Next Article in Journal
Symmetric-Key-Based Security for Multicast Communication in Wireless Sensor Networks
Next Article in Special Issue
The Application of Ant Colony Algorithms to Improving the Operation of Traction Rectifier Transformers
Previous Article in Journal / Special Issue
Concepts of a Modular System Architecture for Distributed Robotic Systems
Article Menu
Issue 1 (March) cover image

Export Article

Open AccessArticle

The Use of an Artificial Neural Network to Process Hydrographic Big Data during Surface Modeling

Institute of Geoinformatics, Faculty of Navigation, Maritime University of Szczecin, 70-500 Szczecin, Poland
*
Author to whom correspondence should be addressed.
This paper is an extended version of our conference paper: Lubczonek, J.; Wlodarczyk-Sielicka, M. The Use of an Artificial Neural Network for a Sea Bottom Modelling. In Proceedings of the 24th International Conference on Information and Software Technologies (ICIST 2018), Vilnius, Lithuania, 4–6 October 2018.
Computers 2019, 8(1), 26; https://doi.org/10.3390/computers8010026
Received: 30 January 2019 / Revised: 5 March 2019 / Accepted: 11 March 2019 / Published: 14 March 2019
  |  
PDF [3890 KB, uploaded 14 March 2019]
  |  

Abstract

At the present time, spatial data are often acquired using varied remote sensing sensors and systems, which produce big data sets. One significant product from these data is a digital model of geographical surfaces, including the surface of the sea floor. To improve data processing, presentation, and management, it is often indispensable to reduce the number of data points. This paper presents research regarding the application of artificial neural networks to bathymetric data reductions. This research considers results from radial networks and self-organizing Kohonen networks. During reconstructions of the seabed model, the results show that neural networks with fewer hidden neurons than the number of data points can replicate the original data set, while the Kohonen network can be used for clustering during big geodata reduction. Practical implementations of neural networks capable of creating surface models and reducing bathymetric data are presented. View Full-Text
Keywords: neural networks; bathymetric data; interpolation; reduction; DTM; big data neural networks; bathymetric data; interpolation; reduction; DTM; big data
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Wlodarczyk-Sielicka, M.; Lubczonek, J. The Use of an Artificial Neural Network to Process Hydrographic Big Data during Surface Modeling. Computers 2019, 8, 26.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Computers EISSN 2073-431X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top