A New Strategy for Energy Saving in Spectrum-Sliced Elastic Optical Networks †
Abstract
:1. Introduction
2. Elastic Optical Networks
3. Problem Characterization
3.1. Adaptive-Modulation
3.2. Amplified Spontaneous Emission Noise
3.3. Power Consumption
4. Optimization Model (RMLSA)
5. Power Consumption Model
6. Modified Formulation
6.1. Notation
- i and j denote the originating and terminating nodes, respectively, of a variable bandwidth (in terms of slots) lightpath.
- m and n denote the endpoints of a physical link in the network.
- z denotes the modulation format.
6.2. Given
- N: the number of nodes in the network.
- Λij: the traffic matrix element, which denotes the traffic intensity (in bps) demanded from the source node i to the destination node j.
- dmn: the physical topology, which represents the distance of the fiber interconnecting node m to n.
- MS: the capacity of each fiber. The maximum number of slots per link.
- GC: the filter guard band, which is the minimum spectrum width between wavebands (in terms of the number of slots).
- Ω: Slot width, which informs the slot width in Hz.
- E(z)max: the limit of the total cumulative spontaneous emission noise on a signal with “z” modulation format.
- l: the length of the fiber span between two amplifiers.
- f(l): the spontaneous emission noise produced by an amplifier to compensate a span with length l.
- εz: the spectral efficiency (bps/Hz) for “z” modulation format.
- K: a larger number to be used to make some integer variables.
- : the power consumed by OXCm.
- amp: the power consumed by each optical amplifier.
- Namp: the number of amplifiers on the network.
- : the binary variable used to account the degree of the node.
- : the physical degree of node m (number of connected fibers to the node).
- α: the virtual degree of OXC (number of channels that can be inserted/deleted).
- The blocking probability:
6.3. Variables
- Lightpath bandwidth bijz: the bandwidth in terms of the number of slots of an elastic lightpath from node i to node j with “z” modulation format.
- Physical topology route : the amount of bandwidth that the lightpath from node i to node j with “z” modulation format uses in fiber link m-n.
- f(i,j,z): the total cumulative spontaneous emission noise of a lightpath from node i to node j with the “z” modulation format.
- A binary variable to indicate whether the lightpath from node i to node j with “z” modulation format passes through a link m − n. equals 1 if > 0 and equals 0 if = 0.
- Mijz: a binary variable to indicate which of the “z” modulation formats was used on the lightpath from node i to node j.
- TRijz: the transmission rate of the transceiver which sends the optical path (i,j) with modulation “z”.
- : the power consumed by each transceiver BV (Bandwidth Variable).
- total: the total power consumed.
6.4. Modified MILP Formulation
7. MILP-Based Algorithm
Algorithm 1: The MILP-based algorithm |
Step 1: Run the traditional MILP to find the value of [min MS] having Pblock_limit as a parameter; Step 2: Set an MS values vector in which the elements are greater than [min MS] to meet Pblock_limit defined in the previous step; Step 3: Run the traditional MILP to find the value of the objective function [max Ca] and the value of PCtraditional for the vector of values chosen, MS; Step 4: With the value of [max Ca], we run the modified MILP to find the value of the new objective function [min PCmodified] for the same set of the values of MS; Step 5: Stop and show PCtraditional, PCmodified, ΔPC = [PCtraditional − PCmodified], and ΔPCperc = [ΔPC/PCtraditional]. |
8. Simulations and Results
8.1. Small Network (6NET)
8.2. Moderate Sized Networks
9. Conclusions
Author Contributions
Conflicts of Interest
References
- Ramaswami, R.; Sivarajan, K.; Sasaki, G. Optical Networks: A Practical Perspective; Mogan Kaufmann: Burlington, MA, USA, 2009. [Google Scholar]
- Murthy, C.S.R.; Gurusamy, M. WDM Optical Networks: Concepts, Design, and Algorithms; Prentice Hall: Upper New Jersey River, NJ, USA, 2002. [Google Scholar]
- Assis, K.D.R.; Queiroz, I.; Almeida, R.C.; Waldman, H. MILP formulation for resource optimization in Spectrum-Sliced Elastic Optical Path Networks. In Proceedings of the IEEE SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), Rio de Janeiro, Brazil, 4–7 August 2013; pp. 1–4. [Google Scholar]
- Waldman, H.; Almeida, R.C.; Bortoletto, R.C.; Assis, K.D.R. Deadlock avoidance under incremental traffic in the elastic single link. In Proceedings of the 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, 6–10 July 2014; pp. 1–4. [Google Scholar]
- Assis, K.D.R.; Peng, S.; Almeida, R.C.; Waldman, H.; Hammad, A.; Santos, A.F.; Simeonidou, D. Network Virtualization Over Elastic Optical Networks With Different Protection Schemes. J. Opt. Commun. Netw. 2016, 8, 272–281. [Google Scholar] [CrossRef]
- Assis, K.D.R.; Hammad, A.; Almeida, R.C., Jr.; Simeonidou, D. Approaches to Maximize the Open Capacity of Elastic Optical Networks. In Proceedings of the International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016. [Google Scholar]
- Favero, R.V.; Demanboro, A.C. Performance Analysis of Elastic Optical Network Comparing to Current Wavelength Division Multiplexing. IEEE Latin Am. Trans. 2016, 14, 1494–1498. [Google Scholar] [CrossRef]
- Gkamas, V.; Christodoulopoulos, K.; Vergados, D.J.; Varvarigos, E. Energy-minimized design of IP over flexible optical networks. Int. J. Commun. Syst. 2017, 30, 7. [Google Scholar] [CrossRef]
- Hadi, M.; Pakravan, M.R. Energy-efficient fast configuration of flexible transponders and grooming switches in OFDM-based elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 2018, 10, 90–103. [Google Scholar] [CrossRef]
- Papanikolaou, P.; Christodoulopoulos, K.; Varvarigos, E. Joint multi-layer survivability techniques for IP-over-elastic-optical-networks. J. Opt. Commun. Netw. 2017, 9, A85–A98. [Google Scholar] [CrossRef]
- Hadi, M.; Pakravan, M.R. Energy-Efficient Transponder Configuration for FMF-based Elastic Optical Networks. IEEE Commun. Lett. 2018, 22, 970–973. [Google Scholar] [CrossRef]
- Zhang, L.; Han, T.; Ansari, N. Energy-Aware Virtual Machine Management in Inter-datacenter Networks over Elastic Optical Infrastructure. IEEE Trans. Green Commun. Netw. 2018, 2, 305–315. [Google Scholar] [CrossRef]
- Bandiri, S.Y.M.; Pimenta, T.C.; Spadoti, D.H. Adaptive Modulation and code Strategy to Reduce Energy Consumption in Elastic Optical Network. J. Microw. Optoelectron. Electromagn. Appl. (JMOe) 2018, 17, 65–84. [Google Scholar] [CrossRef]
- Xiong, Y.; Shi, J.; Yang, Y.; Lv, Y.; Rouskas, G.N. Lightpath Management in SDN-Based Elastic Optical Networks With Power Consumption Considerations. J. Lightwave Technol. 2018, 36, 1650–1660. [Google Scholar] [CrossRef]
- Natalino, C.; Chiaraviglio, L.; Idzikowski, F.; Wosinska, L.; Monti, P. Joint Optimization of Failure Management Costs, Electricity Costs, and Operator Revenue in Optical Core Networks. IEEE Trans. Green Commun. Netw. 2018, 2, 291–304. [Google Scholar] [CrossRef]
- Saha, A.K.; Sambyo, K.; Bhunia, C.T. Energy efficient modelling of a network. China Commun. 2018, 15, 107–117. [Google Scholar] [CrossRef]
- Huang, Y.; Cho, P.B.; Samadi, P.; Bergman, K. Power Excursion Mitigation for Flexgrid Defragmentation With Machine Learning. J. Opt. Commun. Netw. 2018, 10, A69–A76. [Google Scholar] [CrossRef]
- Jinno, M.; Takara, H.; Kozicki, B.; Tsukishima, Y.; Sone, Y.; Matsuoka, S. Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies. Commun. Mag. IEEE 2009, 47, 66–73. [Google Scholar] [CrossRef]
- Kozicki, B.; Takara, H.; Yoshimatsu, T.; Yonenaga, K.; Jinno, M. Filtering characteristics of highly-spectrum efficient spectrum-sliced elastic optical path (SLICE) network. In Proceedings of the National Fiber Optic Engineers Conference, San Diego, CA, USA, 22–26 March 2009; Optical Society of America: Washington, DC, USA, 2009; p. JWA43. [Google Scholar]
- Vizcaíno, J.L.; Ye, Y.; Monroy, I.T. Energy efficiency analysis for flexible-grid OFDM-based optical networks. Comput. Netw. 2012, 56, 2400–2419. [Google Scholar] [CrossRef]
- El-Gorashi, T.E.; Dong, X.; Elmirghani, J.M. Green optical orthogonal frequency-division multiplexing networks. Optoelectron. IET 2014, 8, 137–148. [Google Scholar] [CrossRef]
- Wang, B.; Ho, P.H.; Lin, C.H. A novel energy-efficient transmission scheme in CO-OFDM elastic optical networks. J. Lightwave Technol. 2014, 32, 3380–3388. [Google Scholar] [CrossRef]
- Vizcaino, J.L.; Ye, Y.; Lopez, V.; Jimenez, F.; Duque, R.; Musumeci, F.; Krummrich, P. Differentiated quality of protection to improve energy efficiency of survivable optical transport networks. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 17–21 March 2013; Optical Society of America: Washington, DC, USA, 2013; p. OM3A-1. [Google Scholar]
- Zhang, J.; Zhao, Y.; Zhang, J.; Mukherjee, B. Energy efficiency of IP-over-elastic optical networks with sliceable optical transponder. In Proceedings of the Optical Fiber Communication Conference, San Francisco, CA, USA, 9–13 March 2014; Optical Society of America: Washington, DC, USA, 2014; p. W3A-4. [Google Scholar]
- Fallahpour, A.; Beyranvand, H.; Nezamalhosseini, S.A.; Salehi, J. Energy efficient routing and spectrum assignment with regenerator placement in elastic optical networks. J. Lightwave Technol. 2014, 32, 2019–2027. [Google Scholar] [CrossRef]
- Chen, B.; Xie, W.; Zhang, J.; Jue, J.P.; Zhao, Y.; Huang, S.; Gu, W. Energy and spectrum efficiency with multi-flow transponders and elastic regenerators in survivable flexible bandwidth virtual optical networks. In Proceedings of the Optical Fiber Communication Conference, San Francisco, CA, USA, 9–13 March 2014; Optical Society of America: Washington, DC, USA, 2014; p. W2A-27. [Google Scholar]
- Takagi, T.; Hasegawa, H.; Sato, K.I.; Sone, Y.; Kozicki, B.; Hirano, A.; Jinno, M. Dynamic routing and frequency slot assignment for elastic optical path networks that adopt distance adaptive modulation. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 6–10 March 2011; Optical Society of America: Washington, DC, USA, 2011; p. OTuI7. [Google Scholar]
- Palkopoulou, E.; Angelou, M.; Klonidis, D.; Christodoulopoulos, K.; Klekamp, A.; Buchali, F.; Tomkos, I. Quantifying spectrum, cost, and energy efficiency in fixed-grid and flex-grid networks [Invited]. J. Opt. Commun. Netw. 2012, 4, B42–B51. [Google Scholar] [CrossRef]
- Nag, A.; Tornatore, M.; Mukherjee, B. Optical network design with mixed line rates and multiple modulation formats. J. Lightwave Technol. 2010, 28, 466–475. [Google Scholar] [CrossRef]
- Assis, K.D.R.; Almeida, R.C.; Cartaxo, A.V.; dos Santos, A.F.; Waldman, H. Flexgrid optical networks design under multiple modulation formats. In Proceedings of the IEEE International Telecommunications Symposium (ITS), Sao Paulo, Brazil, 17–20 August 2014; pp. 1–5. [Google Scholar]
Modulation Format | Spectral Efficiency (bps/Hz) | Spectral Capacity (Gbps) |
---|---|---|
BPSK | 1 | 12.5 |
QPSK | 2 | 25 |
8-QAM | 3 | 37.5 |
16-QAM | 4 | 50 |
32-QAM | 5 | 62.5 |
64-QAM | 6 | 75 |
Node | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 100 | 100 | 100 | 100 | 100 | 200 | 200 | 100 | 200 | 50 | 200 | 100 | 200 | |
2 | 200 | 50 | 100 | 200 | 200 | 200 | 100 | 50 | 200 | 200 | 100 | 200 | 50 | |
3 | 200 | 100 | 200 | 200 | 50 | 100 | 200 | 200 | 200 | 100 | 50 | 200 | 200 | |
4 | 100 | 200 | 50 | 200 | 100 | 200 | 200 | 50 | 100 | 200 | 200 | 200 | 100 | |
5 | 50 | 200 | 200 | 100 | 200 | 50 | 200 | 100 | 200 | 200 | 50 | 100 | 200 | |
6 | 200 | 200 | 100 | 50 | 200 | 200 | 100 | 200 | 50 | 200 | 100 | 200 | 200 | |
7 | 50 | 100 | 200 | 200 | 200 | 100 | 50 | 200 | 200 | 100 | 200 | 50 | 200 | |
8 | 100 | 200 | 200 | 50 | 100 | 200 | 200 | 200 | 100 | 50 | 200 | 200 | 100 | |
9 | 200 | 50 | 200 | 100 | 200 | 200 | 50 | 100 | 200 | 200 | 200 | 100 | 50 | |
10 | 200 | 200 | 100 | 200 | 50 | 200 | 100 | 200 | 200 | 50 | 100 | 200 | 200 | |
11 | 200 | 100 | 50 | 200 | 200 | 100 | 200 | 50 | 200 | 100 | 200 | 200 | 50 | |
12 | 100 | 200 | 200 | 200 | 100 | 50 | 200 | 200 | 100 | 200 | 50 | 200 | 100 | |
13 | 200 | 200 | 50 | 100 | 200 | 200 | 200 | 100 | 50 | 200 | 200 | 100 | 200 | |
14 | 50 | 200 | 100 | 200 | 200 | 50 | 100 | 200 | 200 | 200 | 100 | 50 | 200 |
Node | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1300 | 700 | 300 | 700 | |||||||
2 | 1300 | 500 | 300 | 400 | |||||||
3 | 700 | 500 | 600 | 200 | 300 | ||||||
4 | 300 | 600 | 300 | 1000 | 600 | . | |||||
5 | 300 | 200 | 200 | 300 | 900 | ||||||
6 | 300 | 200 | 700 | 400 | 300 | ||||||
7 | 700 | 300 | 700 | 500 | 300 | ||||||
8 | 400 | 1000 | 300 | 400 | 600 | 800 | |||||
9 | 300 | 500 | 600 | 700 | 300 | ||||||
10 | 600 | 300 | 700 | 800 | |||||||
11 | 900 | 800 | 300 | 800 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Queiroz, I.M.; Assis, K.D.R. A New Strategy for Energy Saving in Spectrum-Sliced Elastic Optical Networks †. Computers 2018, 7, 30. https://doi.org/10.3390/computers7020030
Queiroz IM, Assis KDR. A New Strategy for Energy Saving in Spectrum-Sliced Elastic Optical Networks †. Computers. 2018; 7(2):30. https://doi.org/10.3390/computers7020030
Chicago/Turabian StyleQueiroz, Igor M., and Karcius D. R. Assis. 2018. "A New Strategy for Energy Saving in Spectrum-Sliced Elastic Optical Networks †" Computers 7, no. 2: 30. https://doi.org/10.3390/computers7020030
APA StyleQueiroz, I. M., & Assis, K. D. R. (2018). A New Strategy for Energy Saving in Spectrum-Sliced Elastic Optical Networks †. Computers, 7(2), 30. https://doi.org/10.3390/computers7020030