A Review of AI-Powered Controls in the Field of Magnetic Resonance Imaging
Abstract
1. Introduction
- Neurological imaging (neurodegenerative disease, stroke, aneurysms, brain tumors);
- Cardiovascular and thoracic imaging (cardiomyopathies, ischemia, aortic disease);
- Spinal and musculoskeletal imaging (intervertebral disc pathology, spinal cord compression, bone and soft-tissue tumors);
- Abdominal imaging (liver and kidney disease, malignancies, tumors).
2. Fundamentals of MRI Controls
2.1. Gradients and RF
2.2. The Superconductor and Shims
2.3. Motion
2.4. Subject Interaction
3. Why We Need to Optimize Controls
3.1. Gradient Controls
3.2. Gradient Effects
3.3. RF Controls and the Field
- Subject-tailored pulses, which offer the highest performance but require field mapping and pulse optimization for each individual [41].
- Robust universal pulses (UPs), pre-optimized across large ensembles of measured field maps to provide good average performance without per-subject optimization [42].
- Hybrid strategies combining UPs with subject-tailoring [43].
3.4. RF Energy Effects
3.5. Field
3.6. Summary
4. Early Demonstrations of AI in Control in Magnetic Resonance
5. MRI Control Designs Powered by AI
5.1. RF Shimming and Spoke Pulses
5.2. Universal Pulses
5.3. Slice Selective, Non-Selective, and Adiabatic RF
5.4. 2D Spatial-Selective RF Pulses
6. AI-Powered Support for MRI Control Design
6.1. Field Mapping
6.2. Field Mapping
6.3. SAR Assessment
6.4. Motion Compensation
6.5. Gradient Discrepancy Compensation
7. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| Static, main magnetic field | |
| Magnetic component of electromagnetic field | |
| BOLD | Blood Oxygenation Level Dependent |
| (c)GAN | (conditional) Generative Adversarial Network |
| CNN | Convolutional Neural Network |
| CT | Computed Tomography |
| DC | Direct Current |
| DL | Deep Learning |
| DTI | Diffusion Tensor Imaging |
| DWI | Diffusion Weighted Imaging |
| E | Electric component of electromagnetic field |
| EPI | Echo Planar Imaging |
| FA | Flip Angle |
| FC | Fully Connected |
| FLAIR | Fluid Attenuated Inversion Recovery |
| fMRI | Functional MRI |
| FOCUS | Fast online-customized |
| GAN | Generative Adversarial Network |
| GIRF | Gradient Impulse Response Function |
| GPS | Physics-Guided Self-supervised learning |
| GPU | Graphical Processing Unit |
| GRAPPA | Generalized Autocalibrating Partially Parallel Acquisitions |
| Magnetic field gradients along x, y, and z | |
| JANUS | God of doors and gates in Roman mythology |
| LTI | Linear Time-Invariant |
| MLS | Magnitude Least Squares |
| MPRAGE | Magnetization Prepared Rapid Gradient Echo |
| MRA | Magnetic Resonance Angiography |
| MRI | Magnetic Resonance Imaging |
| MRS | Magnetic Resonance Spectroscopy |
| NA | Not applicable |
| NN | Neural Network |
| PatchGAN | Patch Generative Adversarial Network |
| PC | Phase Contrast |
| PET | Positron Emission Tomography |
| PhG | Physics-Guided |
| PIPRR | Prediction by Iteratively Projected Ridge Regression |
| PNS | Peripheral Nerve Stimulation |
| PWI | Perfusion Weighted Imaging |
| ReLU | Rectified Linear Unit |
| ResNet | Residual Network |
| RF | Radio Frequency |
| RL | Reinforcement Learning |
| RNN | Recurrent Neural Network |
| RT-MRI | Realtime MRI |
| SAR | Specific Absorption Rate |
| SENSE | SENSitivity Encoding |
| SLR | Shinnar-Le Roux |
| SNR | Signal to Noise Ratio |
| SPADE | Spatially-Adaptive Denormalization |
| SED | Specific Energy Dose |
| SSvL | Self-Supervised Learning |
| SvL | Supervised Learning |
| SWI | Susceptibility Weighted Imaging |
| T | Tesla |
| Longitudinal relaxation time | |
| Transverse relaxation | |
| TCN | Temporal Convolutional Network |
| TOF | Time of Flight |
| Tx | Transmit |
| UsvL | Unsupervised Learning |
| UP | Universal Pulse |
| US | Ultrasound |
| VAE | Variational AutoEncoder |
| VF | Virtual Family |
| VOP | Virtual Observation Points |
References
- Zhou, H. A Comprehensive Review of Artificial Intelligence and Machine Learning in Control Theory. Appl. Comput. Eng. 2024, 116, 43–48. [Google Scholar] [CrossRef]
- Soori, M.; Arezoo, B.; Dastres, R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn. Robot. 2023, 3, 54–70. [Google Scholar] [CrossRef]
- Rahman, M.A.; Shahrior, M.F.; Iqbal, K.; Abushaiba, A.A. Enabling Intelligent Industrial Automation: A Review of Machine Learning Applications with Digital Twin and Edge AI Integration. Automation 2025, 6, 37. [Google Scholar] [CrossRef]
- Zaoui, A.; Tchuente, D.; Wamba, S.F.; Kamsu-Foguem, B. Impact of artificial intelligence on aeronautics: An industry-wide review. J. Eng. Technol. Manag. 2024, 71, 101800. [Google Scholar] [CrossRef]
- Haacke, E.M.; Brown, R.W.; Thompson, M.R.; Venkatesan, R. Magnetic Resonance Imaging: Physical Principles and Sequence Design; Wiley-Liss: New York, NY, USA, 1999. [Google Scholar]
- Bihan, D.L.; Breton, E.; Lallemand, D.; Grenier, P.; Cabanis, E.; Laval-Jeantet, M. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 1986, 161, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Basser, P.; Mattiello, J.; LeBihan, D. MR Diffusion Tensor Spectroscopy and Imaging. Biophys. J. 1994, 66, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Rosen, B.R.; Belliveau, J.W.; Vevea, J.M.; Brady, T.J. Perfusion imaging with NMR contrast agents. Magn. Reson. Med. 1990, 14, 249–265. [Google Scholar] [CrossRef]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef]
- Muthupillai, R.; Lomas, D.J.; Rossman, P.J.; Greenleaf, J.F.; Manduca, A.; Ehman, R.L. Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves. Science 1995, 269, 1854–1857. [Google Scholar] [CrossRef]
- Dumoulin, C.L.; Hart, H.R. Magnetic resonance angiography. Radiology 1986, 161, 717–720. [Google Scholar] [CrossRef]
- Bottomley, R.R. Spatial Localization in NMR Spectroscopy in Vivo. Ann. N. Y. Acad. Sci. 1987, 508, 333–348. [Google Scholar] [CrossRef]
- Haacke, E.M.; Xu, Y.; Cheng, Y.C.N.; Reichenbach, J.R. Susceptibility weighted imaging (SWI). Magn. Reson. Med. 2004, 52, 612–618. [Google Scholar] [CrossRef]
- Poorter, J.D.; Wagter, C.D.; Deene, Y.D.; Thomsen, C.; Ståhlberg, F.; Achten, E. Noninvasive MRI Thermometry with the Proton Resonance Frequency (PRF) Method: In Vivo Results in Human Muscle. Magn. Reson. Med. 1995, 33, 74–81. [Google Scholar] [CrossRef]
- Pruessmann, K.P.; Weiger, M.; Scheidegger, M.B.; Boesiger, P. SENSE: Sensitivity encoding for fast MRI. Magn. Reson. Med. 1999, 42, 952–962. [Google Scholar] [CrossRef]
- Griswold, M.A.; Jakob, P.M.; Heidemann, R.M.; Nittka, M.; Jellus, V.; Wang, J.; Kiefer, B.; Haase, A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 2002, 47, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y. Parallel excitation with an array of transmit coils. Magn. Reson. Med. 2004, 51, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Katscher, U.; Börnert, P.; Leussler, C.; van den Brink, J.S. Transmit SENSE. Magn. Reson. Med. 2003, 49, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Vinding, M.S.; Brenner, D.; Tse, D.H.Y.; Vellmer, S.; Vosegaard, T.; Suter, D.; Stöcker, T.; Maximov, I.I. Application of the limited-memory quasi-Newton algorithm for multi-dimensional, large flip-angle RF pulses at 7T. Magn. Reson. Mater. Phys. Biol. Med. 2017, 30, 29–39. [Google Scholar] [CrossRef]
- Goodwin, D.L.; Vinding, M.S. Accelerated Newton-Raphson GRAPE methods for optimal control. Phys. Rev. Res. 2023, 5, L012042. [Google Scholar] [CrossRef]
- Vinding, M.S.; Guérin, B.; Vosegaard, T.; Nielsen, N.C. Local SAR, global SAR, and power-constrained large-flip-angle pulses with optimal control and virtual observation points. Magn. Reson. Med. 2017, 77, 374–384. [Google Scholar] [CrossRef]
- Vinding, M.S.; Skyum, B.; Sangill, R.; Lund, T.E. Ultrafast (milliseconds), multidimensional RF pulse design with deep learning. Magn. Reson. Med. 2019, 82, 586–599. [Google Scholar] [CrossRef]
- Vinding, M.S.; Skyum, B.; Sangill, R.; Lund, T.E. Rapid multi-dimensional RF pulse design with deep learning. In Proceedings of the ISMRM 27th Annual Meeting & Exhibition, Montreal, QC, Canada, 11–16 May 2019; p. 4643. [Google Scholar]
- Foo, T.K.F.; Tan, E.T.; Vermilyea, M.E.; Hua, Y.; Fiveland, E.W.; Piel, J.E.; Park, K.; Ricci, J.; Thompson, P.S.; Graziani, D.; et al. Highly efficient head-only magnetic field insert gradient coil for achieving simultaneous high gradient amplitude and slew rate at 3.0T (MAGNUS) for brain microstructure imaging. Magn. Reson. Med. 2020, 83, 2356–2369. [Google Scholar] [CrossRef]
- Versteeg, E.; Klomp, D.W.J.; Siero, J.C.W. A silent gradient axis for soundless spatial encoding to enable fast and quiet brain imaging. Magn. Reson. Med. 2022, 87, 1062–1073. [Google Scholar] [CrossRef] [PubMed]
- Juchem, C.; Nixon, T.W.; McIntyre, S.; Boer, V.O.; Rothman, D.L.; de Graaf, R.A. Dynamic multi-coil shimming of the human brain at 7T. J. Magn. Reson. 2011, 212, 280–288. [Google Scholar] [CrossRef]
- Stockmann, J.P.; Witzel, T.; Keil, B.; Polimeni, J.R.; Mareyam, A.; LaPierre, C.; Setsompop, K.; Wald, L.L. A 32-channel combined RF and B0 shim array for 3T brain imaging. Magn. Reson. Med. 2016, 75, 441–451. [Google Scholar] [CrossRef]
- Vinding, M.S.; Lund, T.E.; Stockmann, J.P.; Guerin, B. INSTANT (INtegrated Shimming and Tip-Angle NormalizaTion): 3D flip-angle mitigation using joint optimization of RF and shim array currents. In Proceedings of the ISMRM & SMRT Virtual Conference & Exhibition, Virtual, 8–14 August 2020; p. 0612. [Google Scholar]
- Zaitsev, M.; Dold, C.; Sakas, G.; Hennig, J.; Speck, O. Magnetic resonance imaging of freely moving objects: Prospective real-time motion correction using an external optical motion tracking system. NeuroImage 2006, 31, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Gallichan, D.; Marques, J.P.; Gruetter, R. Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T. Magn. Reson. Med. 2016, 75, 1030–1039. [Google Scholar] [CrossRef]
- Krause, F.; Benjamins, C.; Eck, J.; Lührs, M.; van Hoof, R.; Goebel, R. Active head motion reduction in magnetic resonance imaging using tactile feedback. Hum. Brain Mapp. 2019, 40, 4026–4037. [Google Scholar] [CrossRef]
- Knudsen, L.; Bailey, C.J.; Blicher, J.U.; Yang, Y.; Zhang, P.; Lund, T.E. Improved sensitivity and microvascular weighting of 3T laminar fMRI with GE-BOLD using NORDIC and phase regression. NeuroImage 2023, 271, 120011. [Google Scholar] [CrossRef]
- Nayak, K.S.; Lim, Y.; Campbell-Washburn, A.E.; Steeden, J. Real-Time Magnetic Resonance Imaging. J. Magn. Reson. Imaging 2022, 55, 81–99. [Google Scholar] [CrossRef] [PubMed]
- Voyvodic, J.T. Real-Time fMRI Paradigm Control, Physiology, and Behavior Combined with Near Real-Time Statistical Analysis. NeuroImage 1999, 10, 91–106. [Google Scholar] [CrossRef]
- Onodera, T.; Matsui, S.; Sekihara, K.; Kohno, H. A method of measuring field-gradient modulation shapes. Application to high-speed NMR spectroscopic imaging. J. Phys. E Sci. Instruments 1987, 20, 416. [Google Scholar] [CrossRef]
- Takahashi, A.; Peters, T. Compensation of multi-dimensional selective excitation pulses using measured k-space trajectories. Magn. Reson. Med. 1995, 34, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, B.E.; Brunner, D.O.; Wilm, B.J.; Barmet, C.; Gross, S.; Kasper, L.; Haeberlin, M.; Schmid, T.; Vannesjo, S.J.; Pruessmann, K.P. A field camera for MR sequence monitoring and system analysis. Magn. Reson. Med. 2016, 75, 1831–1840. [Google Scholar] [CrossRef]
- Vannesjo, S.J.; Haeberlin, M.; Kasper, L.; Pavan, M.; Wilm, B.J.; Barmet, C.; Pruessmann, K.P. Gradient system characterization by impulse response measurements with a dynamic field camera. Magn. Reson. Med. 2013, 69, 583–593. [Google Scholar] [CrossRef]
- Aigner, C.S.; Rund, A.; Abo Seada, S.; Price, A.N.; Hajnal, J.V.; Malik, S.J.; Kunisch, K.; Stollberger, R. Time optimal control-based RF pulse design under gradient imperfections. Magn. Reson. Med. 2020, 83, 561–574. [Google Scholar] [CrossRef]
- IEC 60601-2-33:2022; Medical Electrical Equipment—Part 2-33: Particular Requirements for the Basic Safety and Essential Performance of Magnetic Resonance Equipment for Medical Diagnosis. IEC: Geneva, Switzerland, 2022.
- Malik, S.J.; Keihaninejad, S.; Hammers, A.; Hajnal, J.V. Tailored excitation in 3D with spiral nonselective (SPINS) RF pulses. Magn. Reson. Med. 2012, 67, 1303–1315. [Google Scholar] [CrossRef]
- Gras, V.; Vignaud, A.; Amadon, A.; Le Bihan, D.; Boulant, N. Universal pulses: A new concept for calibration-free parallel transmission. Magn. Reson. Med. 2017, 77, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Herrler, J.; Liebig, P.; Gumbrecht, R.; Ritter, D.; Schmitter, S.; Maier, A.; Schmidt, M.; Uder, M.; Doerfler, A.; Nagel, A.M. Fast online-customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization. Magn. Reson. Med. 2021, 85, 3140–3153. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.P.; Kober, T.; Krueger, G.; van der Zwaag, W.; Van de Moortele, P.F.; Gruetter, R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 2010, 49, 1271–1281. [Google Scholar] [CrossRef]
- Ruijters, L.; Lund, T.E.; Vinding, M.S. Improving -inhomogeneity tolerance by resolving non-bijection in MP2RAGE R1 mapping: A 2D look-up table approach demonstrated at 3 T. Magn. Reson. Med. 2025, 93, 1712–1722. [Google Scholar] [CrossRef]
- Delgado, P.R.; Kuehne, A.; Periquito, J.S.; Millward, J.M.; Pohlmann, A.; Waiczies, S.; Niendorf, T. B1 inhomogeneity correction of RARE MRI with transceive surface radiofrequency probes. Magn. Reson. Med. 2020, 84, 2684–2701. [Google Scholar] [CrossRef] [PubMed]
- Mauconduit, F.; Massire, A.; Gras, V.; Amadon, A.; Vignaud, A.; Boulant, N. PASTeUR package extension with MP2RAGE for robust T1 mapping technique in parallel transmit at 7T. In Proceedings of the ISMRM & SMRT Virtual Conference & Exhibition, Virtual, 8–14 August 2020; p. 3709. [Google Scholar]
- Guérin, B.; Gebhardt, M.; Cauley, S.; Adalsteinsson, E.; Wald, L.L. Local specific absorption rate (SAR), global SAR, transmitter power, and excitation accuracy trade-offs in low flip-angle parallel transmit pulse design. Magn. Reson. Med. 2014, 71, 1446–1457. [Google Scholar] [CrossRef]
- Christ, A.; Kainz, W.; Hahn, E.G.; Honegger, K.; Zefferer, M.; Neufeld, E.; Rascher, W.; Janka, R.; Bautz, W.; Chen, J.; et al. The Virtual Family—Development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Biol. 2009, 55, N23. [Google Scholar] [CrossRef]
- Eichfelder, G.; Gebhardt, M. Local specific absorption rate control for parallel transmission by virtual observation points. Magn. Reson. Med. 2011, 66, 1468–1476. [Google Scholar] [CrossRef] [PubMed]
- Gezelter, J.D.; Freeman, R. Use of neural networks to design shaped radiofrequency pulses. J. Magn. Reson. 1969 1990, 90, 397–404. [Google Scholar] [CrossRef]
- Mirfin, C.; Glover, P.; Bowtell, R. Optimisation of parallel transmission radiofrequency pulses using neural networks. In Proceedings of the Joint Annual Meeting ISMRM-ESMRMB, Paris, France, 16–21 June 2018; p. 3388. [Google Scholar]
- Ianni, J.D.; Cao, Z.; Grissom, W.A. Machine learning RF shimming: Prediction by iteratively projected ridge regression. Magn. Reson. Med. 2018, 80, 1871–1881. [Google Scholar] [CrossRef]
- Tomi-Tricot, R.; Gras, V.; Thirion, B.; Mauconduit, F.; Boulant, N.; Cherkaoui, H.; Zerbib, P.; Vignaud, A.; Luciani, A.; Amadon, A. SmartPulse, a machine learning approach for calibration-free dynamic RF shimming: Preliminary study in a clinical environment. Magn. Reson. Med. 2019, 82, 2016–2031. [Google Scholar] [CrossRef]
- Shin, D.; Ji, S.; Lee, D.; Lee, J.; Oh, S.H.; Lee, J. Deep Reinforcement Learning Designed Shinnar-Le Roux RF Pulse Using Root-Flipping: DeepRFSLR. IEEE Trans. Med. Imaging 2020, 39, 4391–4400. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, K.; Jiang, W.; Wang, N.; Wright, A.J.; Liu, A.; Wang, J. Multi-task convolutional neural network-based design of radio frequency pulse and the accompanying gradients for magnetic resonance imaging. NMR Biomed. 2021, 34, e4443. [Google Scholar] [CrossRef]
- Vinding, M.S.; Aigner, C.S.; Schmitter, S.; Lund, T.E. DeepControl: 2DRF pulses facilitating inhomogeneity and B0 off-resonance compensation in vivo at 7 T. Magn. Reson. Med. 2021, 85, 3308–3317. [Google Scholar] [CrossRef]
- Vinding, M.S.; Aigner, C.S.; Stockmann, J.; Guerin, B.; Schmitter, S.; Lund, T.E. DeepControl: AI-powered slice flip-angle homogenization by 2D RF pulses. In Proceedings of the ISMRM & SMRT Annual Meeting & Exhibition, Online, 15–20 May 2021; p. 0785. [Google Scholar]
- Shin, D.; Kim, Y.; Oh, C.; An, H.; Park, J.; Kim, J.; Lee, J. Deep reinforcement learning-designed radiofrequency waveform in MRI. Nat. Mach. Intell. 2021, 3, 985–994. [Google Scholar] [CrossRef]
- Herrler, J.; Liebig, P.; Majewski, K.; Gumbrecht, R.; Ritter, D.; Meixner, C.R.; Maier, A.; Dörfler, A.; Nagel, A.M. Neural Network-supported Fast Online-Customized (FOCUS) parallel transmit (pTx) pulses for slice-selective, large tip angle excitation. In Proceedings of the Joint Annual Meeting ISMRM-ESMRMB, London, UK, 7–12 May 2022; p. 3312. [Google Scholar]
- Eberhardt, B.; Poser, B.A.; Shah, N.J.; Felder, J. B1 field map synthesis with generative deep learning used in the design of parallel-transmit RF pulses for ultra-high field MRI. Z. Med. Phys. 2022, 32, 334–345. [Google Scholar] [CrossRef]
- Vinding, M.S.; Lund, T.E. Clipped DeepControl: Deep neural network two-dimensional pulse design with an amplitude constraint layer. Artif. Intell. Med. 2023, 135, 102460. [Google Scholar] [CrossRef]
- Jang, A.; He, X.; Liu, F. Physics-guided self-supervised learning: Demonstration for generalized RF pulse design. Magn. Reson. Med. 2025, 93, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Kilic, T.; Liebig, P.; Demirel, O.B.; Herrler, J.; Nagel, A.M.; Ugurbil, K.; Akçakaya, M. Unsupervised deep learning with convolutional neural networks for static parallel transmit design: A retrospective study. Magn. Reson. Med. 2024, 91, 2498–2507. [Google Scholar] [CrossRef]
- Nagelstrasser, S.; Herrler, J.; Vinding, M.S.; Egger, N.; Liebig, P.; Uder, M.; Zaiss, M.; Nagel; Armin, A.M. Comparison of deep learning predicted and universal pTx pulses for a 3D turbo spin echo sequence at 7T. In Proceedings of the European Society for Magnetic Resonance in Medicine and Biology, Marseille, France, 8–11 October 2025. [Google Scholar]
- Lu, Z.; Liang, H.; Lu, M.; Wang, X.; Yan, X.; Huo, Y. Fast-RF-Shimming: Accelerate RF shimming in 7T MRI using deep learning. Meta-Radiology 2025, 3, 100166. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Donahue, M.J.; Ma, J.; Grissom, W.A. Joint Design of Large-Tip-Angle Parallel RF Pulses and Blipped Gradient Trajectories. Magn. Reson. Med. 2016, 75, 1198–1208. [Google Scholar] [CrossRef]
- Nielsen, P.S.; Georgsen, J.B.; Vinding, M.S.; Østergaard, L.R.; Steiniche, T. Computer-Assisted Annotation of Digital H&E/SOX10 Dual Stains Generates High-Performing Convolutional Neural Network for Calculating Tumor Burden in H&E-Stained Cutaneous Melanoma. Int. J. Environ. Res. Public Health 2022, 19, 14327. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2022, arXiv:1312.6114. [Google Scholar]
- Zhao, S.; Song, J.; Ermon, S. InfoVAE: Balancing Learning and Inference in Variational Autoencoders. Proc. AAAI Conf. Artif. Intell. 2019, 33, 5885–5892. [Google Scholar] [CrossRef]
- Setsompop, K.; Wald, L.L.; Alagappan, V.; Gagoski, B.A.; Adalsteinsson, E. Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels. Magn. Reson. Med. 2008, 59, 908–915. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar] [CrossRef]
- Majewski, K. Simultaneous optimization of radio frequency and gradient waveforms with exact Hessians and slew rate constraints applied to kT-points excitation. J. Magn. Reson. 2021, 326, 106941. [Google Scholar] [CrossRef]
- Pauly, J.; Le Roux, P.; Nishimura, D.; Macovski, A. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm. IEEE Trans. Med. Imaging 1991, 10, 53–65. [Google Scholar] [CrossRef]
- Sharma, A.; Lustig, M.; Grissom, W.A. Root-flipped multiband refocusing pulses. Magn. Reson. Med. 2016, 75, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. arXiv 2021, arXiv:2106.09685. [Google Scholar]
- Vinding, M.S.; Maximov, I.I.; Tošner, Z.; Nielsen, N.C. Fast numerical design of spatial-selective rf pulses in MRI using Krotov and quasi-Newton based optimal control methods. J. Chem. Phys. 2012, 137, 054203. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- Vinding, M.S.; Goodwin, D.L.; Kuprov, I.; Lund, T.E. Optimal control gradient precision trade-offs: Application to fast generation of DeepControl libraries for MRI. J. Magn. Reson. 2021, 333, 107094. [Google Scholar] [CrossRef]
- Wink, C.; Ferrazzi, G.; Bassenge, J.P.; Flassbeck, S.; Schmidt, S.; Schaeffter, T.; Schmitter, S. 4D flow imaging with 2D-selective excitation. Magn. Reson. Med. 2019, 82, 886–900. [Google Scholar] [CrossRef]
- Hwang, S.C.; Yao, C.; Chen, J.H. EPI Gradient Preemphasis Optimization: Using Neural Networks. In Proceedings of the ISMRM 10th Scientific Meeting & Exhibition, Honolulu, HI, USA, 18–24 May 2002; p. 0829. [Google Scholar]
- Meliadò, E.F.; Raaijmakers, A.J.E.; Sbrizzi, A.; Steensma, B.R.; Maspero, M.; Savenije, M.H.F.; Luijten, P.R.; van den Berg, C.A.T. A deep learning method for image-based subject-specific local SAR assessment. Magn. Reson. Med. 2020, 83, 695–711. [Google Scholar] [CrossRef]
- Haskell, M.; Cao, A.A.; Noll, D.; Fessler, J. Deep learning field map estimation with model-based image reconstruction for off resonance correction of brain images using a spiral acquisition. In Proceedings of the ISMRM Workshop on Data Sampling & Image Reconstruction, Sedona, AZ, USA, 26–29 January 2020. [Google Scholar]
- Abbasi-Rad, S.; O’Brien, K.; Kelly, S.; Vegh, V.; Rodell, A.; Tesiram, Y.; Jin, J.; Barth, M.; Bollmann, S. Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power through deep learning estimation. Magn. Reson. Med. 2021, 85, 2462–2476. [Google Scholar] [CrossRef] [PubMed]
- Gokyar, S.; Robb, F.J.L.; Kainz, W.; Chaudhari, A.; Winkler, S.A. MRSaiFE: An AI-Based Approach Towards the Real-Time Prediction of Specific Absorption Rate. IEEE Access 2021, 9, 140824–140834. [Google Scholar] [CrossRef] [PubMed]
- Plumley, A.; Watkins, L.; Treder, M.; Liebig, P.; Murphy, K.; Kopanoglu, E. Rigid motion-resolved prediction using deep learning for real-time parallel-transmission pulse design. Magn. Reson. Med. 2022, 87, 2254–2270. [Google Scholar] [CrossRef]
- Brink, W.M.; Yousefi, S.; Bhatnagar, P.; Remis, R.F.; Staring, M.; Webb, A.G. Personalized local SAR prediction for parallel transmit neuroimaging at 7T from a single T1-weighted dataset. Magn. Reson. Med. 2022, 88, 464–475. [Google Scholar] [CrossRef]
- Brink, W.; Staring, M.; Remis, R.F.; Webb, A. Fast Subject-Specific Local SAR and B1+ Prediction for PTx at 7T using only an Initial Localizer Scan. In Proceedings of the Joint Annual Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting, London, UK, 7–12 May 2022; p. 0387. [Google Scholar]
- Liu, Q.; Nguyen, H.; Zhu, X.; Zhai, X.; Li, B.; Xu, J.; Zhang, W. Gradient Waveform Prediction Using Deep Neural Network. In Proceedings of the Joint Annual Meeting ISMRM-ESMRMB, London, UK, 7–12 May 2022; p. 0639. [Google Scholar]
- Krueger, F.; Aigner, C.S.; Hammernik, K.; Dietrich, S.; Lutz, M.; Schulz-Menger, J.; Schaeffter, T.; Schmitter, S. Rapid estimation of 2D relative -maps from localizers in the human heart at 7T using deep learning. Magn. Reson. Med. 2023, 89, 1002–1015. [Google Scholar] [CrossRef]
- Motyka, S.; Weiser, P.; Bachrata, B.; Hingerl, L.; Strasser, B.; Hangel, G.; Niess, E.; Niess, F.; Zaitsev, M.; Robinson, S.D.; et al. Predicting dynamic, motion-related changes in B0 field in the brain at a 7T MRI using a subject-specific fine-trained U-net. Magn. Reson. Med. 2024, 91, 2044–2056. [Google Scholar] [CrossRef] [PubMed]
- Krueger, F.; Aigner, C.S.; Lutz, M.; Riemann, L.T.; Degenhardt, K.; Hadjikiriakos, K.; Zimmermann, F.F.; Hammernik, K.; Schulz-Menger, J.; Schaeffter, T.; et al. Deep learning-based whole-brain -mapping at 7T. Magn. Reson. Med. 2025, 93, 1700–1711. [Google Scholar] [CrossRef]
- Dan, G.; Zhong, Z.; Liu, Q.; Xu, J. Gradient Waveform Pre-emphasis using Deep Neural Network. In Proceedings of the ISMRM & ISMRT Annual Meeting & Exhibition, Honolulu, HI, USA, 10–15 May 2025; p. 3809. [Google Scholar]
- Martin, J.B.; Alderson, H.E.; Gore, J.C.; Does, M.D.; Harkins, K.D. Modeling the MRI gradient system with a temporal convolutional network: Improved reconstruction by prediction of readout gradient errors. Magn. Reson. Med. 2026, 95, 286–298. [Google Scholar] [CrossRef]
- Zeng, D.Y.; Shaikh, J.; Holmes, S.; Brunsing, R.L.; Pauly, J.M.; Nishimura, D.G.; Vasanawala, S.S.; Cheng, J.Y. Deep residual network for off-resonance artifact correction with application to pediatric body MRA with 3D cones. Magn. Reson. Med. 2019, 82, 1398–1411. [Google Scholar] [CrossRef]
- Schote, D.; Winter, L.; Kolbitsch, C.; Zimmermann, F.; O’Reilly, T.; Webb, A.; Seifert, F.; Kofler, A. Physics-informed Deep Learning for Image Distortion Correction from B0-inhomogeneities in Low field MRI. In Proceedings of the Joint Annual Meeting ISMRM-ESMRMB, London, UK, 7–12 May 2022; p. 1816. [Google Scholar] [CrossRef]
- Schote, D.; Winter, L.; Kolbitsch, C.; Rose, G.; Speck, O.; Kofler, A. Joint B0 and Image Reconstruction in Low-Field MRI by Physics-Informed Deep-Learning. IEEE Trans. Biomed. Eng. 2024, 71, 2842–2853. [Google Scholar] [CrossRef] [PubMed]
- Yarnykh, V.L. Actual flip-angle imaging in the pulsed steady state: A method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn. Reson. Med. 2007, 57, 192–200. [Google Scholar] [CrossRef]
- Moortele, V.D.; Snyder, C.; DelaBarre, L.; Adriany, G.; Vaughan, T.; Ugurbil, K. Calibration Tools for RF Shim at Very High Field with Multiple Element RF Coils: From Ultra Fast Local Relative Phase to Absolute Magnitude B1+ Mapping. In Proceedings of the Joint Annual Meeting ISMRM-ESMRMB, Berlin, Germany, 19–25 May 2007; p. 1676. [Google Scholar]
- Ehses, P.; Brenner, D.; Stirnberg, R.; Pracht, E.D.; Stöcker, T. Whole-brain B1-mapping using three-dimensional DREAM. Magn. Reson. Med. 2019, 82, 924–934. [Google Scholar] [CrossRef]
- Kent, J.L.; Dragonu, I.; Valkovič, L.; Hess, A.T. Rapid 3D absolute mapping using a sandwiched train presaturated TurboFLASH sequence at 7 T for the brain and heart. Magn. Reson. Med. 2023, 89, 964–976. [Google Scholar] [CrossRef]
- Lutz, M.; Aigner, C.S.; Flassbeck, S.; Krueger, F.; Gatefait, C.G.F.; Kolbitsch, C.; Silemek, B.; Seifert, F.; Schaeffter, T.; Schmitter, S. B1-MRF: Large dynamic range MRF-based absolute mapping in the human body at 7T. Magn. Reson. Med. 2024, 92, 2473–2490. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-Resolution Image Synthesis and Semantic Manipulation With Conditional GANs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 19–21 June 2018. [Google Scholar]
- Park, T.; Liu, M.Y.; Wang, T.C.; Zhu, J.Y. Semantic Image Synthesis With Spatially-Adaptive Normalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Rashed, E.A.; Diao, Y.; Hirata, A. Learning-based estimation of dielectric properties and tissue density in head models for personalized radio-frequency dosimetry. Phys. Med. Biol. 2020, 65, 065001. [Google Scholar] [CrossRef] [PubMed]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. arXiv 2018, arXiv:1611.07004. [Google Scholar]
- Meliadò, E.F.; van den Berg, C.A.T.; Luijten, P.R.; Raaijmakers, A.J.E. Intersubject specific absorption rate variability analysis through construction of 23 realistic body models for prostate imaging at 7T. Magn. Reson. Med. 2019, 81, 2106–2119. [Google Scholar] [CrossRef]
- Kopanoglu, E.; Plumley, A.J.D.; Erturk, M.A.; Deniz, C.M.; Wise, R.G. Implications of within-scan patient head motion on B1+ homogeneity and Specific Absorption Rate at 7T. In Proceedings of the ISMRM 27th Annual Meeting & Exhibition, Montreal, QC, Canada, 11–16 May 2019; p. 4686. [Google Scholar]
- Gosselin, M.C.; Neufeld, E.; Moser, H.; Huber, E.; Farcito, S.; Gerber, L.; Jedensjö, M.; Hilber, I.; Gennaro, F.D.; Lloyd, B.; et al. Development of a new generation of high-resolution anatomical models for medical device evaluation: The Virtual Population 3.0. Phys. Med. Biol. 2014, 59, 5287. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Nussbaum, J.; Dietrich, B.E.; Wilm, B.J.; Pruessmann, K.P. Thermal variation in gradient response: Measurement and modeling. Magn. Reson. Med. 2022, 87, 2224–2238. [Google Scholar] [CrossRef] [PubMed]
- Harkins, K.D.; Does, M.D. Efficient gradient waveform measurements with variable-prephasing. J. Magn. Reson. 2021, 327, 106945. [Google Scholar] [CrossRef] [PubMed]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19, New York, NY, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar] [CrossRef]


| Year | Authors | Employment | AI | RF [num. chan.] | Experiments | ||
|---|---|---|---|---|---|---|---|
| 1990 | Gezelter & Freeman [51] | NMR dual band exc. | SvL, FC-NN | 1 | - | 9.4 | NMR, in vitro |
| 2018 | Mirfin et al. [52] | RF shim. | SvL, FC-NN | 8 | 5-spoke | 7 | Head, in silico |
| Ianni et al. [53] | RF shim. | ML, PIPRR | 24 | - | 7 | Head, in silico | |
| 2019 | Vinding et al. [22,23] | 2D spat.- select. exc./inv. | SvL, FC-NN | 1 | No * | 3 | Head, in vivo |
| Tomi-Tricot et al. [54] | -points | ML classifier | 2 ** | -points ** | 3 | Abdom., in vivo | |
| 2020 | Shin et al. [55] | SLR root-flip. | RL, FC-NN | 1 | - | 3 | Phantom |
| 2021 | Zhang et al. [56] | 2D spat.- select. exc. | SvL, CNN | 1 | Yes, | 3 | Phantom |
| Vinding et al. [57] | 2D spat.-select. exc. | SvL, CNN | 1 | No * | 7 | Head, in vivo | |
| Vinding et al. [58] | Dyn. RF shim. | SvL, CNN | 1 | No * | 7 | Head, in silico | |
| Shin et al. [59] | SLR exc.; SLR inv.; -ins. adia. select. inv.; -ins. adia. unselect. inv. | RL, RNN | 1 | No | 3 | Phantom | |
| 2022 | Herrler et al. [60] | FOCUS | SvL, U-Net | 8 ** | 2-spoke ** | 7 | Head, in silico |
| Eberhardt et al. [61] | RF shim. | SvL, ResNet, VAE | 16 | 2-spoke | 9.4 | Head, in vivo | |
| 2023 | Vinding et al. [62] | 2D spat.-select. exc. | SvL, CNN | 1 | No * | 7 | Head, In silico |
| 2024 | Jang et al. [63] | SLR exc; -ins. adia. select. inv.; spect.-spat. exc.; 2D spat.-select. exc. | PhG SSvL, FC-NN | 1 | No * | 3 | Knee, head, in vivo |
| Kilic et al. [64] | Stat. RF shim. | PhG UsvL, CNN | 8 | - | 7 | Head, in silico | |
| 2025 | Nagelstrasser et al. [65] | Dyn. RF shim. | SvL, CNN | 8 | Yes, | 7 | Head, in vivo |
| Lu et al. [66] | RF shim. | ResNet, Adam, NFD | 8 | - | 7 | Head, in silico |
| Year | Authors | Employment | AI | Experiments | |
|---|---|---|---|---|---|
| 2002 | Hwang et al. [83] | , pre-emphasis | back-prop. NN | 3 | Unknown |
| 2020 | Meliadò et al. [84] | SAR | U-Net, PatchGAN | 7 | Pelvis, in vivo |
| Haskell et al. [85] | ResNet | 3 | Head, in vivo | ||
| 2021 | Abbasi-Rad et al. [86] | 1 Tx , SAR, adiabatic RF | U-Net | 7 | Head, in vivo |
| Gokyar et al. [87] | SAR | U-Net | 3 + 7 | Body + head, in silico | |
| Plumley et al. [88] | , motion | U-Net, cGAN | 7 | Head, in silico | |
| 2022 | Eberhardt et al. [61] | 16 Tx , 2-spoke RF | ResNet, VAE | 9.4 | Head, in vivo |
| Brink et al. [89] | SAR, tissue segmentation | ForkNet | 7 | Head, in vivo | |
| Brink et al. [90] | SAR, electromagn. params. | ForkNet | 7 | Head, in vivo | |
| Liu et al. [91] | LSTM | 3 | Head, in vivo | ||
| 2023 | Krüger et al. [92] | 8 Tx | U-Net | 7 | Thorax, in vivo |
| 2024 | Motyka et al. [93] | , motion | U-Net | 7 | Head, in vivo |
| 2025 | Krüger et al. [94] | 8 Tx | Complex CNN | 7 | Head, in vivo |
| Dan et al. [95] | , pre-emphasis | LSTM | 3 | Head, in vivo | |
| 2026 | Martin et al. [96] | TCN | 7 | Ferret, ex vivo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vinding, M.S.; Lund, T.E. A Review of AI-Powered Controls in the Field of Magnetic Resonance Imaging. Computers 2026, 15, 27. https://doi.org/10.3390/computers15010027
Vinding MS, Lund TE. A Review of AI-Powered Controls in the Field of Magnetic Resonance Imaging. Computers. 2026; 15(1):27. https://doi.org/10.3390/computers15010027
Chicago/Turabian StyleVinding, Mads Sloth, and Torben Ellegaard Lund. 2026. "A Review of AI-Powered Controls in the Field of Magnetic Resonance Imaging" Computers 15, no. 1: 27. https://doi.org/10.3390/computers15010027
APA StyleVinding, M. S., & Lund, T. E. (2026). A Review of AI-Powered Controls in the Field of Magnetic Resonance Imaging. Computers, 15(1), 27. https://doi.org/10.3390/computers15010027

