−1 | [53] |
Ca2Nb2TaO10 | g-C3N4, Pt | 300 W Xe, >400 nm | triethanolamine | 43.54 µmol h−1 | [54] |
Ba5Nb4O15 | g-C3N4 | 3 W LEDs 420 nm | oxalic acid | 2673 μmol h−1 g−1 | [55] |
AgNbO3 | g-C3N4, Pt | 300 W Xe, >420 nm | methanol | 88.0 µmol g−1 h−1 | [56] |
KTa0.75Nb0.25O3 | g-C3N4, Pt | 300 W Xe, >420 nm | methanol | 86.2 μmol·g−1·h−1 | [57] |
Semiconductor | Co-Catalyst | Light Source | Sacrificial Reagent | H2 Rate | Ref. |
---|---|---|---|---|---|
TiO2 | - | 300 W Xe > 420 nm | ethanol | 1146 µmol g−1 | [15] |
TiO2 | Pd | 500 W Hg-Xe 420–680 nm | methanol | ~0.6 mmol g−1 h−1 | [62] |
TiO2 | Pt | 500 W Hg-Xe 420–680 nm | methanol | ~0.1 mmol g−1 h−1 | [62] |
TiS3 | - | 200 W halogen | Na2SO3 (electrolyte) | 2.2 μmol min−1·cm2 | [63] |
Cu5Ta11O30 | Pt | 1000 W Xe arc > 420 nm | methanol | 6 μmol h−1 | [64] |
Ta3N5 | - | 400–700 nm | water | 41.4 µmol g−1 h−1 | [65] |
KTaO3 | Pt | 300 W Xe | methanol | 728 µmol g−1 h−1 | [66] |
BiVO4 | - | 100 mW cm−2Xe | NaHCO3 (electrolyte) | 0.18 mmol h−1 | [67] |
Reactions | E (V vs. RHE) |
---|---|
CO2 + 2e− + 2H+ → CO + H2O | −0.53 |
CO2 + 2e− + 2H+ → HCOOH | −0.61 |
CO2 + 4e− + 4H+ → HCOH + H2O | −0.48 |
CO2 + 6e− + 6H+ → CH3OH + H2O | −0.38 |
CO2 + 8e− + 8H+ → CH4 + 2H2O | −0.24 |
Nb-Based Material | Co-Catalyst | Light Source | Main Products | Observed Rate | Ref. |
---|---|---|---|---|---|
NaNbO3 | Pt | 300 W Xe | CH4 | 653 ppm h−1 g−1 | [84] |
NaNbO3 | Pt | 300 W Xe > 300 nm | CH4 | 10.4 μmol h−1 m−2 | [85] |
NaNbO3 | None | 300 W Xe > 420 nm | CO, CH4, CH3OH, H2 | NA | [87] |
NaNbO3 heterojunction | Pt | 300 W Xe > 300 nm | CH4 | ~10 μmol h−1 m−2 | [89] |
HNb3O8 | None | 350 W Xe | CH4 | 3.5 μmol g−1 h−1 | [92] |
SiO2-Pillared HNb3O8 | Pt | 350 W Xe | CH4 | 2.90 µmol g−1 h−1 | [93] |
Nb2O5 | None | UVC lamp, 0.167 mW cm−2 | CO, CH4, CH3COOH, HCOOH | ~10 μmol L−1 g−1 | [95] |
C3N4/NaNbO3 | None | 300 W Xe λ > 420 nm | CH4 | ~6 µmol h−1 g−1 | [96] |
C3N4/KNbO3 | Pt | 300 W Xe λ > 420 nm | CH4 | 0.25 µmol h−1 | [97] |
Re(I) polypyridyl complexes/KxH4−xNb6O17 | None | 300 W Xe λ > 420 nm | CO | 2.9 * | [104] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, B.N.; Lopes, O.F.; Patrocinio, A.O.T.; Bahnemann, D.W. Recent Advances in Niobium-Based Materials for Photocatalytic Solar Fuel Production. Catalysts 2020, 10, 126. https://doi.org/10.3390/catal10010126
Nunes BN, Lopes OF, Patrocinio AOT, Bahnemann DW. Recent Advances in Niobium-Based Materials for Photocatalytic Solar Fuel Production. Catalysts. 2020; 10(1):126. https://doi.org/10.3390/catal10010126
Chicago/Turabian StyleNunes, Barbara Nascimento, Osmando Ferreira Lopes, Antonio Otavio T. Patrocinio, and Detlef W. Bahnemann. 2020. "Recent Advances in Niobium-Based Materials for Photocatalytic Solar Fuel Production" Catalysts 10, no. 1: 126. https://doi.org/10.3390/catal10010126
APA StyleNunes, B. N., Lopes, O. F., Patrocinio, A. O. T., & Bahnemann, D. W. (2020). Recent Advances in Niobium-Based Materials for Photocatalytic Solar Fuel Production. Catalysts, 10(1), 126. https://doi.org/10.3390/catal10010126