Comparison of Bioelectric Signals and Their Applications in Artificial Intelligence: A Review
Abstract
:1. Introduction
- Temporal dependency
- Inter and Intra-individual variability
- Sensitivity to external noises
- Equipment and high technology requirements
- Challenges in Data Processing
2. Bioelectrical Signals
- Baseline drift: This type of interference refers to a phenomenon in which the signal baseline, i.e., the reference zero level, shows slow variations or fluctuations over time. It is caused by the movement of the electrodes during signal acquisition, variations in the user’s skin impedance, or environmental factors [10,11].
- Electrode noise: The quality of the electrodes used for signal acquisition is of utmost importance since the interference generated by them can be significant during data recording. Factors such as inadequate skin contact and electrode polarization are common causes of this type of interference [10,14].
3. Electroencephalogram (EEG)
3.1. Signal Processing Techniques
3.2. Applications with AI
4. Electroretinogram (ERG)
4.1. Signal Processing Techniques
4.2. Applications with AI
5. Electromyogram (EMG)
5.1. Signal Processing Techniques
5.2. Applications with AI
6. Electrooculogram (EOG)
6.1. Signal Processing Techniques
6.2. Applications with AI
7. Electrocardiogram (ECG)
7.1. Signal Processing Techniques
7.2. Applications with AI
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, Y.; Singh, S.; Ray, A. Bioelectrical Signals as Emerging Biometrics: Issues and Challenges. ISRN Signal Process. 2012, 2012, 712032. [Google Scholar]
- Martinek, R.; Ladrova, M.; Sidikova, M.; Jaros, R.; Behbehani, K.; Kahankova, R.; Kawala-Sterniuk, A. Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach—Part I: Cardiac Signals. Sensors 2021, 21, 5186. [Google Scholar] [CrossRef] [PubMed]
- Martinek, R.; Ladrova, M.; Sidikova, M.; Jaros, R.; Behbehani, K.; Kahankova, R.; Kawala-Sterniuk, A. Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach—Part II: Brain Signals. Sensors 2021, 21, 6343. [Google Scholar] [CrossRef]
- Ghosh, R. Learning Outcomes of Classroom Research; L’Ordine Nuovo Publication: Rome, Italy, 2022. [Google Scholar]
- Aceves-Fernandez, M. Inteligencia Artificial para Programadores con Prisa; Amazon Self Publishing (Próximamente ed. Planeta): Seattle, WA, USA, 2021. [Google Scholar]
- Samuel, A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar]
- Du, X.; Cai, Y.; Wang, S.; Zhang, L. Overview of deep learning. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Hangzhou, China, 28–30 October 2016; pp. 159–164. [Google Scholar]
- Rangayyan, R.M. Introduction to Biomedical Signals. In Biomedical Signal Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; Chapter 1; pp. 1–69. [Google Scholar]
- Koch, K.; Schuettler, M.; Stieglitz, T. Considerations on noise of electrodes in combination with amplifiers for bioelectrical signal recording. Biomed. Tech. Biomed. Eng. 2002, 47 Pt 2 (Suppl. S1), 514–516. [Google Scholar]
- Abdullah, A.; Ibrahim, A.; Alhamadani, A.; Al-obaidi, M.; Ahmed, A. A review for filtering techniques of the Electrooculography (EOG) signals. Glob. J. Eng. Technol. Adv. 2023, 16, 163–171. [Google Scholar]
- Barbara, N.; Camilleri, T.A.; Camilleri, K.P. TEMoD: Target-Enabled Model-Based De-Drifting of the EOG Signal Baseline using a Battery Model of the Eye. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 July 2021; pp. 562–565. [Google Scholar]
- López, A.; Ferrero, F.; Villar, J.R.; Postolache, O. High-Performance Analog Front-End (AFE) for EOG Systems. Electronics 2020, 9, 970. [Google Scholar] [CrossRef]
- Maddirala, A.; Veluvolu, K. Eye-blink artifact removal from single channel EEG with k-means and SSA. Sci. Rep. 2021, 11, 11043. [Google Scholar]
- Mannan, M.M.N.; Kamran, M.; Kang, S.; Jeong, M. Effect of EOG Signal Filtering on the Removal of Ocular Artifacts and EEG-Based Brain-Computer Interface: A Comprehensive Study. Complexity 2018, 2018, 4853741. [Google Scholar]
- Aungsakun, S.; Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Development of Robust EOG-Based Human-Computer Interface Controlled by Eight-Directional Eye Movements. Int. J. Phys. Sci. 2012, 7, 2196–2208. [Google Scholar]
- Kiloh, L.G.; McComas, A.J.; Osselton, J.W. Clinical Electroencephalography; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Millett, D. Hans Berger: From psychic energy to the EEG. Perspect. Biol. Med. 2001, 44, 522–542. [Google Scholar] [CrossRef] [PubMed]
- Coenen, A.; Zayachkivska, O. Adolf Beck: A pioneer in electroencephalography in between Richard Caton and Hans Berger. Adv. Cogn. Psychol. 2013, 9, 216. [Google Scholar] [CrossRef]
- Lenartowicz, A.; Loo, S.K. Use of EEG to diagnose ADHD. Curr. Psychiatry Rep. 2014, 16, 498. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.A.; Cuevas, K. Using EEG to study cognitive development: Issues and practices. J. Cogn. Dev. 2012, 13, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Noachtar, S.; Rémi, J. The role of EEG in epilepsy: A critical review. Epilepsy Behav. 2009, 15, 22–33. [Google Scholar] [CrossRef]
- Smith, S.J. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 2005, 76, ii2–ii7. [Google Scholar] [CrossRef]
- Petit, D.; Gagnon, J.F.; Fantini, M.L.; Ferini-Strambi, L.; Montplaisir, J. Sleep and quantitative EEG in neurodegenerative disorders. J. Psychosom. Res. 2004, 56, 487–496. [Google Scholar] [CrossRef]
- Niedermeyer, E. Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Binnie, C.; Prior, P. Electroencephalography. J. Neurol. Neurosurg. Psychiatry 1994, 57, 1308–1319. [Google Scholar] [CrossRef]
- Kumar, J.S.; Bhuvaneswari, P. Analysis of Electroencephalography (EEG) Signals and Its Categorization—A Study. Procedia Eng. 2012, 38, 2525–2536. [Google Scholar] [CrossRef]
- Eldele, E.; Chen, Z.; Liu, C.; Wu, M.; Kwoh, C.K.; Li, X.; Guan, C. An attention-based deep learning approach for sleep stage classification with single-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 809–818. [Google Scholar] [CrossRef]
- Islam, M.S.; Hussain, I.; Rahman, M.M.; Park, S.J.; Hossain, M.A. Explainable artificial intelligence model for stroke prediction using EEG signal. Sensors 2022, 22, 9859. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthi, B.; Ng, S.C.; Ezilarasan, M.; Leung, M.F. EEG-based emotion recognition using hybrid CNN and LSTM classification. Front. Comput. Neurosci. 2022, 16, 1019776. [Google Scholar] [CrossRef]
- De Miras, J.R.; Ibáñez-Molina, A.J.; Soriano, M.F.; Iglesias-Parro, S. Schizophrenia classification using machine learning on resting state EEG signal. Biomed. Signal Process. Control 2023, 79, 104233. [Google Scholar] [CrossRef]
- Borde, S.; Ratnaparkhe, V. Optimization in channel selection for EEG signal analysis of Sleep Disorder subjects. J. Integr. Sci. Technol. 2023, 11, 527. [Google Scholar]
- Klepl, D.; He, F.; Wu, M.; Blackburn, D.J.; Sarrigiannis, P. EEG-based graph neural network classification of Alzheimer’s disease: An empirical evaluation of functional connectivity methods. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2651–2660. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, X.; Liu, A.; Liang, D.; Wu, L.; Qian, R.; Xie, H.; Zhang, Y. Pediatric seizure prediction in scalp EEG using a multi-scale neural network with dilated convolutions. IEEE J. Transl. Eng. Health Med. 2022, 10, 4900209. [Google Scholar] [CrossRef]
- Attallah, O. ADHD-AID: Aiding Tool for Detecting Children’s Attention Deficit Hyperactivity Disorder via EEG-Based Multi-Resolution Analysis and Feature Selection. Biomimetics 2024, 9, 188. [Google Scholar] [CrossRef]
- Kemp, B.; Zwinderman, A.H.; Tuk, B.; Kamphuisen, H.A.; Oberye, J.J. Analysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 2000, 47, 1185–1194. [Google Scholar] [CrossRef]
- Guttag, J. CHB-MIT Scalp EEG Database (Version 1.0.0); PhysioNet: Boston, MA, USA, 2010. [Google Scholar]
- Joselevitch, C. Human retinal circuitry and physiology. Psychol. Neurosci. 2008, 1, 141. [Google Scholar] [CrossRef]
- Quinn, N.; Csincsik, L.; Flynn, E.; Curcio, C.A.; Kiss, S.; Sadda, S.R.; Hogg, R.; Peto, T.; Lengyel, I. The clinical relevance of visualising the peripheral retina. Prog. Retin. Eye Res. 2019, 68, 83–109. [Google Scholar]
- Ala-Laurila, P.; Cornwall, M.; Crouch, R.; Kono, M. The Action of 11-cis-Retinol on Cone Opsins and Intact Cone Photoreceptors. J. Biol. Chem. 2009, 284, 16492–16500. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.T. The electroretinogram: Its components and their origins. Vis. Res. 1968, 8, 633-IN6. [Google Scholar] [CrossRef] [PubMed]
- Barber, C. Electrodes and the recording of the human electroretinogram (ERG). Int. J. Psychophysiol. 1994, 16, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Chakraborty, R.; Verkicharla, P. Electroretinogram responses in myopia: A review. Doc. Ophthalmol. 2021, 145, 77–95. [Google Scholar] [CrossRef]
- Einthoven, W.; Jolly, W.A. The Form and Magnitude of the Electrical Response of the Eye to Stimulation by Light at Various Intensities. Q. J. Exp. Physiol. 1908, 1, 373–416. [Google Scholar] [CrossRef]
- Shankar, U.; Gunasundari, R. A Review on Electrophysiology Based Detection of Diabetic Retinopathy. Procedia Comput. Sci. 2015, 48, 630–637. [Google Scholar] [CrossRef]
- Barraco, R.; Adorno, D.P.; Brai, M.; Tranchina, L. A comparison among different techniques for human ERG signals processing and classification. Phys. Med. 2014, 30, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Barraco, R.; Persano Adorno, D.; Brai, M. ERG signal analysis using wavelet transform. Theory Biosci. 2011, 130, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Albasu, F.; Kulyabin, M.; Zhdanov, A.; Dolganov, A.; Ronkin, M.; Borisov, V.; Dorosinsky, L.; Constable, P.A.; Al-masni, M.A.; Maier, A. Electroretinogram Analysis Using a Short-Time Fourier Transform and Machine Learning Techniques. Bioengineering 2024, 11, 866. [Google Scholar] [CrossRef]
- Yamashita, T.; Miki, A.; Tabuchi, A.; Funada, H.; Kondo, M. A novel method to reduce noise in electroretinography using skin electrodes: A study of noise level, inter-session variability, and reproducibility. Int. Ophthalmol. 2017, 37, 317–324. [Google Scholar] [CrossRef]
- Kulyabin, M.; Zhdanov, A.; Dolganov, A.; Maier, A. Optimal Combination of Mother Wavelet and AI Model for Precise Classification of Pediatric Electroretinogram Signals. Sensors 2023, 23, 5813. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zou, S.; Zhou, W.; Huang, Y.; Shao, L.; Yuan, J.; Gou, X.; Jin, W.; Wang, Z.; Chen, X.; et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat. Commun. 2020, 11, 4294. [Google Scholar]
- Kabir, H.; Wu, J.; Dahal, S.; Joo, T.; Garg, N. Automated estimation of cementitious sorptivity via computer vision. Nat. Commun. 2024, 15, 9935. [Google Scholar] [PubMed]
- Kulyabin, M.; Zhdanov, A.; Maier, A.; Loh, L.; Estevez, J.; Constable, P. Generating Synthetic Light-Adapted Electroretinogram Waveforms Using Artificial Intelligence to Improve Classification of Retinal Conditions in Under-Represented Populations. J. Ophthalmol. 2024, 2024, 1990419. [Google Scholar]
- Posada-Quintero, H.; Manjur, S.; Hossain, M.B.; Marmolejo-Ramos, F.; Lee, I.; Skuse, D.; Thompson, D.; Constable, P. Autism spectrum disorder detection using variable frequency complex demodulation of the electroretinogram. Res. Autism Spectr. Disord. 2023, 109, 102258. [Google Scholar]
- Ghapanchizadeh, H.; Ahmad, S.A.; Ishak, A.J.; Al-Quraishi, M.S. Review of surface electrode placement for recording electromyography signals. Biomed. Res. 2017, 2017, S1–S7. [Google Scholar]
- Feinstein, B.; Lindegård, B.; Nyman, E.; Wohlfart, G. Morphologic studies of motor units in normal human muscles. Acta Anat. 1955, 23, 127–142. [Google Scholar] [CrossRef]
- Soderberg, G.L.; Cook, T.M. Electromyography in Biomechanics. Phys. Ther. 1984, 64, 1813–1820. [Google Scholar] [CrossRef]
- Hakonen, M.; Piitulainen, H.; Visala, A. Current state of digital signal processing in myoelectric interfaces and related applications. Biomed. Signal Process. Control 2015, 18, 334–359. [Google Scholar]
- Shair, E.F.; Ahmad, S.; Abdullah, A.R.; Marhaban, M.H.; Md Tamrin, S. Determining Best Window Size for an Improved Gabor Transform in EMG Signal Analysis. Telkomnika (Telecommun. Comput. Electron. Control) 2018, 16, 1650–1658. [Google Scholar] [CrossRef]
- Reyes, D.; Loaiza-Correa, H.; López, M.; Duarte, J. Expert committee classifier for hand motions recognition from EMG signals. Ingeniare. Rev. Chil. Ing. 2018, 26, 62–71. [Google Scholar] [CrossRef]
- Cavalcanti Garcia, M.A.; Vieira, T. Surface electromyography: Why, when and how to use it. Rev. Andal. Med. Deporte 2011, 4, 17–28. [Google Scholar]
- Loudon, G.; Jones, N.; Sehmi, A. New signal processing techniques for the decomposition of EMG signals. Med. Biol. Eng. Comput. 1992, 30, 591–599. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Han, R.P. Wavelet transform theory and its application in EMG signal processing. In Proceedings of the 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China, 26–28 August 2010; Volume 5, pp. 2234–2238. [Google Scholar]
- Sadikoglu, F.; Kavalcioglu, C.; Dagman, B. Electromyogram (EMG) signal detection, classification of EMG signals and diagnosis of neuropathy muscle disease. Procedia Comput. Sci. 2017, 120, 422–429. [Google Scholar] [CrossRef]
- Andrade, A.O.; Nasuto, S.; Kyberd, P.; Sweeney-Reed, C.M.; Van Kanijn, F. EMG signal filtering based on Empirical Mode Decomposition. Biomed. Signal Process. Control 2006, 1, 44–55. [Google Scholar] [CrossRef]
- Pasinetti, S.; Lancini, M.; Bodini, I.; Docchio, F. A Novel Algorithm for EMG Signal Processing and Muscle Timing Measurement. IEEE Trans. Instrum. Meas. 2015, 64, 2995–3004. [Google Scholar] [CrossRef]
- Huang, D.; Chen, B. Surface EMG Decoding for Hand Gestures Based on Spectrogram and CNN-LSTM. In Proceedings of the 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI), Chengdu, China, 28–30 November 2019; pp. 123–126. [Google Scholar]
- Kok, C.L.; Ho, C.K.; Tan, F.K.; Koh, Y.Y. Machine Learning-Based Feature Extraction and Classification of EMG Signals for Intuitive Prosthetic Control. Appl. Sci. 2024, 14, 5784. [Google Scholar] [CrossRef]
- Farhan, F.; Rupom, F.; Jannat, S.; Tamanna, F.F.; Musa, G.; Johan, A.; Islam, M. EMG Controlled Bionic Robotic Arm using Artificial Intelligence and Machine Learning. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020. [Google Scholar]
- Mokri, C.; Bamdad, M.; Abolghasemi, V. Muscle force estimation from lower limb EMG signals using novel optimised machine learning techniques. Med. Biol. Eng. Comput. 2022, 60, 683–699. [Google Scholar] [CrossRef]
- Ramírez Ángeles, I.J.; Razo López, N.B.; Aceves Fernández, M.A.; Gorrostieta Hurtado, E. Metodología para la Adquisición de Señales Electromiográficas en el Brazo Utilizando un Lector de Señales Multicanal. Mecátronica México 2019, 8, 22–36. [Google Scholar]
- Quiñones, A.A.L. Propuesta de Red Neuronal Convolutiva para la Clasificación de Señales Electromiográficas Provenientes de Movimientos de la Mano; Universidad Autonóma de Querétaro: Querétaro, Mexico, 2022. [Google Scholar]
- Kim, M.R.; Yoon, G. Control Signal from EOG Analysis and Its Application. Int. J. Electr. Comput. Eng. 2013, 7, 1352–1355. [Google Scholar]
- Bhandari, A.; Khare, V.; Santhosh, J.; Anand, S. Wavelet based compression technique of Electro-oculogram signals. IFMBE Proc. 2007, 15, 440–443. [Google Scholar]
- Rusydi, M.; Okamoto, T.; Ito, S.; Sasaki, M. Rotation Matrix to Operate a Robot Manipulator for 2D Analog Tracking Objects Using Electrooculography. Robotics 2014, 3, 289–309. [Google Scholar] [CrossRef]
- Merino, M.; Rivera, O.; Gómez, I.; Molina, A.; Dorronzoro, E. A Method of EOG Signal Processing to Detect the Direction of Eye Movements. In Proceedings of the 2010 First International Conference on Sensor Device Technologies and Applications, Nice, France, 18–23 July 2010; pp. 100–105. [Google Scholar]
- López, A.; Fernández, D.; Ferrero, F.J.; Valledor, M.; Postolache, O. EOG signal processing module for medical assistive systems. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Trieste, Italy, 28–30 May 2016; pp. 1–5. [Google Scholar]
- Das, D.; Chowdhury, M.; Chowdhury, A.; Hossain, Q.D.; Cheung, R.C. EOG Signal Processor: An SVM-based Multiclass Classifier to Detect Eye Movements. J. Signal Process. Syst. 2024, 96, 587–600. [Google Scholar] [CrossRef]
- Zhu, X.; Zheng, W.L.; Lu, B.L.; Chen, X.; Chen, S.; Wang, C. EOG-based drowsiness detection using convolutional neural networks. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 128–134. [Google Scholar]
- Pérez-Reynoso, F.D.; Rodríguez-Guerrero, L.; Salgado-Ramírez, J.C.; Ortega-Palacios, R. Human–Machine Interface: Multiclass Classification by Machine Learning on 1D EOG Signals for the Control of an Omnidirectional Robot. Sensors 2021, 21, 5882. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.R.; Chang, W.D.; Kim, S.; Im, C.H. Real-Time “Eye-Writing” Recognition Using Electrooculogram. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 37–48. [Google Scholar] [CrossRef]
- Ileri, R.; Latifoglu, F.; Demirci, E. A novel approach for detection of dyslexia using convolutional neural network with EOG signals. Med. Biol. Eng. Comput. 2022, 60, 3041–3055. [Google Scholar] [CrossRef] [PubMed]
- Alberto, G.E.C.; Antonio, A.F.M.; Carmen, C.H.; Saúl, T.A. Clasificación de Niveles de Atención con Datos de Desempeño y de Seguimiento Ocular Durante la Prueba ADEM. Mecatrónica México Enero 2024, 13, 19–39. [Google Scholar]
- Sampedro, A.G.; Richman, J.; Pardo, M. The Adult Developmental Eye Movement Test (A–DEM). J. Behav. Optom. 2003, 14, 101–105. [Google Scholar]
- Surawicz, B.; Knilans, T. Chou’s Electrocardiography in Clinical Practice: Adult and Pediatric; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Goldberger, A.L.; Goldberger, Z.D.; Shvilkin, A. Goldberger’s Clinical Electrocardiography—A Simplified Approach: First South Asia Edition-E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Wagner, G.S.; Strauss, D.G. Marriott’s Practical Electrocardiography; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Jalaleddine, S.M.; Hutchens, C.G.; Strattan, R.D.; Coberly, W.A. ECG data compression techniques-a unified approach. IEEE Trans. Biomed. Eng. 1990, 37, 329–343. [Google Scholar] [CrossRef]
- Hurst, J.W. Naming of the waves in the ECG, with a brief account of their genesis. Circulation 1998, 98, 1937–1942. [Google Scholar] [CrossRef]
- Sivapalan, G.; Nundy, K.K.; Dev, S.; Cardiff, B.; John, D. ANNet: A lightweight neural network for ECG anomaly detection in IoT edge sensors. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef]
- Jin, Y.; Li, Z.; Qin, C.; Liu, J.; Liu, Y.; Zhao, L.; Liu, C. A novel attentional deep neural network-based assessment method for ECG quality. Biomed. Signal Process. Control 2023, 79, 104064. [Google Scholar]
- Mathunjwa, B.M.; Lin, Y.T.; Lin, C.H.; Abbod, M.F.; Shieh, J.S. ECG arrhythmia classification by using a recurrence plot and convolutional neural network. Biomed. Signal Process. Control 2021, 64, 102262. [Google Scholar]
- Loh, H.W.; Ooi, C.P.; Oh, S.L.; Barua, P.D.; Tan, Y.R.; Molinari, F.; March, S.; Acharya, U.R.; Fung, D.S.S. Deep neural network technique for automated detection of ADHD and CD using ECG signal. Comput. Methods Programs Biomed. 2023, 241, 107775. [Google Scholar]
- Nita, S.; Bitam, S.; Heidet, M.; Mellouk, A. A new data augmentation convolutional neural network for human emotion recognition based on ECG signals. Biomed. Signal Process. Control 2022, 75, 103580. [Google Scholar]
- Katsigiannis, S.; Ramzan, N. DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 2017, 22, 98–107. [Google Scholar] [CrossRef]
- Wang, T.; Lu, C.; Sun, Y.; Yang, M.; Liu, C.; Ou, C. Automatic ECG classification using continuous wavelet transform and convolutional neural network. Entropy 2021, 23, 119. [Google Scholar] [CrossRef]
- Moody, G.; Mark, R. The impact of the MIT-BIH Arrhythmia Database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef]
- Śmigiel, S.; Pałczyński, K.; Ledziński, D. ECG signal classification using deep learning techniques based on the PTB-XL dataset. Entropy 2021, 23, 1121. [Google Scholar] [CrossRef]
- Wagner, P.; Strodthoff, N.; Bousseljot, R.D.; Kreiseler, D.; Lunze, F.I.; Samek, W.; Schaeffter, T. PTB-XL, a large publicly available electrocardiography dataset. Sci. Data 2020, 7, 154. [Google Scholar] [CrossRef] [PubMed]
Machine Learning (ML) | Deep Learning (DL) | |
---|---|---|
Learning | Relies on manual feature engineering and labels. | Automatically learns features from raw data. |
Datasets | Performs well with small to moderate-sized datasets. | Requires large datasets for effective training. |
Working Time | Faster training and inference times with smaller data. | Slower due to high computational demands and complex architectures. |
Interpretability | Models are easier to interpret and understand. | Models are often considered a “black box”, harder to interpret. |
Usage | Suitable for simpler, structured data tasks (e.g., regression, classification). | Best for complex, unstructured data tasks (e.g., image recognition, NLP). |
Study | Processing Techniques | Key Outcomes |
---|---|---|
Eldele [27] | Data normalization, Data augmentation, Attention-based deep learning. | Improved classification accuracy for sleep stage detection. |
Islam [28] | ICA for artifact removal, Bandpass filter (0.5–44 Hz), FFT and Welch methods for feature extraction. | Enhanced stroke prediction by improving signal clarity and spectral feature extraction. |
Chakravarthi [29] | Frequency band decomposition, Bandpass filter, MFCC, Sample entropy, Hurst exponent, CNN-LSTM-ResNet152. | Improved EEG classification using hybrid deep learning models and advanced spectral features. |
De Miras [30] | ICA for noise removal, Custom MATLAB-based preprocessing, Stationary period extraction. | Identified schizophrenia-related EEG patterns with controlled experimental conditions. |
Study | Model Type | Database Used | Results |
---|---|---|---|
Borde [31] | LSTM + Classifier Trees. | Sleep-EDF Database (197 complete nighttime polysomnography records) [35]. | 99.8% Accuracy. |
Klepl [32] | Graph Neural Networks (GNN). | Functional Connectivity EEG Data. | 92% Accuracy in Alzheimer’s classification. |
Gao [33] | Multiscale CNN + Dilated Convolutions. | CHB-MIT Scalp EEG Database (22 subjects, 5 men and 17 women) [36]. | 93.3% Sensitivity in seizure prediction. |
Attallah [34] | Feature Selection + SVM. | ADHD EEG Dataset (IEEE DataPort). | 99.1% Accuracy in ADHD detection. |
Study | Processing Techniques | Key Outcomes |
---|---|---|
Barraco [45] | PCA and multivariate analysis | Effective in grouping characteristics of patients with CSNB, but failed to separate ACHM from healthy subjects |
Barraco [46] | Wavelet analysis and frequency analysis of the ERG A-wave signal | Identification of 3 frequency components (20–200 Hz), linked to photoreceptor activity. |
Albasu [47] | Spectrogram generation by combinations of window functions, sizes, and overlaps | Spectrograms used to train DL models and extract features for ML. |
Yamashita [48] | Subtraction of signals from both eyes and Coherent signal cancellation noise reduction | Significant noise reduction by subtraction of the unstimulated eye. |
Study | Model Type | Database Used | Results |
---|---|---|---|
Kulyabin [49] | VGG-16, ResNet-50, DenseNet-121, ResNext-50, ViT. | IEEEDataPort repository (176 signals from healthy subjects and 177 signals from unhealthy subjects). | Average accuracy of 83%, 85% and 88% for three light stimuli using ViT + Ricker wavelet. |
Kulyabin [52] | CGAN for synthetic data generation and Random Forest for classification. | Private dataset (68 participants with refractive errors ranging from −6.00 D to +2.00 D). | Increase in accuracy: balanced accuracy from 71.4% to 78.5% and precision from 63.6% to 71%. |
Posada [53] | Random Forest, AdaBoost, GradBoost, XGBoost, K-Nearest Neighbors (KNN), SVM, and Multi Layer Perceptron (MLP). | Private dataset (217 participants). Individuals with ASD and a control group. | AUC of 0.92, sensitivity of 85% and specificity of 79% in detection of ASD. |
Study | Processing Techniques | Key Outcomes |
---|---|---|
Loudon [61] | Filters for noise removal and feature extraction. | Improved representation of motor unit activity during muscle contraction. |
Zhang [62] | WT with white Gaussian noise model. | Accurate EMG signal reconstruction by isolating useful signals. |
Sadikoglu [63] | Savitzky–Golay filter, WT, and FFT for spectral analysis. | Improved SNR and identified patterns in time and frequency domains. |
Andrade [64] | EMD and wavelet-based noise reduction. | Reduced noise while preserving signal energy, aiding MUAP identification. |
Pasinetti [65] | Advanced statistical techniques for activation thresholds. | Simplified EMG processing by eliminating the need for maximal voluntary contraction measurements. |
Study | Model Type | Database Used | Results |
---|---|---|---|
Dawei, H. and Badong, Ch. [66] | CNN + LSTM. | Ninapro dataset (49 different gestures from 40 subjects). | Improved accuracy from 77.167% to 79.329% in hand movement recognition. |
Liang [67] | SVM, KNN, and NB. | GRABMyo dataset (43 subjects performing the little finger extension, index finger extension, thumb extension, hand open, and hand close movements). | Best accuracy of 90.69% using LDA + SVM with data from three sessions. |
Fuad [68] | KNN, SVM, and a KNN-SVM hybrid. | Private dataset (five subjects with the Rock, Paper, Spherical grip, and Alright movements). | Accuracy of 95.398% with the hybrid KNN-SVM method in robotic arm control. |
Mokri [69] | SVR optimized with genetic algorithm (SVR-GA) to estimate muscle strength. | Private dataset (5 healthy subjects performing 60° isocentric knee exercise). | of 98.89% and RMSE of 0.0385 for muscle strength estimation in rehabilitation. |
Ramírez [70] | K-means, KNN | Private dataset (50 individuals performing 10 hand movements). | Effective results in feature extraction comparable to traditional methods. |
Luna Quiñones [71] | CNN Architecture Proposal | Ramírez [70] dataset. | Sensitivity of 95.26% and specificity of 99.37%. |
Study | Processing Techniques | Key Outcomes |
---|---|---|
Merino [75] | Bandpass filter + Average filter and derivative calculation to detect eye movement edges | Noise reduction and improved eye movement detection |
Lopez [76] | DWT for noise removal and preprocessing on six participants’ data | Achieved an SNR of 30 dB, improving signal clarity |
He [77] | Bandpass filter (0.1–30 Hz) and signal segmentation before processing | Enhanced signal quality by working with short segments |
Study | Model Type | Database Used | Results |
---|---|---|---|
Zhu [78] | CNN + Denoising | Private dataset (22 participants, recording a total of 22 sessions) | 0.73 mean correlation coefficient |
Pérez-Reynoso [79] | MLP | Private dataset (10 subjects with specific eye movements.) | Sensitivity/Accuracy: 0.755 |
Lee [80] | CNN for Eye-Writing Recognition | Symbolic patterns dataset (29 symbols) | Recognition rate: 87.38%, max: 97.81% |
Ileri [81] | CNN for Dyslexia Detection | 28 Turkish texts | Accuracy: 98.70% (horizontal EOG), 80.94% (vertical EOG) |
García [82] | ANN Architecture Proposal | Private dataset (55 subjects) | 95.82% Accuracy |
Study | Processing Techniques | Key Outcomes |
---|---|---|
Sivapalan [89] | Bandpass (0.1–100 Hz) + IIR Notch (60 Hz) and DWT for noise reduction. | Cleaned signals by removing noise and AC interference and converting frequency from 360 Hz to 250 Hz. |
Jin [91] | Bandpass filter, motion baseline correction. | Prepared noise-free, segmented signals for training. |
Mathunjwa [92] | Recurrence Plots (RP) and conversion to images for CNN. | Transformed ECG signals into 2D plots for arrhythmia classification. |
Loh [93] | No filtering or manual selection of time samples. | Aligned samples to a consistent time window, avoiding data exclusion. |
Study | Model Type | Database Used | Results |
---|---|---|---|
Nita [94] | CNN + Data Augmentation | Dreamer Database (23 subjects, 14 men and 9 women) [95] | 95.16% |
Wang [96] | CWT + CNN | MIT-BIH (48 records from 47 subjects) [97] | 98.74% |
Smigiel [98] | CNN, SincNet, CNN + Entropy | PTB-XL (21,837 clinical records from 18,885 patients) [99] | 89.2% (CNN + Entropy) |
Characteristic | EEG | ERG | EMG | EOG | ECG |
---|---|---|---|---|---|
Signal type | Cortical neuronal activity | Retinal response | Muscle contraction | Eye movement | Cardiac potentials |
Frequency (Hz) | 0.5–100 | 1–300 | 10–500 | 0.1–30 | 0.5–100 |
Amplitude | 10–100 µV | 1–300 µV | 0.1–5 mV | 50–3500 µV | 1–5 mV |
Applications | Neurology | Visual diagnosis | Rehabilitation | Ophthalmology | Cardiology |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfonso, J.-C.F.; Salvador, T.-R.J.; Antonio, A.-F.M.; Saul, T.-A. Comparison of Bioelectric Signals and Their Applications in Artificial Intelligence: A Review. Computers 2025, 14, 145. https://doi.org/10.3390/computers14040145
Alfonso J-CF, Salvador T-RJ, Antonio A-FM, Saul T-A. Comparison of Bioelectric Signals and Their Applications in Artificial Intelligence: A Review. Computers. 2025; 14(4):145. https://doi.org/10.3390/computers14040145
Chicago/Turabian StyleAlfonso, Juarez-Castro Flavio, Toledo-Rios Juan Salvador, Aceves-Fernández Marco Antonio, and Tovar-Arriaga Saul. 2025. "Comparison of Bioelectric Signals and Their Applications in Artificial Intelligence: A Review" Computers 14, no. 4: 145. https://doi.org/10.3390/computers14040145
APA StyleAlfonso, J.-C. F., Salvador, T.-R. J., Antonio, A.-F. M., & Saul, T.-A. (2025). Comparison of Bioelectric Signals and Their Applications in Artificial Intelligence: A Review. Computers, 14(4), 145. https://doi.org/10.3390/computers14040145