Some Properties of Interval Shapley Values: An Axiomatic Analysis
Abstract
:1. Introduction
2. Models and Solution Concepts
2.1. Coalitional Games and Interval Games
2.2. Solution Concepts
3. Main Results
3.1. Results for the Interval Shapley Value
- Axiom 1: Efficiency (EF)
- Axiom 2: Symmetry (SYM)
- Axiom 3: Dummy Player Property (DP)
- Axiom 4: Additivity (AD)
- Axiom 5: Strong Monotonicity w.r.t. the Partial Operator (SM-P)
3.2. Results for the Interval Shapley-like Value
- Axiom 6: Indifference Efficiency (IEFF)
- Axiom 7: Indifference Null Player Property (INP)
- Axiom 8: Strong Monotonicity with respect to Moore’s operator (SM-M)
- (i)
- Φ satisfies IEFF, SYM, and SM-M.
- (ii)
- If an interval solution f also satisfies IEFF, SYM, and SM-M, then for every .
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
1 | Exact expressions of those axioms will be described in Section 3. |
2 | More precisely, they showed uniqueness regarding the medians of allocations, as discussed in Section 3. |
3 |
References
- Branzei, R.; Dimitrov, D.; Tijs, S. Shapley-like values for interval bankruptcy games. Econ. Bull. 2003, 3, 1–8. [Google Scholar]
- Alparslan-Gök, S.Z.; Miquel, S.; Tijs, S. Cooperation under interval uncertainty. Math. Methods Oper. Res. 2009, 69, 99–109. [Google Scholar] [CrossRef]
- Alparslan-Gök, S.Z.; Branzei, R.; Tijs, S. The interval Shapley value: An axiomatization. Cent. Eur. J. Oper. Res. 2010, 18, 131–140. [Google Scholar] [CrossRef]
- Fei, W.; Li, D.-F.; Ye, Y.-F. An approach to computing interval-valued discounted Shapley values for a class of cooperative games under interval data. Int. J. Gen. Syst. 2018, 47, 794–808. [Google Scholar] [CrossRef]
- Liang, K.; Li, D. A direct method of interval Banzhaf values of interval cooperative games. J. Syst. Sci. Syst. Eng. 2019, 28, 382–391. [Google Scholar] [CrossRef]
- Meng, F.; Chen, X.; Tan, C. Cooperative fuzzy games with interval characteristic functions. Int. J. Oper. Res. 2016, 16, 1–24. [Google Scholar] [CrossRef]
- Mallozzi, L.; Vidal-Puga, J. Uncertainty in cooperative interval games: How Hurwicz criterion compatibility leads to egalitarianism. Ann. Oper. Res. 2021, 301, 143–159. [Google Scholar] [CrossRef]
- Shino, J.; Ishihara, S.; Yamauchi, S. Shapley mapping and its axiomatization in n-person cooperative interval games. Mathematics 2022, 10, 3963. [Google Scholar] [CrossRef]
- Palanci, O.; Alparslan-Gök, S.Z.; Olgun, M.O.; Weber, G.-W. Transportation interval situations and related games. OR Spectr. 2016, 38, 119–136. [Google Scholar] [CrossRef]
- Alparslan-Gök, S.Z.; Branzei, R.; Tijs, S. Airport interval games and their Shapley value. Oper. Res. Decis. 2009, 19, 9–18. [Google Scholar]
- Alparslan Gök, S.Z. Cooperative Interval Games: Theory and Applications; Lambert Academic Publishing: Saarbrücken, Germany, 2010. [Google Scholar]
- Branzei, R.; Branzei, O.; Alparslan-Gök, S.Z.; Tijs, S. Cooperative interval games: A survey. Cent. Eur. J. Oper. Res. 2010, 18, 397–411. [Google Scholar] [CrossRef]
- Ishihara, S.; Shino, J. A solution mapping and its axiomatization in two-person interval games. J. Oper. Res. Soc. Jpn. 2021, 64, 214–226. [Google Scholar] [CrossRef]
- Shapley, L.S. A value for n-person games. Ann. Math. Stud. 1953, 28, 307–318. [Google Scholar]
- Alparslan Gök, S.Z. On the interval Shapley value. Optimization 2014, 63, 747–755. [Google Scholar]
- Han, W.; Sun, H.; Xu, G. A new approach of cooperative interval games: The interval core and Shapley value revisited. Oper. Res. Lett. 2012, 40, 462–468. [Google Scholar] [CrossRef]
- Gallardo, J.M.; Jiménez-Losada, A. Comment on “A new approach of cooperative interval games: The interval core and Shapley value revisited”. Oper. Res. Lett. 2018, 46, 434–437. [Google Scholar] [CrossRef]
- Young, H.P. Monotonic solutions of cooperative games. Int. J. Game Theory 1985, 14, 65–72. [Google Scholar] [CrossRef]
- Alparslan-Gök, S.Z.; Branzei, R.; Tijs, S. Convex interval games. J. Appl. Math. Decis. Sci. 2009, 342089. [Google Scholar] [CrossRef] [Green Version]
- Moore, R. Methods and Applications of Interval Analysis; Studies in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
- Peleg, B.; Sudhölter, P. Introduction to the Theory of Cooperative Games, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Hart, S.; Mass-Colell, A. Potential, Value, and Consistency. Econometrica 1989, 57, 589–614. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishihara, S.; Shino, J. Some Properties of Interval Shapley Values: An Axiomatic Analysis. Games 2023, 14, 50. https://doi.org/10.3390/g14030050
Ishihara S, Shino J. Some Properties of Interval Shapley Values: An Axiomatic Analysis. Games. 2023; 14(3):50. https://doi.org/10.3390/g14030050
Chicago/Turabian StyleIshihara, Shinichi, and Junnosuke Shino. 2023. "Some Properties of Interval Shapley Values: An Axiomatic Analysis" Games 14, no. 3: 50. https://doi.org/10.3390/g14030050
APA StyleIshihara, S., & Shino, J. (2023). Some Properties of Interval Shapley Values: An Axiomatic Analysis. Games, 14(3), 50. https://doi.org/10.3390/g14030050