Modeling Poker Challenges by Evolutionary Game Theory
Abstract
:1. Introduction
2. Materials and Methods
- At , set a number of rational and irrational agents in the population;
- select randomly one agent x, and select randomly one opponent y (being a neighbor in the case of the lattice topology);
- each selected agent plays the game with all its four opponents (randomly composed in the well mixed case), then computes its payoff;
- agent y performs the strategy revision phase according , then adopting Equations (1) or (2), to compute the weight probability to change its behavior/strategy;
- repeat from (2) until an ordered phase is reached, or up to a limited number of time steps elapsed.
3. Results
4. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
EGT | Evolutionary Game Theory |
RIR | Rational-Irrational-Rational |
SIS | Susceptible-Infected-Susceptible |
ABM | Agent-Based Model |
Appendix A
- (a) : full challenge;
- (b) : one round.
References
- Bowling, M.; Burch, N.; Johanson, M.; Tammelin, O. Heads-up limit hold’em poker is solved. Science 2015, 347, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Dahl, F.A. A Reinforcement Learning Algorithm Applied to Simplified Two-Player Texas Hold’em Poker. In Proceedings of the European Conference on Machine Learning: ECML 2001—LNCS, Freiburg, Germany, 5–7 September 2001; Volume 2167, pp. 85–96.
- Teofilo, L.F.; Reis, L.P.; Lopes Cardoso, H. Computing card probabilities in Texas Hold’em. In Proceedings of the 2013 8th Iberian Conference on Information Systems and Technologies (CISTI), Lisboa, Portugal, 19–22 June 2013; pp. 1–6.
- Seale, D.A.; Phelan, S.E. Bluffing and betting behavior in a simplified poker game. J. Behav. Decis. Mak. 2010, 23, 335–352. [Google Scholar] [CrossRef]
- Hannum, R.C.; Cabot, A.N. Toward Legalization of Poker: The Skill vs. Chance Debate. UNLV Gaming Res. Rev. J. 2009, 13, 1–20. [Google Scholar]
- Kelly, J.M.; Dhar, Z.; Verbiest, T. Poker and the Law: Is It a Game of Skill or Chance and Legally Does It Matter? Gaming Law Rev. 2007, 11, 190–202. [Google Scholar] [CrossRef]
- Cabot, A.; Hannum, R. Poker: Public Policy, Law, Mathematics, and the Future of an American Tradition. TM Cooley Law Rev. 2005, 22, 443. [Google Scholar]
- Javarone, M.A. Poker as a Skill Game: Rational versus Irrational Behaviors. J. Stat. Mech. Theory Exp. 2015, 2015, P03018. [Google Scholar] [CrossRef]
- Javarone, M.A. Is Poker a Skill Game? New Insights from Statistical Physics. EPL Europhys. Lett. 2015, 110, 58003. [Google Scholar] [CrossRef]
- Moreno, Y.; Vazquez, A. Disease spreading in structured scale-free networks. Eur. Phys. J. B 2003, 31, 265–267. [Google Scholar] [CrossRef]
- Perc, M.; Grigolini, P. Collective behavior and evolutionary games—An introduction. Chaos Solitons Fractals 2013, 56, 1–5. [Google Scholar] [CrossRef]
- Szolnoki, A.; Perc, M. Conformity enhances network reciprocity in evolutionary social dilemmas. J. R. Soc. Interface 2015, 12, 20141299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julia, P.C.; Gomez-Gardenes, J.; Traulsen, A.; Moreno, Y. Evolutionary game dynamics in a growing structured population. New J. Phys. 2009, 11, 083031. [Google Scholar]
- Lieberman, E.; Hauert, C.; Nowak, M.A. Evolutionary dynamics on graphs. Nature 2004, 433, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.A.; Wardil, L.; Perc, M.; da Silva, J.K.L. Stochastic win-stay-lose-shift strategy with dynamic aspirations in evolutionary social dilemmas. Phys. Rev. E 2016, 94, 032317. [Google Scholar] [CrossRef] [PubMed]
- Szolnoki, A.; Perc, M. Zealots tame oscillations in the spatial rock-paper-scissors game. Phys. Rev. E 2016, 93, 062307. [Google Scholar] [CrossRef] [PubMed]
- Colman, A.M. Game Theory and Its Applications; Routledge: New York, NY, USA, 2008. [Google Scholar]
- Galam, S.; Walliser, B. Ising model versus normal form game. Physica A 2010, 389, 481–489. [Google Scholar] [CrossRef]
- Perc, M.; Szolnoki, A. Social diversity and promotion of cooperation in the spatial prisoner’s dilemma. Phys. Rev. E 2008, 77, 011904. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Szolnoki, A.; Perc, M. Interdependent network reciprocity in evolutionary games. Sci. Rep. 2013, 3, 1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szolnoki, A.; Xie, N.-G.; Wang, C.; Perc, M. Imitating emotions instead of strategies in spatial games elevates social welfare. Europhys. Lett. 2011, 96, 38002. [Google Scholar] [CrossRef]
- Perc, M.; Szolnoki, A. Self-organization of punishment in structured populations. New J. Phys. 2012, 14, 043013. [Google Scholar] [CrossRef]
- Szolnoki, A.; Szabo, G.; Perc, M. Phase diagrams for the spatial public goods game with pool punishment. Phys. Rev. E 2011, 83, 0361101. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D. On economic applications of evolutionary game theory. J. Evol. Econ. 1998, 8, 15–43. [Google Scholar] [CrossRef]
- Schuster, S.; de Figueiredo, L.; Schroeter, A.; Kaleta, C. Combining metabolic pathway analysis with evolutionary game theory. Explaining the occurrence of low-yield pathways by an analytic optimization approach. BioSystems 2011, 105, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Frey, E. Evolutionary game theory: Theoretical concepts and applications to microbial communities. Physica A 2010, 389, 4265–4298. [Google Scholar] [CrossRef]
- Fu, F.; Rosenbloom, D.I.; Wang, L.; Nowak, M.A. Imitation dynamics of vaccination behaviour on social networks. Proc. R. Soc. B 2011, 278, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poncela, J.; Gomez-Gardenes, J.; Moreno, Y.; Floria, L.M. Cooperation in the Prisoner’s Dilemma game in random scale-free graphs. Int. J. Bifurc. Chaos 2010, 20, 849–857. [Google Scholar] [CrossRef]
- Gracia-Lazaro, C.; Gomez-Gardenes, J.; Floria, L.M.; Moreno, Y. Intergroup information exchange drives cooperation in the public goods game. Phys. Rev. E 2014, 94, 042808. [Google Scholar] [CrossRef] [PubMed]
- Szolnoki, A.; Perc, M. Biodiversity in models of cyclic dominance is preserved by heterogeneity in site-specific invasion rates. Sci. Rep. 2016, 6, 38608. [Google Scholar] [CrossRef] [PubMed]
- Grujic, J.; Fosco, C.; Araujo, L.; Cuesta, A.J.; Sanchez, A. Social experiments in the mesoscale: Humans playing a spatial prisoner’s dilemma. PLoS ONE 2010, 5, e13749. [Google Scholar] [CrossRef] [PubMed]
- Sklansky, D.; Malmuth, M. Hold’em Poker for Advanced Players; Two Plus Two Publications: Henderson, NV, USA, 1999. [Google Scholar]
- Szolnoki, A.; Perc, M. Reward and cooperation in the spatial public goods game. EPL Europhys. Lett. 2010, 92, 38003. [Google Scholar] [CrossRef]
- Gomez-Gardenes, J.; Campillo, M.; Floria, L.M.; Moreno, Y. Dynamical Organization of Cooperation in Complex Topologies. Phys. Rev. Lett. 2007, 98, 108103. [Google Scholar] [CrossRef] [PubMed]
- Perc, M.; Gomez-Gardenes, J.; Szolnoki, A.; Floria, L.M.; Moreno, Y. Evolutionary dynamics of group interactions on structured populations: A review. J. R. Soc. Interface 2013, 10, 20120997. [Google Scholar] [CrossRef] [PubMed]
- Szabo, G.; Fath, G. Evolutionary games on graphs. Phys. Rep. 2007, 446, 97–216. [Google Scholar] [CrossRef]
- Tomassini, M.; Pestelacci, E.; Luthi, L. Social Dilemmas and Cooperation in Complex Networks Int. J. Mod. Phys. C 2007, 18, 1173–1178. [Google Scholar] [CrossRef]
- Szabo, G.; Varga, L.; Borsos, I. Evolutionary matching-pennies game on bipartite regular networks. Phys. Rev. E 2014, 89, 042820. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xia, C.Y.; Meloni, S.; Zhou, C.S.; Moreno, Y. Impact of social punishment on cooperative behavior in complex networks. Sci. Rep. 2013, 3, 3055. [Google Scholar] [CrossRef] [PubMed]
- Cardillo, A.; Reyes-Suarez, C.; Naranjo, F.; Gomez-Gardenes, J. Evolutionary vaccination dilemma in complex networks. Phys. Rev. E 2013, 88, 032803. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Lazaro, C.; Cuesta, A.J.; Sanchez, A.; Moreno, Y. Human behavior in Prisoner’s Dilemma experiments suppresses network reciprocity. Sci. Rep. 2012, 2, 325. [Google Scholar] [CrossRef] [PubMed]
- Javarone, M.A.; Atzeni, A.E. The role of competitiveness in the Prisoner’s Dilemma. Comput. Soc. Netw. 2015, 2, 15. [Google Scholar] [CrossRef]
- Javarone, M.A. Statistical Physics of the Spatial Prisoner’s Dilemma with Memory-Aware Agents. Eur. Phys. J. B 2016, 89, 1–6. [Google Scholar] [CrossRef]
- Szolnoki, A.; Perc, M. Competition of tolerant strategies in the spatial public goods game. New J. Phys. 2016, 18, 083021. [Google Scholar] [CrossRef]
- Javarone, M.A.; Antonioni, A.; Caravelli, F. Conformity-driven agents support ordered phases in the spatial public goods game. EPL Europhys. Lett. 2016, 114, 38001. [Google Scholar] [CrossRef]
- Liggett, T.M. Interacting Particle Systems; Springer: New York, NY, USA, 1985. [Google Scholar]
- Javarone, M.A.; Battiston, F. The Role of Noise in the Spatial Public Goods Game. JSTAT 2016, 7, 073404. [Google Scholar] [CrossRef]
- Barra, A. The Mean Field Ising Model trough Interpolating Techniques. J. Stat. Phys. 2008, 132, 787–809. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javarone, M.A. Modeling Poker Challenges by Evolutionary Game Theory. Games 2016, 7, 39. https://doi.org/10.3390/g7040039
Javarone MA. Modeling Poker Challenges by Evolutionary Game Theory. Games. 2016; 7(4):39. https://doi.org/10.3390/g7040039
Chicago/Turabian StyleJavarone, Marco Alberto. 2016. "Modeling Poker Challenges by Evolutionary Game Theory" Games 7, no. 4: 39. https://doi.org/10.3390/g7040039
APA StyleJavarone, M. A. (2016). Modeling Poker Challenges by Evolutionary Game Theory. Games, 7(4), 39. https://doi.org/10.3390/g7040039