# Evolutionary Game Theory: A Renaissance

## Abstract

**:**

## Table of contents

**1 Introdiction**P. 2

**2 Agency—Who Makes Decisions?**p. 3

**4 Evolution of Behavior**p. 17

**5 Economic Applications**p. 29

**6 The Evolutionary Nash Program**p. 30

**7 Behavioral Dynamics**p. 36

**8 General Methodology**p. 44

**9 Empirics**p. 50

**10 Conclusions**p. 54

## 1. Introduction

#### 1.1. The Shadow of Nash Equilibrium

#### 1.2. Renaissance and the Scope of This Survey

#### 1.3. Structure of the Survey

## 2. Agency—Who Makes Decisions?

“... humans are able to coordinate with others, in a way that other primates seemingly are not, to form a “we” that acts as a kind of plural agent to create everything from a collaborative hunting party to a cultural institution.”—Tomasello[342]

**Open**

**Topic 1.**

#### 2.1. Advances in Methodology

#### 2.1.1. Coalitional Stochastic Stability

#### 2.1.2. Coalitional Logit Choice

#### 2.1.3. Frequent or Infrequent Coalitional Behavior

#### 2.2. Implications of Collective Agency

#### 2.2.1. Coordination Games on Networks.

#### 2.2.2. Matching

#### 2.2.3. Social Choice Rules

#### 2.3. The Evolution of Collective Agency

#### 2.4. Links between Individual and Collective Agency

**Open**

**Topic 2.**

## 3. Assortativity—With Whom Does Interaction Occur?

#### 3.1. Assortativity and Preferences

#### 3.2. Evolution of Assortativity

#### 3.2.1. Individual Types and Assortativity

#### 3.2.2. Institutions that Determine Assortativity

#### 3.2.3. Choosing an Institution

**Open**

**Topic 3.**

#### 3.3. Generalized Assortative Matching Protocols

#### 3.4. Conditional Dissociation

#### 3.5. Network Formation

## 4. Evolution of Behavior

#### 4.1. Evolution of Traits

#### 4.1.1. Self-Confirming Beliefs

#### 4.1.2. Level k Thinking

#### 4.1.3. Foresight

#### 4.1.4. Competing Cognition

#### 4.1.5. Biases: Overconfidence and Endowment Effects

**Open**

**Topic 4.**

**Open**

**Topic 5.**

#### 4.2. Conventions—Culture Embodied in Society

#### 4.2.1. Perturbed Dynamics and Stochastic Stability

#### 4.2.2. Coordination Games

#### 4.2.3. Communication and Language

#### 4.2.4. Best Shot and Minimum Effort Games

#### 4.2.5. Cournot Oligopoly

#### 4.2.6. Prisoner’s Dilemmas

#### 4.3. Culture Embodied in Individuals

#### 4.4. Interaction of Culture Embodied in Individuals and Society

## 5. Economic Applications

#### 5.1. Macroeconomics, Market Selection and Finance

#### 5.2. Industrial Organization

## 6. The Evolutionary Nash Program

#### 6.1. Recontracting and Nash Demand Games

**Open**

**Topic 6.**

#### 6.2. Transferable Utility Matching—The Assignment Game

#### 6.3. Non-Transferable Utility Matching—Marriage, College Admissions

**Open**

**Topic 7.**

#### 6.4. Bargaining Solutions and Coordination Games

## 7. Behavioral Dynamics

#### 7.1. Reinforcement Learning

#### 7.2. Imitation

#### 7.3. Sampling Equilibrium and Best Experienced Payoff Dynamics

#### 7.4. Best and Better Response

**Open Topic 8.**There is broad scope to develop dynamics that incorporate multiple agency (Section 2) for continuum populations. Such models will answer questions such as: (i) What are sensible ways to model multiple agency (e.g., coalitional updating) in an environment in which interaction is driven by random matching? (ii) When will the presence of multiple agency give different results to individualistic models and when will it make no difference?

#### 7.5. Continuous Strategy Sets

#### 7.6. Completely Uncoupled Dynamics

**NP**problems are the class of problems whose answers can be verified in polynomial time. Daskalakis et al. [95] show that finding a (possibly mixed) Nash equilibrium belongs to a class of problems that they call

**PPAD**-complete, a subset of

**NP**problems. One distinguishing feature of

**PPAD**is that a solution is known to exist for such problems. For example, it is known that a mixed strategy Nash equilibrium exists for finite games (Nash [247]). It is very likely that

**PPAD**is not a subset of the class of problems $\mathbf{P}$ that can be solved by an algorithm that runs in polynomial time (see discussion in Daskalakis et al. [95]).

## 8. General Methodology

#### 8.1. Perturbed Dynamics and Stochastic Stability

#### 8.1.1. Least Cost Transition Paths

#### 8.1.2. Cyclic Decomposition

#### 8.1.3. Convergence Time

#### 8.1.4. Elimination of Weakly Dominated Strategies

#### 8.2. Further Stability Results

#### 8.3. Further Convergence Results

#### 8.4. Distributed control

**Open**

**Topic 9.**

#### 8.5. Software and Simulations

^{®}code (GNU Octave Version 3.4.0 and Gnuplot 4.2.5, Massachusetts Institute of Technology, Cambridge, MA, USA) and documentation publically available for simulating games on networks under coalitional better response dynamics. The full model is a multi-generational group selection model of the evolution of the ability to participate in collective agency (discussed in Section 2.3), but the subroutines that deal with coalitional updating on networks within a single generation build on code written for Newton and Angus [259], which was published without simulations as Newton and Angus [260].

## 9. Empirics

#### 9.1. Best and Better Response

#### 9.2. Imitation

#### 9.3. Completely Uncoupled Dynamics

#### 9.4. Errors in Perturbed Dynamics

**Open**

**Topic 10.**

- (a)
- That the behavior of subjects in context X is approximated by dynamic Y may be non-generic in the sense that small changes to X may lead to the connection being broken. This is one reason, beyond the usual reasons, that replication is important, as any replication will never replicate X exactly (e.g., the weather outside the laboratory will be different). An important question is then the size of the set of contexts containing X that can be approximated by Y. This can be examined by including or excluding elements such as those of Figure 17. Resources permitting, for any positive results (i.e., $X\to Y$ mapping), X can be adjusted until the mapping fails.
- (b)
- Further study of separate attributes and features of decision rules, as discussed in several papers in Section 9.3 and Section 9.4, could be promising. In particular, the cues and information that influence each feature could be studied.
- (c)
- There is much real world time series data that could be considered using evolutionary models.
- (d)
- Theories of the evolution of traits, including preferences, should be tested, as suggested in Open Topic 5.

## 10. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Abbot, P.; Abe, J.; Alcock, J.; Alizon, S.; Alpedrinha, J.A.; Andersson, M.; Andre, J.B.; Van Baalen, M.; Balloux, F.; Balshine, S.; et al. Inclusive fitness theory and eusociality. Nature
**2011**, 471, E1. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Agastya, M. Adaptive Play in Multiplayer Bargaining Situations. Rev. Econ. Stud.
**1997**, 64, 411–426. [Google Scholar] [CrossRef] - Agastya, M. Perturbed Adaptive Dynamics in Coalition Form Games. J. Econ. Theory
**1999**, 89, 207–233. [Google Scholar] [CrossRef] - Alexander, J.; Skyrms, B. Bargaining with Neighbors: Is Justice Contagious? J. Philos.
**1999**, 96, 588–598. [Google Scholar] [CrossRef] - Alger, I.; Weibull, J.W. Kinship, incentives, and evolution. Am. Econ. Rev.
**2010**, 100, 1725–1758. [Google Scholar] [CrossRef] - Alger, I.; Weibull, J.W. A generalization of Hamilton’s rule—Love others how much? J. Theor. Biol.
**2012**, 299, 42–54. [Google Scholar] [CrossRef] [PubMed] - Alger, I.; Weibull, J.W. Homo Moralis–Preference Evolution Under Incomplete Information and Assortative Matching. Econometrica
**2013**, 81, 2269–2302. [Google Scholar] - Alger, I.; Weibull, J.W. Evolution and Kantian morality. Games Econ. Behav.
**2016**, 98, 56–67. [Google Scholar] [CrossRef] - Alós-Ferrer, C.; Ania, A.B. The asset market game. J. Math. Econ.
**2005**, 41, 67–90. [Google Scholar] [CrossRef] - Alos-Ferrer, C.; Ania, A.B. The evolutionary stability of perfectly competitive behavior. Econ. Theory
**2005**, 26, 497–516. [Google Scholar] [CrossRef] - Alós-Ferrer, C.; Buckenmaier, J. Trader matching and the selection of market institutions. J. Math. Econ.
**2017**, 69, 118–127. [Google Scholar] [CrossRef] - Alós-Ferrer, C.; Kirchsteiger, G. General equilibrium and the emergence of (non) market clearing trading institutions. Econ. Theory
**2010**, 44, 339–360. [Google Scholar] [CrossRef] - Alós-Ferrer, C.; Netzer, N. The logit-response dynamics. Games Econ. Behav.
**2010**, 68, 413–427. [Google Scholar] [CrossRef] - Alós-Ferrer, C.; Shi, F. Imitation with asymmetric memory. Econ. Theory
**2012**, 49, 193–215. [Google Scholar] [CrossRef] - Alós-Ferrer, C.; Weidenholzer, S. Imitation and the role of information in overcoming coordination failures. Games Econ. Behav.
**2014**, 87, 397–411. [Google Scholar] [CrossRef] - Alós-Ferrer, C.; Ania, A.; Vega-Redondo, F. An evolutionary model of market structure. In The Theory of Markets; van der Laan, G., Herings, P., Talman, A., Eds.; Number 177 in KNAW Series; North Holland: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Alós-Ferrer, C.; Ania, A.B.; Schenk-Hoppé, K.R. An evolutionary model of Bertrand oligopoly. Games Econ. Behav.
**2000**, 33, 1–19. [Google Scholar] [CrossRef] - Alós-Ferrer, C.; Kirchsteiger, G.; Walzl, M. On the evolution of market institutions: The platform design paradox. Econ. J.
**2010**, 120, 215–243. [Google Scholar] [CrossRef] - Alós-Ferrer, C. Cournot versus Walras in dynamic oligopolies with memory. Int. J. Ind. Organ.
**2004**, 22, 193–217. [Google Scholar] [CrossRef] - Amir, R.; Evstigneev, I.V.; Hens, T.; Schenk-Hoppé, K.R. Market selection and survival of investment strategies. J. Math. Econ.
**2005**, 41, 105–122. [Google Scholar] [CrossRef] - Angus, S.; Masson, V. The Effects of Information and Interactions on Contagion Processes; University of Adelaide: Adelaide, Australia, 2010. [Google Scholar]
- Angus, S.D.; Newton, J. Emergence of Shared Intentionality Is Coupled to the Advance of Cumulative Culture. PLOS Comput. Biol.
**2015**, 11, e1004587. [Google Scholar] [CrossRef] [PubMed] - Argiento, R.; Pemantle, R.; Skyrms, B.; Volkov, S. Learning to signal: Analysis of a micro-level reinforcement model. Stoch. Process. Their Appl.
**2009**, 119, 373–390. [Google Scholar] [CrossRef] - Arieli, I.; Young, H.P. Stochastic learning dynamics and speed of convergence in population games. Econometrica
**2016**, 84, 627–676. [Google Scholar] [CrossRef] - Arnold, T.; Schwalbe, U. Dynamic coalition formation and the core. J. Econ. Behav. Organ.
**2002**, 49, 363–380. [Google Scholar] [CrossRef] - Aumann, R. Acceptable Points in General Cooperative n-Person Games. In Contributions to the Theory of Games IV; Tucker, A.W., Luce, R.D., Eds.; Princeton University Press: Princeton, NJ, USA, 1959; pp. 287–324. [Google Scholar]
- Avrachenkov, K.; Singh, V.V. Stochastic coalitional better-response dynamics and stable equilibrium. Autom. Remote Control
**2016**, 77, 2227–2238. [Google Scholar] [CrossRef] - Babichenko, Y. Completely uncoupled dynamics and Nash equilibria. Games Econ. Behav.
**2012**, 76, 1–14. [Google Scholar] [CrossRef] - Babichenko, Y. Best-Reply Dynamic in Large Aggregative Games; Mimeo: New York, NY, USA, 2013. [Google Scholar]
- Babichenko, Y. Best-reply dynamics in large binary-choice anonymous games. Games Econ. Behav.
**2013**, 81, 130–144. [Google Scholar] [CrossRef] - Balkenborg, D.; Schlag, K.H. Evolutionarily stable sets. Int. J. Game Theory
**2001**, 29, 571–595. [Google Scholar] [CrossRef] - Balkenborg, D.; Hofbauer, J.; Kuzmics, C. Refined best reply correspondence and dynamics. Theor. Econ.
**2013**, 8, 165–192. [Google Scholar] [CrossRef] [Green Version] - Basu, K.; Weibull, J.W. Strategy subsets closed under rational behavior. Econ. Lett.
**1991**, 36, 141–146. [Google Scholar] [CrossRef] - Bednarik, P.; Hofbauer, J. Discretized best-response dynamics for the rock-paper-scissors game. J. Dyn. Games
**2017**, 4, 75–86. [Google Scholar] [CrossRef] [Green Version] - Beggs, A.W. On the convergence of reinforcement learning. J. Econ. Theory
**2005**, 122, 1–36. [Google Scholar] [CrossRef] - Belloc, M.; Bowles, S. The Persistence of Inferior Cultural-Institutional Conventions. Am. Econ. Rev.
**2013**, 103, 93–98. [Google Scholar] [CrossRef] [Green Version] - Benaïm, M.; Hirsch, M.W. Stochastic approximation algorithms with constant step size whose average is cooperative. Ann. Appl. Probab.
**1999**, 216–241. [Google Scholar] - Benaım, M.; Hirsch, M.W. Mixed equilibria and dynamical systems arising from fictitious play in perturbed games. Games Econ. Behav.
**1999**, 29, 36–72. [Google Scholar] [CrossRef] - Benaïm, M.; Weibull, J.W. Deterministic approximation of stochastic evolution in games. Econometrica
**2003**, 71, 873–903. [Google Scholar] [CrossRef] - Bendor, J.; Swistak, P. Types of evolutionary stability and the problem of cooperation. Proc. Natl. Acad. Sci. USA
**1995**, 92, 3596–3600. [Google Scholar] [CrossRef] [PubMed] - Bergstrom, T.C. On the evolution of altruistic ethical rules for siblings. Am. Econ. Rev.
**1995**, 85, 58–81. [Google Scholar] - Bergstrom, T.C. The algebra of assortative encounters and the evolution of cooperation. Int. Game Theory Rev.
**2003**, 5, 211–228. [Google Scholar] [CrossRef] - Bilancini, E.; Boncinelli, L. The co-evolution of cooperation and defection under local interaction and endogenous network formation. J. Econ. Behav. Organ.
**2009**, 70, 186–195. [Google Scholar] [CrossRef] - Bilancini, E.; Boncinelli, L. Social coordination with locally observable types. Econ. Theory
**2015**, 65, 975–1009. [Google Scholar] [CrossRef] - Bilancini, E.; Boncinelli, L. The Evolution of Conventions under Condition-Dependent Mistakes; Working Paper; Universita’degli Studi di Firenze: Firenze, Italia, 2016. [Google Scholar]
- Bilancini, E.; Boncinelli, L.; Wu, J. The interplay of cultural intolerance and action-assortativity for the emergence of cooperation and homophily. Eur. Econ. Rev.
**2018**, 102, 1–18. [Google Scholar] [CrossRef] - Binmore, K.; Samuelson, L. Drift. Eur. Econ. Rev.
**1994**, 38, 859–867. [Google Scholar] [CrossRef] - Binmore, K.; Samuelson, L. Evolutionary drift and equilibrium selection. The Rev. Econ. Stud.
**1999**, 66, 363–393. [Google Scholar] [CrossRef] - Binmore, K.G. Game Theory and the Social Contract: Just Playing; MIT Press: Cambridge, MA, USA, 1998; Volume 2. [Google Scholar]
- Binmore, K. Natural Justice; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Biró, P.; Bomhoff, M.; Golovach, P.A.; Kern, W.; Paulusma, D. Solutions for the Stable Roommates Problem with Payments. In Graph-Theoretic Concepts in Computer Science; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2013; pp. 69–80. [Google Scholar]
- Bisin, A.; Verdier, T. The economics of cultural transmission and the dynamics of preferences. J. Econ. Theory
**2001**, 97, 298–319. [Google Scholar] [CrossRef] - Blume, A.; Arnold, T. Learning to communicate in cheap-talk games. Games Econ. Behav.
**2004**, 46, 240–259. [Google Scholar] [CrossRef] - Blume, L.; Easley, D. Evolution and market behavior. J. Econ. Theory
**1992**, 58, 9–40. [Google Scholar] [CrossRef] - Blume, L.; Easley, D. If you’re so smart, why aren’t you rich? Belief selection in complete and incomplete markets. Econometrica
**2006**, 74, 929–966. [Google Scholar] [CrossRef] - Blume, A.; Kim, Y.G.; Sobel, J. Evolutionary stability in games of communication. Games Econ. Behav.
**1993**, 5, 547–575. [Google Scholar] [CrossRef] - Blume, A.; DeJong, D.V.; Kim, Y.G.; Sprinkle, G.B. Experimental evidence on the evolution of meaning of messages in sender-receiver games. Am. Econ. Rev.
**1998**, 88, 1323–1340. [Google Scholar] - Blume, A.; DeJong, D.V.; Kim, Y.G.; Sprinkle, G.B. Evolution of communication with partial common interest. Games Econ. Behav.
**2001**, 37, 79–120. [Google Scholar] [CrossRef] - Blume, L.E. The Statistical Mechanics of Strategic Interaction. Games Econ. Behav.
**1993**, 5, 387–424. [Google Scholar] [CrossRef] - Blume, L.E. Population Games; Working Papers 96-04-022; Santa Fe Institute: Santa Fe, NM, USA, 1996. [Google Scholar]
- Blume, A. Communication, risk, and efficiency in games. Games Econ. Behav.
**1998**, 22, 171–202. [Google Scholar] [CrossRef] - Bomze, I.M. Non-cooperative two-person games in biology: A classification. Int. J. Game Theory
**1986**, 15, 31–57. [Google Scholar] [CrossRef] - Boncinelli, L.; Pin, P. Stochastic stability in best shot network games. Games Econ. Behav.
**2012**, 75, 538–554. [Google Scholar] [CrossRef] - Boncinelli, L.; Pin, P. The stochastic stability of decentralized matching on a graph. Games Econ. Behav.
**2017**. [Google Scholar] [CrossRef] - Börgers, T.; Sarin, R. Learning through reinforcement and replicator dynamics. J. Econ. Theory
**1997**, 77, 1–14. [Google Scholar] [CrossRef] - Börgers, T.; Morales, A.J.; Sarin, R. Expedient and monotone learning rules. Econometrica
**2004**, 72, 383–405. [Google Scholar] [CrossRef] - Bowles, S.; Gintis, H. A Cooperative Species: Human Reciprocity and Its Evolution; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Bowles, S. Microeconomics: Behavior, Institutions, and Evolution; Princeton University Press: Princeton, NJ, USA, 2004. [Google Scholar]
- Bowles, S. Is inequality a human universal. In The Social Economics of Poverty; Barrett, C.B., Ed.; Routledge: Abingdon, UK, 2005; pp. 125–145. [Google Scholar]
- Bowles, S. Group competition, reproductive leveling, and the evolution of human altruism. Science
**2006**, 314, 1569–1572. [Google Scholar] [CrossRef] [PubMed] - Bowles, S. Institutional poverty traps. In Poverty Traps; Bowles, S., Durlauf, S.N., Hoff, K., Eds.; Princeton University Press: Princeton, NJ, USA, 2006; pp. 116–138. [Google Scholar]
- Boyd, R.; Lorberbaum, J.P. No pure strategy is evolutionarily stable in the repeated prisoner’s dilemma game. Nature
**1987**, 327, 58. [Google Scholar] [CrossRef] - Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: a review from the swarm engineering perspective. Swarm Intell.
**2013**, 7, 1–41. [Google Scholar] [CrossRef] - Brown, G.W. Iterative solution of games by fictitious play. Act. Anal. Prod. Alloc.
**1951**, 13, 374–376. [Google Scholar] - Burdett, K.; Judd, K.L. Equilibrium price dispersion. Econometrica
**1983**, 955–969. [Google Scholar] [CrossRef] - Burton-Chellew, M.N.; Nax, H.H.; West, S.A. Payoff-based learning explains the decline in cooperation in public goods games. Proc. R. Soc. Lond. B Biol. Sci.
**2015**, 282, 20142678. [Google Scholar] [CrossRef] [PubMed] - Cara, M.A.R.d.; Barton, N.H.; Kirkpatrick, M. A Model for the Evolution of Assortative Mating. Am. Nat.
**2008**, 171, 580–596. [Google Scholar] [CrossRef] [PubMed] - Cárdenas, J.C.; Mantilla, C.; Sethi, R. Stable sampling equilibrium in common pool resource games. Games
**2015**, 6, 299–317. [Google Scholar] [CrossRef] - Carvalho, J.P. Veiling. Q. J. Econ.
**2012**, 128, 337–370. [Google Scholar] [CrossRef] - Cason, T.N.; Friedman, D.; Hopkins, E. Cycles and instability in a rock–paper–scissors population game: A continuous time experiment. Rev. Econ. Stud.
**2013**, 81, 112–136. [Google Scholar] [CrossRef] - Cavalli-Sforza, L.L.; Feldman, M.W. Cultural Transmission and Evolution: A Quantitative Approach; Princeton University Press: Princeton, NJ, USA, 1981. [Google Scholar]
- Chakrabarti, A.S.; Lahkar, R. An Evolutionary Analysis of Growth and Fluctuations with Negative Externalities. Dyn. Games Appl.
**2017**. [Google Scholar] [CrossRef] - Chakrabarti, A.S.; Lahkar, R. Productivity dispersion and output fluctuations: An evolutionary model. J. Econ. Behav. Organ.
**2017**, 137, 339–360. [Google Scholar] [CrossRef] - Chen, B.; Fujishige, S.; Yang, Z. Random decentralized market processes for stable job matchings with competitive salaries. J. Econ. Theory
**2016**, 165, 25–36. [Google Scholar] [CrossRef] - Cheung, M.W.; Wu, J. On the probabilistic transmission of continuous cultural traits. J. Econ. Theory
**2018**, 174, 300–323. [Google Scholar] [CrossRef] - Cheung, M.W. Pairwise comparison dynamics for games with continuous strategy space. J. Econ. Theory
**2014**, 153, 344–375. [Google Scholar] [CrossRef] - Cheung, M.W. Imitative dynamics for games with continuous strategy space. Games Econ. Behav.
**2016**, 99, 206–223. [Google Scholar] [CrossRef] - Cho, I.K.; Kasa, K. Learning and model validation. Rev. Econ. Stud.
**2014**, 82, 45–82. [Google Scholar] [CrossRef] - Choi, J.K.; Bowles, S. The coevolution of parochial altruism and war. Science
**2007**, 318, 636–640. [Google Scholar] [CrossRef] [PubMed] - Chu, Y.J.; Liu, T.H. On the shortest arborescence of a directed graph. Sci. Sin.
**1965**, 14, 1396–1400. [Google Scholar] - Clemm von Hohenberg, B.; Maes, M.; Pradelski, B.S. Micro Influence and Macro Dynamics of Opinions; SSRN Working Paper Series 2974413; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Cross, J.G. A stochastic learning model of economic behavior. Q. J. Econ.
**1973**, 87, 239–266. [Google Scholar] [CrossRef] - Cui, Z.; Wang, R. Collaboration in networks with randomly chosen agents. J. Econ. Behav. Organ.
**2016**, 129, 129–141. [Google Scholar] [CrossRef] - Cui, Z.; Zhai, J. Escape dynamics and equilibria selection by iterative cycle decomposition. J. Math. Econ.
**2010**, 46, 1015–1029. [Google Scholar] [CrossRef] - Daskalakis, C.; Goldberg, P.W.; Papadimitriou, C.H. The complexity of computing a Nash equilibrium. SIAM J. Comput.
**2009**, 39, 195–259. [Google Scholar] [CrossRef] - Dawid, H.; Hellmann, T. The evolution of R&D networks. J. Econ. Behav. Organ.
**2014**, 105, 158–172. [Google Scholar] - De Borda, J.C. Mémoire sur les élections au scrutin. In Histoire de l’Academie Royale des Sciences pour 1781; Royal Society: London, UK, 1784. [Google Scholar]
- De Giorgi, E. Evolutionary portfolio selection with liquidity shocks. J. Econ. Dyn. Control
**2008**, 32, 1088–1119. [Google Scholar] [CrossRef] - Dekel, E.; Ely, J.C.; Yilankaya, O. Evolution of preferences. Rev. Econ. Stud.
**2007**, 74, 685–704. [Google Scholar] [CrossRef] - Demichelis, S.; Weibull, J.W. Language, meaning, and games: A model of communication, coordination, and evolution. Am. Econ. Rev.
**2008**, 98, 1292–1311. [Google Scholar] [CrossRef] - Diamantoudi, E.; Xue, L.; Miyagawa, E. Random paths to stability in the roommate problem. Games Econ. Behav.
**2004**, 48, 18–28. [Google Scholar] [CrossRef] - Dieckmann, U.; Doebeli, M. On the origin of species by sympatric speciation. Nature
**1999**, 400, 354–357. [Google Scholar] [CrossRef] [PubMed] - Dindoš, M.; Mezzetti, C. Better-reply dynamics and global convergence to Nash equilibrium in aggregative games. Games Econ. Behav.
**2006**, 54, 261–292. [Google Scholar] [CrossRef] - Dokumaci, E.; Sandholm, W.H. Large deviations and multinomial probit choice. J. Econ. Theory
**2011**, 146, 2151–2158. [Google Scholar] [CrossRef] - Doraszelski, U.; Lewis, G.; Pakes, A. Just starting out: Learning and equilibrium in a new market. Am. Econ. Rev.
**2018**, 108, 565–615. [Google Scholar] [CrossRef] - Duersch, P.; Oechssler, J.; Schipper, B.C. Unbeatable imitation. Games Econ. Behav.
**2012**, 76, 88–96. [Google Scholar] [CrossRef] - Edmonds, J. Optimum branchings. J. Res. Natl. Bureau Stand.
**1967**, 71, 233–240. [Google Scholar] [CrossRef] - Ellison, G. Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution. Rev. Econ. Stud.
**2000**, 67, 17–45. [Google Scholar] [CrossRef] - Ely, J.C.; Sandholm, W.H. Evolution in Bayesian games I: theory. Games Econ. Behav.
**2005**, 53, 83–109. [Google Scholar] [CrossRef] - Ely, J.C.; Hörner, J.; Olszewski, W. Belief-free equilibria in repeated games. Econometrica
**2005**, 73, 377–415. [Google Scholar] [CrossRef] - Erev, I.; Roth, A.E. Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria. Am. Econ. Rev.
**1998**, 88, 848–881. [Google Scholar] - Eshel, I.; Cavalli-Sforza, L.L. Assortment of encounters and evolution of cooperativeness. Proc. Natl. Acad. Sci. USA
**1982**, 79, 1331–1335. [Google Scholar] [CrossRef] [PubMed] - Evans, G.W.; Honkapohja, S. Learning and Expectations in Macroeconomics; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Evstigneev, I.V.; Hens, T.; Schenk-Hoppé, K.R. Market Selection Of Financial Trading Strategies: Global Stability. Math. Financ.
**2002**, 12, 329–339. [Google Scholar] [CrossRef] - Evstigneev, I.V.; Hens, T.; Schenk-Hoppé, K.R. Evolutionary stable stock markets. Econ. Theory
**2006**, 27, 449–468. [Google Scholar] [CrossRef] - Farrell, J.; Ware, R. Evolutionary stability in the repeated Prisoner’s Dilemma. Theor. Popul. Biol.
**1989**, 36, 161–166. [Google Scholar] [CrossRef] - Feldman, A.M. Recontracting Stability. Econometrica
**1974**, 42, 35–44. [Google Scholar] [CrossRef] - Ferriere, R.; Michod, R.E. Inclusive fitness in evolution. Nature
**2011**, 471, E6. [Google Scholar] [CrossRef] [PubMed] - Fisher, R.A. The Genetical Theory of Natural Selection, Variorum Edition (2000); Oxford University Press: Oxford, UK, 1930. [Google Scholar]
- Flåm, S.D.; Morgan, J. Newtonian mechanics and Nash play. Int. Game Theory Rev.
**2004**, 6, 181–194. [Google Scholar] [CrossRef] - Foster, D.; Young, H.P. Stochastic Evolutionary Game Dynamics. Theor. Popul. Biol.
**1990**, 38, 219–232. [Google Scholar] [CrossRef] - Foster, D.P.; Young, H.P. On the impossibility of predicting the behavior of rational agents. Proc. Natl. Acad. Sci. USA
**2001**, 98, 12848–12853. [Google Scholar] [CrossRef] [PubMed] - Foster, D.P.; Young, H.P. Learning, hypothesis testing, and Nash equilibrium. Games Econ. Behav.
**2003**, 45, 73–96. [Google Scholar] [CrossRef] - Foster, D.P.; Young, H.P. Regret testing: Learning to play Nash equilibrium without knowing you have an opponent. Theor. Econ.
**2006**, 1, 341–367. [Google Scholar] - Freidlin, M.I.; Wentzell, A.D. Random Perturbations of Dynamical Systems, 2nd ed.; Springer: Berlin, Germany, 1984. [Google Scholar]
- Frenkel, S.; Heller, Y.; Teper, R. The Endowment Effect as blessing. Int. Econ. Rev.
**2018**. (online first). [Google Scholar] [CrossRef] - Friedman, J.; Mezzetti, C. Learning in Games by Random Sampling. J. Econ. Theory
**2001**, 98, 55–84. [Google Scholar] [CrossRef] - Friedman, D.; Huck, S.; Oprea, R.; Weidenholzer, S. From imitation to collusion: Long-run learning in a low-information environment. J. Econ. Theory
**2015**, 155, 185–205. [Google Scholar] [CrossRef] - Friedman, D. Evolutionary games in economics. Econometrica
**1991**, 59, 637–666. [Google Scholar] [CrossRef] - Fudenberg, D.; Kreps, D.M. Learning mixed equilibria. Games Econ. Behav.
**1993**, 5, 320–367. [Google Scholar] [CrossRef] - Fudenberg, D.; Levine, D.K. Self-confirming equilibrium. Econometrica
**1993**, 61, 523–545. [Google Scholar] [CrossRef] - Fujiwara-Greve, T.; Okuno-Fujiwara, M. Voluntarily separable repeated prisoner’s dilemma. Rev. Econ. Stud.
**2009**, 76, 993–1021. [Google Scholar] [CrossRef] - Fujiwara-Greve, T.; Okuno-Fujiwara, M.; Suzuki, N. Voluntarily separable repeated Prisoner’s Dilemma with reference letters. Games Econ. Behav.
**2012**, 74, 504–516. [Google Scholar] [CrossRef] - Gale, D.; Shapley, L.S. College Admissions and the Stability of Marriage. Am. Math. Mon.
**1962**, 69, 9–15. [Google Scholar] [CrossRef] - Gamba, A. Learning and evolution of altruistic preferences in the Centipede Game. J. Econ. Behav. Organ.
**2013**, 85, 112–117. [Google Scholar] [CrossRef] - García, J.; van Veelen, M. In and out of equilibrium I: Evolution of strategies in repeated games with discounting. J. Econ. Theory
**2016**, 161, 161–189. [Google Scholar] [CrossRef] - Germano, F.; Lugosi, G. Global Nash convergence of Foster and Young’s regret testing. Games Econ. Behav.
**2007**, 60, 135–154. [Google Scholar] [CrossRef] - Gilboa, I.; Matsui, A. Social stability and equilibrium. Econometrica
**1991**, 59, 859–867. [Google Scholar] [CrossRef] - Golman, R.; Page, S.E. Basins of attraction and equilibrium selection under different learning rules. J. Evol. Econ.
**2010**, 20, 49–72. [Google Scholar] [CrossRef] - Goyal, S.; Hernández, P.; Martínez-Cánovas, G.; Moisan, F.; Muñoz Herrera, M.; Sánchez, A. Integration and Segregation; CWPE Working Paper 1721; Faculty of Economics, University of Cambridge: Cambridge, UK, 2017. [Google Scholar]
- Granovetter, M. Threshold Models of Collective Behavior. Am. J. Sociol.
**1978**, 83, 1420–1443. [Google Scholar] [CrossRef] - Green, J.R. The Stability of Edgeworth’s Recontracting Process. Econometrica
**1974**, 42, 21–34. [Google Scholar] [CrossRef] - Güth, W.; Kliemt, H. The indirect evolutionary approach: Bridging the gap between rationality and adaptation. Ration. Soc.
**1998**, 10, 377–399. [Google Scholar] [CrossRef] - Haldane, J.B.S. The Causes of Evolution; Princeton University Press: Princeton, NJ, USA, 1932. [Google Scholar]
- Hamilton, W.D. The evolution of altruistic behavior. Am. Nat.
**1963**, 97, 354–356. [Google Scholar] [CrossRef] - Hamilton, W. The genetical evolution of social behaviour I. J. Theor. Biol.
**1964**, 7, 1–16. [Google Scholar] [CrossRef] - Hamilton, W. The genetical evolution of social behaviour II. J. Theor. Biol.
**1964**, 7, 17–52. [Google Scholar] [CrossRef] - Harsanyi, J.C. Games with Incomplete Information Played by “Bayesian” Players, I-III. Part I. The Basic Model. Manag. Sci.
**1967**, 14, 159–182. [Google Scholar] [CrossRef] - Hart, S.; Mansour, Y. How long to equilibrium? The communication complexity of uncoupled equilibrium procedures. Games Econ. Behav.
**2010**, 69, 107–126. [Google Scholar] [CrossRef] - Hart, S.; Mas-Colell, A. A simple adaptive procedure leading to correlated equilibrium. Econometrica
**2000**, 68, 1127–1150. [Google Scholar] [CrossRef] - Hart, S.; Mas-Colell, A. Uncoupled dynamics do not lead to Nash equilibrium. Am. Econ. Rev.
**2003**, 93, 1830–1836. [Google Scholar] [CrossRef] - Hart, S.; Mas-Colell, A. Stochastic uncoupled dynamics and Nash equilibrium. Games Econ. Behav.
**2006**, 57, 286–303. [Google Scholar] [CrossRef] - Hart, S. Commentary: Nash equilibrium and dynamics. Games Econ. Behav.
**2011**, 71, 6–8. [Google Scholar] [CrossRef] - Heifetz, A.; Shannon, C.; Spiegel, Y. What to maximize if you must. J. Econ. Theory
**2007**, 133, 31–57. [Google Scholar] [CrossRef] - Heller, Y.; Mohlin, E. Coevolution of Deception and Preferences: Darwin and Nash Meet Machiavelli; Mimeo: New York, NY, USA, 2017. [Google Scholar]
- Heller, Y.; Mohlin, E. Observations on cooperation. Rev. Econ. Stud. 2017. Available online: http://www.restud.com/wp-content/uploads/2017/12/MS24086manuscript.pdf (accessed on 24 May 2018).
- Heller, Y. Overconfidence and diversification. Am. Econ. J. Microecon.
**2014**, 6, 134–153. [Google Scholar] [CrossRef] - Heller, Y. Language, meaning, and games: A model of communication, coordination, and evolution: Comment. Am. Econ. Rev.
**2014**, 104, 1857–1863. [Google Scholar] [CrossRef] [Green Version] - Heller, Y. Stability and trembles in extensive-form games. Games Econ. Behav.
**2014**, 84, 132–136. [Google Scholar] [CrossRef] - Heller, Y. Three steps ahead. Theor. Econ.
**2015**, 10, 203–241. [Google Scholar] [CrossRef] - Heller, Y. Instability of belief-free equilibria. J. Econ. Theory
**2017**, 168, 261–286. [Google Scholar] [CrossRef] - Hellmann, T.; Staudigl, M. Evolution of Social Networks. Eur. J. Oper. Res.
**2014**, 234, 583–596. [Google Scholar] [CrossRef] - Hens, T.; Schenk-Hoppé, K.R. Evolutionary stability of portfolio rules in incomplete markets. J. Math. Econ.
**2005**, 41, 43–66. [Google Scholar] [CrossRef] - Herold, F.; Kuzmics, C. Evolutionary stability of discrimination under observability. Games Econ. Behav.
**2009**, 67, 542–551. [Google Scholar] [CrossRef] - Herold, F. Carrot or stick? The evolution of reciprocal preferences in a haystack model. Am. Econ. Rev.
**2012**, 102, 914–940. [Google Scholar] [CrossRef] - Herre, E.A.; Wcislo, W.T. In defence of inclusive fitness theory. Nature
**2011**, 471, E8. [Google Scholar] [CrossRef] [PubMed] - Hofbauer, J.; Sandholm, W.H. Evolution in games with randomly disturbed payoffs. J. Econ. Theory
**2007**, 132, 47–69. [Google Scholar] [CrossRef] - Hofbauer, J.; Sigmund, K. Evolutionary Games and Population Dynamics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Hofbauer, J.; Sigmund, K. Evolutionary game dynamics. Bull. Am. Math. Soc.
**2003**, 40, 479–519. [Google Scholar] [CrossRef] - Hofbauer, J.; Weibull, J.W. Evolutionary selection against dominated strategies. J. Econ. Theory
**1996**, 71, 558–573. [Google Scholar] [CrossRef] - Hofbauer, J.; Sorin, S.; Viossat, Y. Time average replicator and best-reply dynamics. Math. Oper. Res.
**2009**, 34, 263–269. [Google Scholar] [CrossRef] [Green Version] - Hopkins, E.; Seymour, R.M. The stability of price dispersion under seller and consumer learning. Int. Econ. Rev.
**2002**, 43, 1157–1190. [Google Scholar] [CrossRef] - Hopkins, E. Two competing models of how people learn in games. Econometrica
**2002**, 70, 2141–2166. [Google Scholar] [CrossRef] - Huck, S.; Normann, H.T.; Oechssler, J. Learning in Cournot oligopoly—An experiment. Econ. J.
**1999**, 109, 80–95. [Google Scholar] [CrossRef] - Hurkens, S.; Schlag, K.H. Evolutionary insights on the willingness to communicate. Int. J. Game Theory
**2003**, 31, 511–526. [Google Scholar] [CrossRef] - Hurkens, S. Learning by forgetful players. Games Econ. Behav.
**1995**, 11, 304–329. [Google Scholar] [CrossRef] - Hwang, S.H.; Newton, J. Payoff-dependent dynamics and coordination games. Econ. Theory
**2017**, 64, 589–604. [Google Scholar] [CrossRef] - Hwang, S.; Rey-Bellet, L. Positive feedback in coordination games: stochastic evolutionary dynamics and the logit choice rule. arXiv, 2017; arXiv:1701.0487. [Google Scholar]
- Hwang, S.H.; Lim, W.; Neary, P.; Newton, J. Conventional contracts, intentional behavior and logit choice: Equality without symmetry. Games Econ. Behav.
**2018**. forthcoming. [Google Scholar] [CrossRef] - Ianni, A. Learning strict Nash equilibria through reinforcement. J. Math. Econ.
**2014**, 50, 148–155. [Google Scholar] [CrossRef] [Green Version] - Izquierdo, S.S.; Izquierdo, L.R.; Vega-Redondo, F. The option to leave: Conditional dissociation in the evolution of cooperation. J. Theor. Biol.
**2010**, 267, 76–84. [Google Scholar] [CrossRef] [PubMed] - Izquierdo, L.R.; Izquierdo, S.S.; Vega-Redondo, F. Leave and let leave: A sufficient condition to explain the evolutionary emergence of cooperation. J. Econ. Dyn. Control
**2014**, 46, 91–113. [Google Scholar] [CrossRef] - Izquierdo, L.R.; Izquierdo, S.S.; Sandholm, W.H. An Introduction to ABED: Agent-Based Simulation of Evolutionary Game Dynamics; Mimeo: New York, NY, USA, 2018. [Google Scholar]
- Jackson, M.O.; Watts, A. The Evolution of Social and Economic Networks. J. Econ. Theory
**2002**, 106, 265–295. [Google Scholar] [CrossRef] - Jackson, M.O. Social and Economic Networks; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Jensen, M.K.; Rigos, A. Evolutionary Games and Matching Rules; Mimeo: New York, NY, USA, 2017. [Google Scholar]
- Kahneman, D.; Tversky, A. Prospect Theory: An Analysis of Decision under Risk. Econometrica
**1979**, 47, 263–291. [Google Scholar] [CrossRef] - Kalai, E.; Smorodinsky, M. Other Solutions to Nash’s Bargaining Problem. Econometrica
**1975**, 43, 513–518. [Google Scholar] [CrossRef] - Kalai, E. Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons. Econometrica
**1977**, 45, 1623–1630. [Google Scholar] [CrossRef] - Kandori, M.; Rob, R. Bandwagon effects and long run technology choice. Games Econ. Behav.
**1998**, 22, 30–60. [Google Scholar] - Kandori, M.; Mailath, G.J.; Rob, R. Learning, Mutation, and Long Run Equilibria in Games. Econometrica
**1993**, 61, 29–56. [Google Scholar] [CrossRef] - Kaniovski, Y.M.; Young, H.P. Learning dynamics in games with stochastic perturbations. Games Econ. Behav.
**1995**, 11, 330–363. [Google Scholar] [CrossRef] - Khan, A. Coordination under global random interaction and local imitation. Int. J. Game Theory
**2014**, 43, 721–745. [Google Scholar] [CrossRef] - Kifer, Y. Random Perturbations of Dynamical Systems; Birkhauser: Basel, Switzerland, 1988. [Google Scholar]
- Kim, N.; Hwang, S.H. Evolution of Altruistic Preferences among Boundedly Rational Agents. Korean Econ. Rev.
**2015**, 31, 239–266. [Google Scholar] - Kim, Y.G.; Sobel, J. An evolutionary approach to pre-play communication. Econometrica
**1995**, 63, 1181–1193. [Google Scholar] [CrossRef] - Kipling, R. Just So Stories; Macmillan and Co.: London, UK, 1902. [Google Scholar]
- Klaus, B.; Klijn, F. Paths to Stability for Matching Markets with Couples. Games Econ. Behav.
**2007**, 36, 154–171. [Google Scholar] [CrossRef] - Klaus, B.; Newton, J. Stochastic stability in assignment problems. J. Math. Econ.
**2016**, 62, 62–74. [Google Scholar] [CrossRef] - Klaus, B.; Payot, F. Paths to Stability in the Assignment Problem; Cahiers de recherches economiques du département d’econométrie et d’economie politique (deep); Universitéde Lausanne Facultédes HEC; DEEP: Lausanne, Suisse, 2013. [Google Scholar]
- Klaus, B.; Klijn, F.; Walzl, M. Stochastic stability for roommate markets. J. Econ. Theory
**2010**, 145, 2218–2240. [Google Scholar] [CrossRef] [Green Version] - Koch, C.M.; Nax, H.H. Theory and Evidence of Common-Pool Resource Usage; Mimeo, Dept. of Humanities, Social and Political Sciences, ETH: Zurich, Switzerland, 2017. [Google Scholar]
- Kojima, F.; Ünver, M. Random paths to pairwise stability in many-to-many matching problems: A study on market equilibration. Int. J. Game Theory
**2008**, 36, 473–488. [Google Scholar] [CrossRef] - Kreindler, G.E.; Young, H.P. Fast convergence in evolutionary equilibrium selection. Games Econ. Behav.
**2013**, 80, 39–67. [Google Scholar] [CrossRef] - Kreindler, G.E.; Young, H.P. Rapid innovation diffusion in social networks. Proc. Natl. Acad. Sci. USA
**2014**, 111, 10881–10888. [Google Scholar] [CrossRef] [PubMed] - Kuzmics, C. On the elimination of dominated strategies in stochastic models of evolution with large populations. Games Econ. Behav.
**2011**, 72, 452–466. [Google Scholar] [CrossRef] - Lahkar, R.; Riedel, F. The logit dynamic for games with continuous strategy sets. Games Econ. Behav.
**2015**, 91, 268–282. [Google Scholar] [CrossRef] - Lahkar, R.; Sandholm, W.H. The projection dynamic and the geometry of population games. Games Econ. Behav.
**2008**, 64, 565–590. [Google Scholar] [CrossRef] - Lahkar, R.; Seymour, R.M. The dynamics of generalized reinforcement learning. J. Econ. Theory
**2014**, 151, 584–595. [Google Scholar] [CrossRef] - Lahkar, R. The dynamic instability of dispersed price equilibria. J. Econ. Theory
**2011**, 146, 1796–1827. [Google Scholar] [CrossRef] - Lahkar, R. Equilibrium selection in the stag hunt game under generalized reinforcement learning. J. Econ. Behav. Organ.
**2017**, 138, 63–68. [Google Scholar] [CrossRef] - Laraki, R.; Mertikopoulos, P. Higher order game dynamics. J. Econ. Theory
**2013**, 148, 2666–2695. [Google Scholar] [CrossRef] - Laslier, J.F.; Topol, R.; Walliser, B. A behavioral learning process in games. Games Econ. Behav.
**2001**, 37, 340–366. [Google Scholar] [CrossRef] - Leshno, J.D.; Pradelski, B.S.R. Efficient Price Discovery and Information in the Decentralized Assignment Game; Mimeo: New York, NY, USA, 2017. [Google Scholar]
- Leslie, D.S.; Perkins, S.; Xu, Z. Best-Response Dynamics in Zero-Sum Stochastic Games; Mimeo: New York, NY, USA, 2017. [Google Scholar]
- Levine, D.K.; Modica, S. Dynamics in stochastic evolutionary models. Theor. Econ.
**2016**, 11, 89–131. [Google Scholar] [CrossRef] - Lewis, D. Convention: A Philosophical Study; Harvard University Press: Cambridge, MA, USA, 1969. [Google Scholar]
- Lewontin, R.C.; Cohen, D. On population growth in a randomly varying environment. Proc. Natl. Acad. Sci. USA
**1969**, 62, 1056–1060. [Google Scholar] [CrossRef] [PubMed] - Lim, W.; Neary, P.R. An experimental investigation of stochastic adjustment dynamics. Games Econ. Behav.
**2016**, 100, 208–219. [Google Scholar] [CrossRef] - Littlestone, N.; Warmuth, M.K. The weighted majority algorithm. Inf. Comput.
**1994**, 108, 212–261. [Google Scholar] [CrossRef] - Mantilla, C.; Sethi, R.; Cárdenas, J.C. Efficiency and Stability of Sampling Equilibrium in Public Good Games; SSRN Working Paper Series 3081506; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Marden, J.R.; Roughgarden, T. Generalized Efficiency Bounds in Distributed Resource Allocation. IEEE Trans. Autom. Control
**2014**, 59, 571–584. [Google Scholar] [CrossRef] - Marden, J.R.; Shamma, J.S. Game theory and distributed control. In Handbook of Game Theory; Elsevier: Amsterdam, The Netherlands, 2012; Volume 4, pp. 861–900. [Google Scholar]
- Marden, J.R.; Shamma, J.S. Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation. Games Econ. Behav.
**2012**, 75, 788–808. [Google Scholar] [CrossRef] - Marden, J.R.; Wierman, A. Distributed welfare games. Operations Research
**2013**, 61, 155–168. [Google Scholar] [CrossRef] - Marden, J.R.; Arslan, G.; Shamma, J.S. Joint strategy fictitious play with inertia for potential games. IEEE Trans. Autom. Control
**2009**, 54, 208–220. [Google Scholar] [CrossRef] - Marden, J.R.; Young, H.P.; Pao, L.Y. Achieving Pareto optimality through distributed learning. SIAM J. Control Optim.
**2014**, 52, 2753–2770. [Google Scholar] [CrossRef] - Marden, J.R. State based potential games. Automatica
**2012**, 48, 3075–3088. [Google Scholar] [CrossRef] - Mäs, M.; Nax, H.H. A behavioral study of “noise” in coordination games. J. Econ. Theory
**2016**, 162, 195–208. [Google Scholar] [CrossRef] [Green Version] - Maschler, M.; Peleg, B.; Shapley, L.S. Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts. Math. Oper. Res.
**1979**, 4, 303–338. [Google Scholar] [CrossRef] - Massari, F. Comment on If You’re so Smart, Why Aren’t You Rich? Belief Selection in Complete and Incomplete Markets. Econometrica
**2013**, 81, 849–851. [Google Scholar] - Massari, F. Market Selection in Large Economies: A Matter of Luck; Mimeo: New York, NY, USA, 2015. [Google Scholar]
- Massari, F. Markets with heterogeneous beliefs: A necessary and sufficient condition for a trader to vanish. J. Econ. Dyn. Control
**2017**, 78, 190–205. [Google Scholar] [CrossRef] - Matessi, C.; Gimelfarb, A.; Gavrilets, S. Long-term buildup of reproductive isolation promoted by disruptive selection: how far does it go? Selection
**2002**, 2, 41–64. [Google Scholar] [CrossRef] - Mertikopoulos, P.; Moustakas, A.L. The emergence of rational behavior in the presence of stochastic perturbations. Ann. Appl. Probab.
**2010**, 20, 1359–1388. [Google Scholar] [CrossRef] - Mertikopoulos, P.; Sandholm, W.H. Learning in games via reinforcement and regularization. Math. Oper. Res.
**2016**, 41, 1297–1324. [Google Scholar] [CrossRef] [Green Version] - Mertikopoulos, P.; Sandholm, W.H. Riemannian game dynamics. arXiv, 2016; arXiv:1603.09173. [Google Scholar]
- Mohlin, E.; Östling, R.; Wang, J.T.Y. Learning by Similarity-Weighted Imitation in Games; Mimeo: New York, NY, USA, 2017. [Google Scholar]
- Mohlin, E. Evolution of theories of mind. Games Econ. Behav.
**2012**, 75, 299–318. [Google Scholar] [CrossRef] - Monderer, D.; Shapley, L.S. Potential Games. Games Econ. Behav.
**1996**, 14, 124–143. [Google Scholar] [CrossRef] - Montgomery, J.D. Intergenerational cultural transmission as an evolutionary game. Am. Econ. J. Microecon.
**2010**, 2, 115–136. [Google Scholar] [CrossRef] - Nachbar, J.H. “Evolutionary” selection dynamics in games: Convergence and limit properties. Int. J. Game Theory
**1990**, 19, 59–89. [Google Scholar] [CrossRef] - Nagurney, A.; Zhang, D. Projected dynamical systems in the formulation, stability analysis, and computation of fixed-demand traffic network equilibria. Transp. Sci.
**1997**, 31, 147–158. [Google Scholar] [CrossRef] - Naidu, S.; Hwang, S.H.; Bowles, S. Evolutionary bargaining with intentional idiosyncratic play. Econ. Lett.
**2010**, 109, 31–33. [Google Scholar] [CrossRef] - Naidu, S.; Hwang, S.H.; Bowles, S. The Evolution of Egalitarian Sociolinguistic Conventions. Am. Econ. Rev. Papers Proc.
**2017**, 107, 572–577. [Google Scholar] [CrossRef] - Nash, John F., Jr. The Bargaining Problem. Econometrica
**1950**, 18, 155–162. [Google Scholar] - Nash, J. Non-cooperative games. Ann. Math.
**1951**, 286–295. [Google Scholar] [CrossRef] - Nash, J. Two-person cooperative games. Econometrica
**1953**, 21, 128–140. [Google Scholar] [CrossRef] - Nax, H.H.; Perc, M. Directional learning and the provisioning of public goods. Sci. Rep.
**2015**, 5, 8010. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Nax, H.H.; Pradelski, B.S.R. Evolutionary dynamics and equitable core selection in assignment games. Int. J. Game Theory
**2015**, 44, 903–932. [Google Scholar] [CrossRef] [Green Version] - Nax, H.H.; Pradelski, B.S.R. Core Stability and Core Selection in a Decentralized Labor Matching Market. Games
**2016**, 7, 10. [Google Scholar] [CrossRef] - Nax, H.H.; Rigos, A. Assortativity evolving from social dilemmas. J. Theor. Biol.
**2016**, 395, 194–203. [Google Scholar] [CrossRef] [PubMed] - Nax, H.H.; Pradelski, B.S.R.; Young, H.P. Decentralized dynamics to optimal and stable states in the assignment game. In Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy, 10–13 December 2013; pp. 2391–2397. [Google Scholar]
- Nax, H.H.; Burton-Chellew, M.N.; West, S.A.; Young, H.P. Learning in a black box. J. Econ. Behav. Organ.
**2016**, 127, 1–15. [Google Scholar] [CrossRef] - Nax, H.H. Uncoupled Aspiration Adaptation Dynamics Into the Core. Ger. Econ. Rev.
**2018**. (online first). [Google Scholar] [CrossRef] - Neary, P.R.; Newton, J. Heterogeneity in Preferences and Behavior in Threshold Models. J. Mech. Inst. Des.
**2017**, 2, 141–159. [Google Scholar] - Neary, P.R. Competing conventions. Games Econ. Behav.
**2012**, 76, 301–328. [Google Scholar] [CrossRef] - Nemitz, M.P.; Sayed, M.E.; Mamish, J.; Ferrer, G.; Teng, L.; McKenzie, R.M.; Hero, A.O.; Olson, E.; Stokes, A.A. HoverBots: Precise Locomotion Using Robots That Are Designed for Manufacturability. Front. Robot. AI
**2017**, 4, 55. [Google Scholar] [CrossRef] - Newton, J.; Angus, S. Coalitions, Tipping Points and the Speed of Evolution; Working Papers Series 2013-02; University of Sydney Economics: Sydney, NSW, Australia, 2013. [Google Scholar]
- Newton, J.; Angus, S.D. Coalitions, tipping points and the speed of evolution. J. Econ. Theory
**2015**, 157, 172–187. [Google Scholar] [CrossRef] - Newton, J.; Sawa, R. A one-shot deviation principle for stability in matching problems. J. Econ. Theory
**2015**, 157, 1–27. [Google Scholar] [CrossRef] - Newton, J.; Sercombe, D. Agency, Potential and Contagion; SSRN Working Paper Series 3035245; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Newton, J.; Wait, A.; Angus, S.D. Watercooler Chat, Organizational Structure and Corporate Culture; SSRN Working Paper Series 3053174; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Newton, J. Coalitional stochastic stability. Games Econ. Behav.
**2012**, 75, 842–854. [Google Scholar] [CrossRef] - Newton, J. Recontracting and stochastic stability in cooperative games. J. Econ. Theory
**2012**, 147, 364–381. [Google Scholar] [CrossRef] - Newton, J. Stochastic stability on general state spaces. J. Math. Econ.
**2015**, 58, 46–60. [Google Scholar] [CrossRef] - Newton, J. Shared intentions: The evolution of collaboration. Games Econ. Behav.
**2017**, 104, 517–534. [Google Scholar] [CrossRef] - Newton, J. The preferences of Homo Moralis are unstable under evolving assortativity. Int. J. Game Theory
**2017**, 46, 583–589. [Google Scholar] [CrossRef] - Norman, T.W. Rapid evolution under inertia. Games Econ. Behav.
**2009**, 66, 865–879. [Google Scholar] [CrossRef] - Norman, T.W. Learning, hypothesis testing, and rational-expectations equilibrium. Games Econ. Behav.
**2015**, 90, 93–105. [Google Scholar] [CrossRef] - Norman, T.W. Endogenous Market Selection; Mimeo: New York, NY, USA, 2017. [Google Scholar]
- Nowak, M.A.; Tarnita, C.E.; Wilson, E.O. The evolution of eusociality. Nature
**2010**, 466, 1057. [Google Scholar] [CrossRef] [PubMed] - Okada, A.; Sawa, R. An Evolutionary Approach to Social Choice Problems with Q-Quota Rules; Kyoto Institute of Economic Research Discussion Paper 936; Kyoto University: Kyoto, Japan, 2016. [Google Scholar]
- Oprea, R.; Henwood, K.; Friedman, D. Separating the Hawks from the Doves: Evidence from continuous time laboratory games. J. Econ. Theory
**2011**, 146, 2206–2225. [Google Scholar] [CrossRef] - Osborne, M.J.; Rubinstein, A. Games with procedurally rational players. Am. Econ. Rev.
**1998**, 88, 834–847. [Google Scholar] - Östling, R.; Wang, J.T.Y.; Chou, E.Y.; Camerer, C.F. Testing game theory in the field: Swedish LUPI lottery games. Am. Econ. J. Microecon.
**2011**, 3, 1–33. [Google Scholar] [CrossRef] - Otto, S.P.; Servedio, M.R.; Nuismer, S.L. Frequency-dependent selection and the evolution of assortative mating. Genetics
**2008**, 179, 2091–2112. [Google Scholar] [CrossRef] [PubMed] - Oyarzun, C.; Ruf, J. Convergence in models with bounded expected relative hazard rates. J. Econ. Theory
**2014**, 154, 229–244. [Google Scholar] [CrossRef] - Pennings, P.S.; Kopp, M.; Meszéna, G.; Dieckmann, U.; Hermisson, J. An analytically tractable model for competitive speciation. Am. Nat.
**2008**, 171, E44–E71. [Google Scholar] [CrossRef] [PubMed] - Perkins, S.; Leslie, D.S. Stochastic fictitious play with continuous action sets. J. Econ. Theory
**2014**, 152, 179–213. [Google Scholar] [CrossRef] [Green Version] - Peski, M. Generalized risk-dominance and asymmetric dynamics. J. Econ. Theory
**2010**, 145, 216–248. [Google Scholar] [CrossRef] - Pradelski, B.S.; Young, H.P. Learning efficient Nash equilibria in distributed systems. Games Econ. Behav.
**2012**, 75, 882–897. [Google Scholar] [CrossRef] - Pradelski, B.S. Decentralized Dynamics and Fast Convergence in the Assignment Game. In Proceedings of the Sixteenth ACM Conference on Economics and Computation, Portland, OR, USA, 15–19 June 2015; ACM: New York, NY, USA. [Google Scholar]
- Quijano, N.; Ocampo-Martinez, C.; Barreiro-Gomez, J.; Obando, G.; Pantoja, A.; Mojica-Nava, E. The role of population games and evolutionary dynamics in distributed control systems: The advantages of evolutionary game theory. IEEE Control Syst.
**2017**, 37, 70–97. [Google Scholar] [CrossRef] - Ritzberger, K.; Weibull, J.W. Evolutionary selection in normal-form games. Econometrica
**1995**, 63, 1371–1399. [Google Scholar] [CrossRef] - Rivas, J. Cooperation, imitation and partial rematching. Games Econ. Behav.
**2013**, 79, 148–162. [Google Scholar] [CrossRef] - Robalino, N.; Robson, A. The evolution of strategic sophistication. Am. Econ. Rev.
**2016**, 106, 1046–1072. [Google Scholar] [CrossRef] - Robson, A.J. Efficiency in evolutionary games: Darwin, Nash and the secret handshake. J. Theor. Biol.
**1990**, 144, 379–396. [Google Scholar] [CrossRef] - Robson, A.J. A biological basis for expected and non-expected utility. J. Econ. Theory
**1996**, 68, 397–424. [Google Scholar] [CrossRef] - Rosenthal, R.W. Games of perfect information, predatory pricing and the chain-store paradox. J. Econ. Theory
**1981**, 25, 92–100. [Google Scholar] [CrossRef] - Roth, A.E.; Erev, I. Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term. Games Econ. Behav.
**1995**, 8, 164–212. [Google Scholar] [CrossRef] - Roth, A.E.; Postlewaite, A. Weak versus strong domination in a market with indivisible goods. J. Math. Econ.
**1977**, 4, 131–137. [Google Scholar] [CrossRef] - Roth, A.E.; Vande Vate, J.H. Random Paths to Stability in Two-Sided Matching. Econometrica
**1990**, 58, 1475–1480. [Google Scholar] [CrossRef] - Roughgarden, T. Intrinsic Robustness of the Price of Anarchy. J. ACM
**2015**, 62, 32. [Google Scholar] [CrossRef] - Rozen, K. Conflict leads to cooperation in demand bargaining. J. Econ. Behav. Organ.
**2013**, 87, 35–42. [Google Scholar] [CrossRef] - Rusch, H. The evolutionary interplay of intergroup conflict and altruism in humans: a review of parochial altruism theory and prospects for its extension. Proc. R. Soc. B Biol. Sci.
**2014**, 281, 20141539. [Google Scholar] [CrossRef] [PubMed] - Rusch, H. Shared Intentions: Collaboration Evolving; MAGKS Joint Discussion Paper Series in Economics 39; University of Marburg: Marburg, Germany, 2017. [Google Scholar]
- Rustichini, A. Optimal properties of stimulus—Response learning models. Games Econ. Behav.
**1999**, 29, 244–273. [Google Scholar] [CrossRef] - Samuelson, L.; Zhang, J. Evolutionary stability in asymmetric games. J. Econ. Theory
**1992**, 57, 363–391. [Google Scholar] [CrossRef] - Samuelson, L. Stochastic stability in games with alternative best replies. J. Econ. Theory
**1994**, 64, 35–65. [Google Scholar] [CrossRef] - Samuelson, L. Evolutionary Games and Equilibrium Selection; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Samuelson, L. Introduction to the evolution of preferences. J. Econ. Theory
**2001**, 97, 225–230. [Google Scholar] [CrossRef] - Samuelson, L. Game Theory in Economics and Beyond. J. Econ. Perspect.
**2016**, 30, 107–130. [Google Scholar] [CrossRef] - Sandholm, W.H.; Staudigl, M. Large deviations and stochastic stability in the small noise double limit. Theor. Econ.
**2016**, 11, 279–355. [Google Scholar] [CrossRef] - Sandholm, W.H.; Izquierdo, S.S.; Izquierdo, L.R. Best Experienced Payoff Dynamics and Cooperation in the Centipede Game; Mimeo: New York, NY, USA, 2017. [Google Scholar]
- Sandholm, W.H. Population Games and Evolutionary Dynamics; Economic Learning and Social Evolution; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Sandroni, A. Do markets favor agents able to make accurate predictions? Econometrica
**2000**, 68, 1303–1341. [Google Scholar] [CrossRef] - Sandroni, A. Market selection when markets are incomplete. J. Math. Econ.
**2005**, 41, 91–104. [Google Scholar] [CrossRef] - Sawa, R.; Wu, J. Prospect Dynamic and Loss Dominance; SSRN Working Paper Series 2804852; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sawa, R.; Wu, J. Reference-Dependent Preferences, Super-Dominance and Stochastic Stability; Mimeo: New York, NY, USA, 2017. [Google Scholar]
- Sawa, R.; Zusai, D. Evolutionary imitative dynamics with population-varying aspiration levels. J. Econ. Theory
**2014**, 154, 562–577. [Google Scholar] [CrossRef] - Sawa, R. Coalitional Stochastic Stability in Games, Networks and Markets. Games Econ. Behav.
**2014**, 88, 90–111. [Google Scholar] [CrossRef] - Sawa, R. Stochastic Stability in Coalitional Bargaining Problems; Mimeo: New York, NY, USA, 2015. [Google Scholar]
- Schlag, K.H. Cheap Talk and Evolutionary Dynamics; University of Bonn Discussion Paper b-242; University of Bonn: Bonn, Germany, 1993. [Google Scholar]
- Schlag, K.H. When Does Evolution Lead to Efficiency in Communication Games? University of Bonn Discussion Paper b-299; University of Bonn: Bonn, Germany, 1994. [Google Scholar]
- Schlag, K.H. Why imitate, and if so, how?: A boundedly rational approach to multi-armed bandits. J. Econ. Theory
**1998**, 78, 130–156. [Google Scholar] [CrossRef] - Searle, J.R. The Construction of Social Reality; Simon and Schuster: New York, NY, USA, 1995. [Google Scholar]
- Selten, R.; Hammerstein, P. Gaps in Harley’s argument on evolutionarily stable learning rules and in the logic of “tit for tat”. Behav. Brain Sci.
**1984**, 7, 115–116. [Google Scholar] [CrossRef] - Selten, R. Evolutionary stability in extensive two-person games. Math. Soc. Sci.
**1983**, 5, 269–363. [Google Scholar] [CrossRef] - Serrano, R.; Volij, O. Mistakes in Cooperation: the Stochastic Stability of Edgeworth’s Recontracting. Econ. J.
**2008**, 118, 1719–1741. [Google Scholar] [CrossRef] - Servedio, M.R. Limits to the evolution of assortative mating by female choice under restricted gene flow. Proc. R. Soc. B Biol. Sci.
**2011**, 278, 179–187. [Google Scholar] [CrossRef] [PubMed] - Sethi, R.; Somanathan, E. The evolution of social norms in common property resource use. Am. Econ. Rev.
**1996**, 86, 766–788. [Google Scholar] - Sethi, R.; Somanathan, E. Preference evolution and reciprocity. J. Econ. Theory
**2001**, 97, 273–297. [Google Scholar] [CrossRef] - Sethi, R. Strategy-specific barriers to learning and nonmonotonic selection dynamics. Games Econ. Behav.
**1998**, 23, 284–304. [Google Scholar] [CrossRef] - Sethi, R. Stability of equilibria in games with procedurally rational players. Games Econ. Behav.
**2000**, 32, 85–104. [Google Scholar] [CrossRef] - Shahshahani, S. A New Mathematical Framework for the Study of Linkage and Selection; Memoirs of the American Mathematical Society; American Mathematical Society: Providence, RI, USA, 1979; Volume 211. [Google Scholar]
- Shapley, L.; Shubik, M. The assignment game I: The core. Int. J. Game Theory
**1971**, 1, 111–130. [Google Scholar] [CrossRef] - Shapley, L.S. Stochastic games. Proc. Natl. Acad. Sci. USA
**1953**, 39, 1095–1100. [Google Scholar] [CrossRef] [PubMed] - Sigmund, K. The Calculus of Selfishness; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Simon, H.A. Rationality as process and as product of thought. Am. Econ. Rev.
**1978**, 68, 1–16. [Google Scholar] - Skyrms, B. Signals, evolution and the explanatory power of transient information. Philos. Sci.
**2002**, 69, 407–428. [Google Scholar] [CrossRef] - Sobel, J. Evolutionary stability and efficiency. Econ. Lett.
**1993**, 42, 301–312. [Google Scholar] [CrossRef] - Sorin, S. Exponential weight algorithm in continuous time. Math. Programm.
**2009**, 116, 513–528. [Google Scholar] [CrossRef] - Spiegler, R. Bounded Rationality and Industrial Organization; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Stahl, D.O.; Wilson, P.W. On players’ models of other players: Theory and experimental evidence. Games Econ. Behav.
**1995**, 10, 218–254. [Google Scholar] [CrossRef] - Staudigl, M.; Weidenholzer, S. Constrained interactions and social coordination. J. Econ. Theory
**2014**, 152, 41–63. [Google Scholar] [CrossRef] - Staudigl, M. Stochastic stability in asymmetric binary choice coordination games. Games Econ. Behav.
**2012**, 75, 372–401. [Google Scholar] [CrossRef] - Strassmann, J.E.; Page Jr, R.E.; Robinson, G.E.; Seeley, T.D. Kin selection and eusociality. Nature
**2011**, 471, E5. [Google Scholar] [CrossRef] [PubMed] - Tanaka, Y. Long run equilibria in an asymmetric oligopoly. Econ. Theory
**1999**, 14, 705–715. [Google Scholar] [CrossRef] - Taylor, P.D.; Jonker, L.B. Evolutionary stable strategies and game dynamics. Math. Biosci.
**1978**, 40, 145–156. [Google Scholar] [CrossRef] - Thomas, B. On evolutionarily stable sets. J. Math. Biol.
**1985**, 22, 105–115. [Google Scholar] [CrossRef] - Tomasello, M. A Natural History of Human Thinking; Harvard University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Traulsen, A.; Hauert, C.; De Silva, H.; Nowak, M.A.; Sigmund, K. Exploration dynamics in evolutionary games. Proc. Natl. Acad. Sci. USA
**2009**, 106, 709–712. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Trivers, R.L. The evolution of reciprocal altruism. Q. Rev. Biol.
**1971**, 46, 35–57. [Google Scholar] [CrossRef] - Van Veelen, M. Group selection, kin selection, altruism and cooperation: when inclusive fitness is right and when it can be wrong. J. Theor. Biol.
**2009**, 259, 589–600. [Google Scholar] [CrossRef] [PubMed] - Van Veelen, M. The replicator dynamics with n players and population structure. J. Theor. Biol.
**2011**, 276, 78–85. [Google Scholar] [CrossRef] [PubMed] - Van Veelen, M. Robustness against indirect invasions. Games Econ. Behav.
**2012**, 74, 382–393. [Google Scholar] [CrossRef] - Vega-Redondo, F. The evolution of Walrasian behavior. Econometrica
**1997**, 65, 375–384. [Google Scholar] [CrossRef] - Vesely, F.; Yang, C.L. On Optimal and Neutrally Stable Population Equilibrium in Voluntary Partnership Prisoner’s Dilemma Games; Mimeo: New York, NY, USA, 2010. [Google Scholar]
- Vesely, F.; Yang, C.L. Breakup, Secret Handshake and Neutral Stability in Repeated Prisoner’s Dilemma with Option to Leave: A Note; Mimeo: New York, NY, USA, 2012. [Google Scholar]
- Vovk, V. Aggregating strategies. In Proceedings of the Third Annual Workshop on Computational Learning Theory, Rochester, NY, USA, 6–8 August 1990; Fulk, M., Case, J., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1990; pp. 371–383. [Google Scholar]
- Weibull, J.W.; Salomonsson, M. Natural selection and social preferences. J. Theor. Biol.
**2006**, 239, 79–92. [Google Scholar] [CrossRef] [PubMed] - Weibull, J. Evolutionary Game Theory; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Williams, D. Probability with Martingales; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Wilson, D.S.; Dugatkin, L.A. Group selection and assortative interactions. Am. Nat.
**1997**, 149, 336–351. [Google Scholar] [CrossRef] - Wu, J. Evolving assortativity and social conventions. Econ. Bull.
**2016**, 36, 936–941. [Google Scholar] - Wu, J. Social Hierarchy and the Evolution of Behavior. Int. Game Theory Rev.
**2017**, 19, 1750019. [Google Scholar] [CrossRef] - Wu, J. Political Institutions and the Evolution of Character Traits. Games Econ. Behav.
**2017**, 106, 260–276. [Google Scholar] [CrossRef] - Xu, Z. Convergence of best-response dynamics in extensive-form games. J. Econ. Theory
**2016**, 162, 21–54. [Google Scholar] [CrossRef] - Young, H.P.; Burke, M.A. Competition and Custom in Economic Contracts: A Case Study of Illinois Agriculture. Am. Econ. Rev.
**2001**, 91, 559–573. [Google Scholar] [CrossRef] - Young, H.P. The Evolution of Conventions. Econometrica
**1993**, 61, 57–84. [Google Scholar] [CrossRef] - Young, H.P. An Evolutionary Model of Bargaining. J. Econ. Theory
**1993**, 59, 145–168. [Google Scholar] [CrossRef] - Young, H.P. Individual Strategy and Social Structure; Princeton University Press: Princeton, NJ, USA, 1998. [Google Scholar]
- Young, H.P. Conventional Contracts. Rev. Econ. Stud.
**1998**, 65, 773–792. [Google Scholar] [CrossRef] - Young, H.P. The possible and the impossible in multi-agent learning. Artif. Intell.
**2007**, 171, 429–433. [Google Scholar] [CrossRef] - Young, H.P. Learning by trial and error. Games Econ. Behav.
**2009**, 65, 626–643. [Google Scholar] [CrossRef] - Young, H.P. Innovation diffusion in heterogeneous populations: Contagion, social influence, and social learning. Am. Econ. Rev.
**2009**, 99, 1899–1924. [Google Scholar] [CrossRef] - Young, H.P. The dynamics of social innovation. Proc. Natl. Acad. Sci. USA
**2011**, 108 (Suppl. 4), 21285–21291. [Google Scholar] [CrossRef] [PubMed] - Zusai, D. Tempered best response dynamics. Int. J. Game Theory
**2017**, 47, 1–34. [Google Scholar] [CrossRef] - Zusai, D. Nonaggregable Evolutionary Dynamics Under Payoff Heterogeneity; DETU Working Paper 17-02; Department of Economics, Temple University: Philadelphia, PA, USA, 2017. [Google Scholar]
- Zusai, D. Gains in Evolutionary Dynamics: Unifying Rational Framework for Dynamic Stability of ESS; Mimeo: New York, NY, USA, 2018. [Google Scholar]

**Figure 1.**

**Structure of this survey.**A model of behavior answers the question who does what to whom and in what circumstances? Explicit rules of behavior address the circumstances of every state. Equilibrium models address the circumstances of equilibrium. The remaining parts of the question are addressed by the sections of this survey as given above.

**Figure 2.**

**Coalitional Stochastic Stability.**There are three states, x, y and z, all assumed to be rest points of an individualistic best response dynamic. Arrows between states indicate, for the most probable transition path from one state to another, e, the number of random errors on this transition path, and c, the size of the largest coalition that makes a coalitional response on this path.

**Figure 3.**

**Two player prisoner’s dilemma.**Let $\beta ,\gamma >0$. For each combination of C and D, entries give payoffs for the row player. $\beta $ is the payoff advantage of $(C,C)$ over $(D,D)$. $\gamma $ is the gain from defecting on a cooperator. The gain from defecting on a defector is normalized to 1.

**Figure 4.**

**Two player coordination game.**For each combination of A and B, entries give payoffs for the row player. Let $\alpha >0$ so that $(A,A)$ is the risk dominant Nash equilibrium. Panel (

**i**): general payoffs up to affine transformation; Panel (

**ii**): zero payoff for miscoordination; Panel (

**iii**): a stag hunt.

**Figure 5.**

**Conservative and reforming effects of collective agency.**Grey vertices are playing strategy A, white vertices are playing B, as are all vertices not shown. Payoffs are given by the game in Figure 4ii. Panel (

**i**): an initial strategy profile. Without coalitional behavior, it is not a best response for any player to change strategy as long as $\alpha <2$. Panel (

**ii**): Conservative effect. From the profile in Panel (i), if $\alpha <1$, then all of the members of coalition ${T}_{1}$ gain by switching to B. Panel (

**iii**): Reforming effect. From the profile in Panel (i), if $\alpha >\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.$, then all of the members of coalition ${T}_{2}$ gain by switching to A.

**Figure 6.**

**Assortativity in matching.**From a population, individuals are matched into groups to interact (Section 3.3). This matching may be affected by the traits of the individuals (Section 3.2.1) and also by institutions at a societal level (Section 3.2.2). Individuals may be able to choose to join institutions (Section 3.2.3) and the institutions may have their own preferences over their membership. Note that the institution in the Figure is highly positively assortative in that it matches individuals with other individuals of a similar type. Individuals may have the option to interact multiple times with those with whom they are matched, or to leave them and seek new partners (Section 3.4).

**Figure 7.**

**The evolution of behavior.**From a population, individuals are matched into groups to interact (Section 3). In some cases, the entire population will constitute a single group. Groups of matched players then play a game. How the game is played within a group may depend on the traits of individuals within the group, which may be genetic (Section 4.1) or cultural (Section 4.3). How the game is played may also depend on cultural conventions based on how the game has been played in the past (Section 4.2). Strategies are reproduced through intergenerational transmission or through individuals following some rule of strategic adjustment such as imitation or best response.

**Figure 8.**

**Length, steepness and cost of transitions between conventions.**The state space is the set of integers from 0 to 11. The only transitions that occur with positive probability are between adjacent states. The cost of a transition, the exponential decay rate of its probability, equals the change in height on the vertical axis if this quantity is positive. Otherwise, the cost is zero. For example, the cost of $9\to 10$ is two and the cost of $10\to 9$ is zero. The length of the path from x to y is one, as only a single transition on the path, $2\to 3$, has strictly positive cost and is therefore an error. However, this transition is relatively steep, with a cost of three. In contrast, the path from y to z has length two as both $6\to 7$ and $7\to 8$ are errors, but is less steep as each error only has a cost of one, thus the total cost of the path is two. States x and y minimize stochastic potential and are thus stochastically stable.

**Figure 9.**

**Two player coordination game with heterogeneous preferences.**Let ${\gamma}_{i},{\gamma}_{j}\in (0,1)$. For each combination of A and B, entries give payoffs for the row player and column player respectively. Note that if ${\gamma}_{i}<\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.<{\gamma}_{j}$ or vice versa, this game is a Battle of the Sexes.

**Figure 10.**

**Two player coordination game with payoff restrictions.**For each combination of A and B, entries give payoffs for the row player. Let $a>b>c>d$ and $a-c>b-d$ so that $(A,A)$ is the risk dominant and payoff dominant Nash equilibrium, but B is the maximin strategy. This corresponds to setting $\beta >\alpha >0$ in our general coordination game in Figure 4[i].

**Figure 11.**

**Stochastic potential under perturbed best response for coordination games under infrequent rematching.**The game in Figure 10 is played by a population of size $n=8$. As rematching is infrequent, any updating individual chooses the same action as his current partner, so a path escaping the basin of attraction of any convention only requires a single error. In Panel (

**i**), as all errors have equal steepness, this results in both conventions being stochastically stable. In Panel (

**ii**), payoff losses $b-d$ and $a-c$ are compared, resulting in the risk dominant convention being stochastically stable. In Panel (

**iii**), current conventional payoffs b and a are compared, resulting in the payoff dominant convention being stochastically stable.

**Figure 12.**

**Stochastic potential under perturbed best response for coordination games under rematching every period.**The game in Figure 10 is played by a population of size $n=8$. Updating players maximize their expected payoff over all possible opponents and the threshold between basins of attraction is approximated by $n\frac{b-d}{a-c+b-d}$ as population size n becomes large. In Panel (

**i**), as all errors have equal steepness, the convention with the longer basin of attraction, the risk dominant convention, is stochastically stable. In Panel (

**ii**), the path exiting the risk dominant convention is not only longer, but also steeper, so it remains stochastically stable. In Panel (

**iii**), for large enough populations, we can ignore the $g\left(a\right)$ and $g\left(b\right)$ terms, so that stochastic stability is determined by comparing $g\left(c\right)\frac{b-d}{a-c+b-d}$ and $g\left(d\right)\frac{a-c}{a-c+b-d}$. In this example, the difference in steepnesses $g\left(c\right)$ and $g\left(d\right)$ is large enough that steepness dominates length and the maximin convention is stochastically stable.

**Figure 13.**

**The Evolutionary Nash Program.**Connections are made between evolutionary game theory and cooperative game theory. For example, sometimes a state space can be derived from an underlying cooperative game. For some evolutionary dynamics, the rest points will correspond to the core of the associated cooperative game. When these dynamics are perturbed, the stochastically stable states will then correspond to a (possibly strict) subset of the core.

**Figure 14.**

**Conventions and bargaining solutions.**Each bargaining solution can be justified as the stochastically stable state of a coordination game under the corresponding behavioral rule and without reference to any appealing ex-post properties that the solution might have.

Unintentional | Intentional | |
---|---|---|

Uniform | Kalai-Smorodinsky Young [364] | Nash bargaining Naidu et al. [244] |

Logit | Logit bargaining Hwang et al. [179] | Egalitarian Hwang et al. [179] |

**Figure 15.**

**Transition costs between conventions.**For transitions between conventions in the set $\{v,w,x,y,z\}$, the table gives the cost of a transition from the convention specified by the row to the convention specified by the column. For example, a transition from v to x has a cost of 4.

**Figure 16.**

**Cyclic decomposition.**The unperturbed dynamic converges to conventions in the set $\{v,w,x,y,z\}$. A directed edge from a convention corresponds to a least cost transition from this convention as per Figure 15. This decomposes the set of conventions into two sets, $\{v,w,x\}$ and $\{y,z\}$. Transition costs between these two sets are determined as described in the main text.

**Figure 17.**

**Information and context in an experiment.**If only the shaded elements pertain, this is sufficient to make it possible that players follow an individualistic best response dynamic. However, all of the elements are compatible with players following such a dynamic, so there is nothing wrong with including any of them in a situational context that is being explored. Some of the elements, such as telling subjects individual best responses, might be expected to work towards inducing such a dynamic, whereas others, such as allowing subjects to talk, might be expected to work against it and in favor of some other dynamic such as coalitional best response.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Newton, J.
Evolutionary Game Theory: A Renaissance. *Games* **2018**, *9*, 31.
https://doi.org/10.3390/g9020031

**AMA Style**

Newton J.
Evolutionary Game Theory: A Renaissance. *Games*. 2018; 9(2):31.
https://doi.org/10.3390/g9020031

**Chicago/Turabian Style**

Newton, Jonathan.
2018. "Evolutionary Game Theory: A Renaissance" *Games* 9, no. 2: 31.
https://doi.org/10.3390/g9020031