Evaluating the Impact of Filtering Techniques on Deep Learning-Based Brain Tumour Segmentation
Abstract
:1. Introduction
2. Algorithm, Dataset, and U-Net Architecture
Algorithm 1: Brain tumour Segmentation with U-Net |
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tiwari, A.; Srivastava, S.; Pant, M. Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019. Pattern Recognit. Lett. 2020, 131, 244–260. [Google Scholar] [CrossRef]
- American Brain Tumour Association. About Brain Tumors: A Primer for Patients & Caregivers (for Patients & Caregivers); American Brain Tumour Association: Chicago, IL, USA, 2020. [Google Scholar]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.P.; Singh, C.S.; Manikandan, M. Brain tumor MRI image segmentation and detection in image processing. Int. J. Res. Eng. Technol. 2014, 3, 1–5. [Google Scholar] [CrossRef]
- Rodríguez-Camacho, A.; Flores-Vázquez, J.G.; Moscardini-Martelli, J.; Torres-Ríos, J.A.; Olmos-Guzmán, A.; Ortiz-Arce, C.S.; Cid-Sánchez, D.R.; Pérez, S.R.; Macías-González, M.D.S.; Hernández-Sánchez, L.C.; et al. Glioblastoma treatment: State-of-the-art and future perspectives. Int. J. Mol. Sci. 2022, 23, 7207. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, M.A.; Sawaya, R.; Shi, W.; Thall, P.F.; Leeds, N.E. Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J. Neuro-Oncol. 1996, 27, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Semelka, R.C.; Armao, D.M.; Elias Junior, J.; Huda, W. Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J. Magn. Reson. Imaging 2007, 25, 900–909. [Google Scholar] [CrossRef]
- Abdusalomov, A.B.; Mukhiddinov, M.; Whangbo, T.K. Brain tumor detection based on deep learning approaches and magnetic resonance imaging. Cancers 2023, 15, 4172. [Google Scholar] [CrossRef]
- Goyal, B.; Dogra, A.; Agrawal, S.; Sohi, B.S.; Sharma, A. Image denoising review: From classical to state-of-the-art approaches. Inf. Fusion 2020, 55, 220–244. [Google Scholar] [CrossRef]
- Ahamed, M.F.; Hossain, M.M.; Nahiduzzaman, M.; Islam, M.R.; Islam, M.R.; Ahsan, M.; Haider, J. A review on brain tumor segmentation based on deep learning methods with federated learning techniques. Comput. Med. Imaging Graph. 2023, 110, 102313. [Google Scholar] [CrossRef]
- Preim, B.; Botha, C. (Eds.) Visual Computing for Medicine; Morgan Kaufmann: Boston, MA, USA, 2014. [Google Scholar] [CrossRef]
- Dora, L.; Agrawal, S.; Panda, R.; Abraham, A. State-of-the-art methods for brain tissue segmentation: A review. IEEE Rev. Biomed. Eng. 2017, 10, 235–249. [Google Scholar] [CrossRef]
- Ragupathy, B.; Karunakaran, M. A deep learning model integrating convolution neuralnetwork and multiple kernel K means clustering for segmenting brain tumor in magnetic resonance images. Int. J. Imaging Syst. Technol. 2020, 31, 118–127. [Google Scholar] [CrossRef]
- Ramesh, S.; Sasikala, S.; Paramanandham, N. Segmentation and classification of brain tumors using modified median noise filter and deep learning approaches. Multimed. Tools Appl. 2021, 80, 11789–11813. [Google Scholar] [CrossRef]
- Sathish, P.; Elango, N.M. Gaussian hybrid fuzzy clustering and radial basis neural network for automatic brain tumor classification in MRI images. Evol. Intell. 2022, 15, 1359–1377. [Google Scholar] [CrossRef]
- Aljabri, M.; AlGhamdi, M. A review on the use of deep learning for medical images segmentation. Neurocomputing 2022, 506, 311–335. [Google Scholar] [CrossRef]
- Liu, X.; Song, L.; Liu, S.; Zhang, Y. A review of deep-learning-based medical image segmentation methods. Sustainability 2021, 13, 1224. [Google Scholar] [CrossRef]
- Wang, R.; Lei, T.; Cui, R.; Zhang, B.; Meng, H.; Nandi, A.K. Medical image segmentation using deep learning: A survey. IET Image Process. 2022, 16, 1243–1267. [Google Scholar] [CrossRef]
- Kaur, R.; Doegar, A. Brain tumor segmentation using deep learning: Taxonomy, survey and challenges. In Brain Tumor MRI Image Segmentation Using Deep Learning Techniques; Chaki, J., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 225–238. [Google Scholar] [CrossRef]
- Gupta, A.; Dixit, M.; Mishra, V.K.; Singh, A.; Dayal, A. Brain tumor segmentation from MRI images using deep learning techniques. In Proceedings of the International Advanced Computing Conference, Hyderabad, India, 16–17 December 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 434–448. [Google Scholar] [CrossRef]
- Liu, Z.; Tong, L.; Chen, L.; Jiang, Z.; Zhou, F.; Zhang, Q.; Zhang, X.; Jin, Y.; Zhou, H. Deep learning based brain tumor segmentation: A survey. Complex Intell. Syst. 2023, 9, 1001–1026. [Google Scholar] [CrossRef]
- Keerthi, S.; Shettigar, Y.N.; Keerthana, K.; Divyashree, K.; Bhargavi, S. A review on brain tumor prediction using deep learning. In Proceedings of the 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), Gharuan, India, 5–6 May 2023; IEEE: New York, NY, USA, 2023; pp. 155–160. [Google Scholar] [CrossRef]
- Brain Tumor Segmentation (BraTS2020). Available online: https://www.kaggle.com/datasets/awsaf49/brats2020-training-data (accessed on 8 June 2024).
- Mostafa, A.M.; Zakariah, M.; Aldakheel, E.A. Brain tumor segmentation using deep learning on MRI images. Diagnostics 2023, 13, 1562. [Google Scholar] [CrossRef]
- Haritha, V.; Babu, J.J.; Saranya, R.; Yogaraja, C.; Rajalakshmi, S.; Manimegalai, L. Effective segmentation of brain tumors through the GOA algorithm using deep learning. In Proceedings of the 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 4–6 May 2023; IEEE: New York, NY, USA, 2023; pp. 389–395. [Google Scholar] [CrossRef]
- Al-Zoghby, A.M.; Al-Awadly, E.M.K.; Moawad, A.; Yehia, N.; Ebada, A.I. Dual Deep CNN for Tumor Brain Classification. Diagnostics 2023, 13, 2050. [Google Scholar] [CrossRef]
- Shreeharsha, J. Brain tumor segmentation and classification using binomial thresholding-based bidirectional-long-short term memory. Int. J. Intell. Syst. 2024, 17, 149. [Google Scholar] [CrossRef]
- Ali, M.; Gilani, S.O.; Waris, A.; Zafar, K.; Jamil, M. Brain tumour image segmentation using deep networks. IEEE Access 2020, 8, 153589–153598. [Google Scholar] [CrossRef]
- Sadique, S.; Nishanthi, X.; Swaathy, V.; Mabisha, S.; Thanka, R.; Edwin, B. Brain tumor segmentation and evaluation empowered with deep learning. In Proceedings of the 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 17–19 May 2023; IEEE: New York, NY, USA, 2023; pp. 305–312. [Google Scholar] [CrossRef]
- Srinivas, B.; Sasibhushana Rao, G. Segmentation of multi-modal MRI brain tumor sub-regions using deep learning. J. Electr. Eng. Technol. 2020, 15, 1899–1909. [Google Scholar] [CrossRef]
- Alhassan, A.; Zainon, W.M.N. BAT algorithm with fuzzy c-ordered means (BAFCOM) clustering segmentation and enhanced capsule networks (ECN) for brain cancer MRI images classification. IEEE Access 2020, 8, 201741–201751. [Google Scholar] [CrossRef]
- Jamzad, M. A reliable ensemble-based classification framework for glioma brain tumor segmentation. Signal Image Video Process. 2020, 14, 1591–1599. [Google Scholar] [CrossRef]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A nested U-Net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R., Bradley, A., Papa, J.P., Belagiannis, V., et al., Eds.; Springer: Cham, Switherland, 2018; pp. 3–11. [Google Scholar] [CrossRef]
- Micallef, N.; Seychell, D.; Bajada, C.J. Exploring the U-Net++ model for automatic brain tumor segmentation. IEEE Access 2021, 9, 125523–125539. [Google Scholar] [CrossRef]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.W.; Wu, J. UNet3+: A full-scale connected UNet for medical image segmentation. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1055–1059. [Google Scholar] [CrossRef]
- Qin, C.; Wu, Y.; Liao, W.; Zeng, J.; Liang, S.; Zhang, X. Improved U-Net3+ with stage residual for brain tumor segmentation. BMC Med. Imaging 2022, 22, 14. [Google Scholar] [CrossRef] [PubMed]
- Henkelman, R.M. Measurement of signal intensities in the presence of noise in MR images. Med. Phys. 1985, 12, 232–233. [Google Scholar] [CrossRef]
- Young, K.; Schuff, N. Measuring structural complexity in brain images. NeuroImage 2008, 39, 1721–1730. [Google Scholar] [CrossRef]
- Pancholi, B.K.; Modi, P.S.; Chitaliya, N. A review of noise reduction filtering techniques for MRI images. In Proceedings of the 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), Uttar Pradesh, India, 14–16 December 2022; pp. 954–960. [Google Scholar] [CrossRef]
- Li, P.; Wang, H.; Yu, M.; Li, Y. Overview of image smoothing algorithms. J. Phys. 2021, 1883, 012024. [Google Scholar] [CrossRef]
- Ishfaq, N. A review on comparative study of image-denoising in medical imaging. In Deep Learning for Multimedia Processing Applications; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Kumar, R.R.; Priyadarshi, R. Denoising and segmentation in medical image analysis: A comprehensive review on machine learning and deep learning approaches. Multimed. Tools Appl. 2024. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, C.; She, W.; Xie, M. Biomedical image segmentation using denoising diffusion probabilistic models: A comprehensive review and analysis. Appl. Sci. 2024, 14, 632. [Google Scholar] [CrossRef]
- Doo, F.X.; Vosshenrich, J.; Cook, T.S.; Moy, L.; Almeida, E.P.; Woolen, S.A.; Gichoya, J.W.; Heye, T.; Hanneman, K. Environmental sustainability and AI in radiology: A double-edged wword. Radiology 2024, 310, e232030. [Google Scholar] [CrossRef] [PubMed]
- Bovik, A.C. Handbook of Image and Video Processing; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Bourne, R. Fundamentals of Digital Imaging in Medicine; Springer: London, UK, 2010. [Google Scholar]
- Ertürk, M.A.; Bottomley, P.A.; El-Sharkawy, A.M.M. Denoising MRI using spectral subtraction. IEEE Trans. Biomed. Eng. 2013, 60, 1556–1562. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Mewada, H.N. A review on different image de-noising methods. Int. J. Recent Innov. Trends Comput. Commun. 2014, 2, 155–159. [Google Scholar] [CrossRef]
- Cheng, J.; Huang, W.; Cao, S.; Yang, R.; Yang, W.; Yun, Z.; Wang, Z.; Feng, Q. Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 2015, 10, e0140381. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-scale machine learning on heterogeneous systems. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016. [Google Scholar]
- Ye, J.C.; Sung, W.K. Understanding Geometry of Encoder-Decoder CNNs. In Proceedings of the 36th International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 7064–7073. [Google Scholar]
- Zhang, J.; Zeng, J.; Qin, P.; Zhao, L. Brain tumor segmentation of multi-modality MR images via triple intersecting U-Nets. Neurocomputing 2021, 421, 195–209. [Google Scholar] [CrossRef]
- Zhou, S.; Nie, D.; Adeli, E.; Yin, J.; Lian, J.; Shen, D. High-resolution encoder–decoder networks for low-contrast medical image segmentation. IEEE Trans. Image Process. 2020, 29, 461–475. [Google Scholar] [CrossRef]
- Allah, A.M.G.; Sarhan, A.M.; Elshennawy, N.M. Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information. Expert Syst. Appl. 2023, 213, 118833. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [Google Scholar] [CrossRef]
- Michelucci, U. Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks; Apress: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, N.; Das, I.; Maulik, U. Understanding deep learning techniques for image segmentation. ACM Comput. Surv. 2019, 52, 1–35. [Google Scholar] [CrossRef]
- Huang, L.; Qin, J.; Zhou, Y.; Zhu, F.; Liu, L.; Shao, L. Normalization techniques in training DNNs: Methodology, analysis and application. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 10173–10196. [Google Scholar] [CrossRef] [PubMed]
- Apicella, A.; Donnarumma, F.; Isgrò, F.; Prevete, R. A survey on modern trainable activation functions. Int. J. Neural Netw. 2021, 138, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing 2022, 503, 92–108. [Google Scholar] [CrossRef]
- Akhtar, N.; Ragavendran, U. Interpretation of intelligence in CNN-pooling processes: A methodological survey. Neural Comput. Appl. 2020, 32, 879–898. [Google Scholar] [CrossRef]
- Kumar, N.; Nachamai, M. Noise removal and filtering techniques used in medical images. Orient. J. Comput. Sci. Technol. 2017, 10, 103–113. [Google Scholar] [CrossRef]
- Ali, H.M. A new method to remove salt & pepper noise in magnetic resonance images. In Proceedings of the 2016 11th International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 20–21 December 2016; pp. 155–160. [Google Scholar] [CrossRef]
- Krissian, K.; Aja-Fernandez, S. Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Process. 2009, 18, 2265–2274. [Google Scholar] [CrossRef]
- Mishro, P.K.; Agrawal, S.; Panda, R.; Abraham, A. A Survey on State-of-the-Art Denoising Techniques for Brain Magnetic Resonance Images. IEEE Rev. Biomed. Eng. 2022, 15, 184–199. [Google Scholar] [CrossRef]
- Gerig, G.; Kubler, O.; Kikinis, R.; Jolesz, F. Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging 1992, 11, 221–232. [Google Scholar] [CrossRef]
- Zhang, M.; Gunturk, B.K. Multiresolution bilateral filtering for image denoising. IEEE Trans. Image Process. 2008, 17, 2324–2333. [Google Scholar] [CrossRef]
- Chethan, K.S.; Swamy, R.K.; Sinchana, G.S.; Sowkya, H.K.; Sujith, J.; Choodarathnakara, A.L. Impact of bandwidth on LANDSAT-7 ETM+ image quality using gaussian filter: Bangalore, Karnataka State, India. In Proceedings of the 2019 1st International Conference on Advances in Information Technology (ICAIT), Chikmagalur, India, 25–27 July 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Gudbjartsson, H.; Patz, S. The rician distribution of noisy mri data. Magn. Reson. Med. 1995, 34, 910–914. [Google Scholar] [CrossRef]
- Bajla, I.; MaruŠiak, M.; Šrámek, M. Anisotropic filtering of MRI data based upon image gradient histogram. In Proceedings of the Computer Analysis of Images and Patterns, Virtual Event, 28–30 September 2021; Chetverikov, D., Kropatsch, W.G., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 90–97. [Google Scholar] [CrossRef]
- Tsiotsios, C.; Petrou, M. On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognit. 2013, 46, 1369–1381. [Google Scholar] [CrossRef]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. IEEE Trans. Image Process. 1998, 839–846. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Jaccard, P. The Distribution of the Flora in the Alpine Zone.1. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Chinchor, N. MUC-4 evaluation metrics. In Proceedings of the 4th Conference on Message Understanding, MUC4’92, McLean, VA, USA, 16–18 June 1992; pp. 22–29. [Google Scholar] [CrossRef]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly: Springfield, MI, USA, 2019. [Google Scholar]
- Stotesbury, H.; Kawadler, J.M.; Saunders, D.E.; Kirkham, F.J. MRI detection of brain abnormality in sickle cell disease. Expert Rev. Hematol. 2021, 14, 473–491. [Google Scholar] [CrossRef]
- Neumann-Haefelin, T.; Moseley, M.E.; Albers, G.W. New magnetic resonance imaging methods for cerebrovascular disease: Emerging clinical applications. Ann. Neurol. 2000, 47, 559–570. [Google Scholar] [CrossRef]
- Dewey, B.E.; Zhao, C.; Reinhold, J.C.; Carass, A.; Fitzgerald, K.C.; Sotirchos, E.S.; Saidha, S.; Oh, J.; Pham, D.L.; Calabresi, P.A.; et al. DeepHarmony: A deep learning approach to contrast harmonization across scanner changes. Magn. Reson. Imaging 2019, 64, 160–170. [Google Scholar] [CrossRef]
- Chandra, S.S.; Bran Lorenzana, M.; Liu, X.; Liu, S.; Bollmann, S.; Crozier, S. Deep learning in magnetic resonance image reconstruction. J. Med. Imaging Radiat. Oncol. 2021, 65, 564–577. [Google Scholar] [CrossRef]
- Gilboa, G.; Osher, S. Nonlocal operators with applications to image processing. Multiscale Model. Simul. 2009, 7, 1005–1028. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Learning rate | 1 × 10−4–1 × 10−7 |
Batch size | 115 |
Epochs | 300 |
Optimiser | Adam |
Filter size | , |
Activation function | ReLU, sigmoid |
Metric | |||
---|---|---|---|
0.7518 | 0.7555 | 0.7535 | |
Jaccard index | 0.6677 | 0.6711 | 0.6688 |
Recall | 0.7504 | 0.7330 | 0.7333 |
Precision | 0.8061 | 0.8346 | 0.8340 |
Accuracy | 0.9937 | 0.9941 | 0.9941 |
Metric | |||||
---|---|---|---|---|---|
0.7531 | 0.7377 | 0.7192 | 0.7101 | 0.7023 | |
Jaccard index | 0.6680 | 0.6545 | 0.6339 | 0.6258 | 0.6165 |
Recall | 0.7400 | 0.7214 | 0.7082 | 0.6955 | 0.6855 |
Precision | 0.8203 | 0.8167 | 0.7968 | 0.7911 | 0.7820 |
Accuracy | 0.9939 | 0.9939 | 0.9932 | 0.9932 | 0.9931 |
Metric | ||||
---|---|---|---|---|
0.7507 | 0.7696 | 0.7576 | 0.7401 | |
Jaccard index | 0.6637 | 0.6849 | 0.6722 | 0.6561 |
Recall | 0.7437 | 0.7563 | 0.7440 | 0.7324 |
Precision | 0.8168 | 0.8352 | 0.8279 | 0.8073 |
Accuracy | 0.9940 | 0.9940 | 0.9939 | 0.9939 |
Metric | Original Image | Median Filter | Gaussian Filter | Anisotropic Diffusion Filter | Bilateral Filter |
---|---|---|---|---|---|
Test set | |||||
0.7658 | 0.7495 | 0.7555 | 0.7531 | 0.7696 | |
Jaccard index | 0.6815 | 0.6664 | 0.6711 | 0.6680 | 0.6849 |
Recall | 0.7557 | 0.7493 | 0.7330 | 0.7400 | 0.7563 |
Precision | 0.8338 | 0.8110 | 0.8346 | 0.8203 | 0.8352 |
Accuracy | 0.9941 | 0.9938 | 0.9941 | 0.9939 | 0.9940 |
Image with highest Jaccard index | |||||
0.9793 | 0.9789 | 0.9820 | 0.9788 | 0.9859 | |
Jaccard index | 0.9594 | 0.9646 | 0.9587 | 0.9654 | 0.9721 |
Recall | 0.9898 | 0.9728 | 0.9875 | 0.9873 | 0.9842 |
Precision | 0.9689 | 0.9851 | 0.9764 | 0.9787 | 0.9842 |
Accuracy | 0.999 | 0.9994 | 0.9995 | 0.9995 | 0.9996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, S.; Vasconcelos, V.; Caridade, P.J.S.B. Evaluating the Impact of Filtering Techniques on Deep Learning-Based Brain Tumour Segmentation. Computers 2024, 13, 237. https://doi.org/10.3390/computers13090237
Rosa S, Vasconcelos V, Caridade PJSB. Evaluating the Impact of Filtering Techniques on Deep Learning-Based Brain Tumour Segmentation. Computers. 2024; 13(9):237. https://doi.org/10.3390/computers13090237
Chicago/Turabian StyleRosa, Sofia, Verónica Vasconcelos, and Pedro J. S. B. Caridade. 2024. "Evaluating the Impact of Filtering Techniques on Deep Learning-Based Brain Tumour Segmentation" Computers 13, no. 9: 237. https://doi.org/10.3390/computers13090237
APA StyleRosa, S., Vasconcelos, V., & Caridade, P. J. S. B. (2024). Evaluating the Impact of Filtering Techniques on Deep Learning-Based Brain Tumour Segmentation. Computers, 13(9), 237. https://doi.org/10.3390/computers13090237