Weighted Averages and Polynomial Interpolation for PM2.5 Time Series Forecasting
Abstract
:1. Introduction
- -
- A novel model for multi-step forecasting of PM2.5 time series;
- -
- A comparative analysis between proposal results and benchmark models based on deep learning;
- -
- A web application for PM2.5 time series forecasting.
2. Literature Review
2.1. Overview of Forecasting Models
2.2. One-Step-Related Works in PM2.5 Forecasting
2.3. Multi-Step-Model-Related Works in PM2.5 Forecasting
3. Materials and Methods
3.1. Data Collection
3.2. Selection of Days
3.3. Estimating Weighted Averages (WAs)
3.4. Applying Polynomial Interpolation (PI)
3.5. Evaluation
4. Results and Discussion
4.1. Results
4.1.1. Weighted Averages and Polynomial Interpolation (WA + PI)
4.1.2. A Web Application Based on WA + PI
4.2. Discussions
4.2.1. Comparison with Benchmark Models
4.2.2. Comparison with Related Works
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Global Air Quality Guidelines. 2021. Available online: https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&isAllowed=y (accessed on 5 July 2024).
- Martinez-Lacoba, R.; Pardo-Garcia, I.; Amo-Saus, E.; Escribano-Sotos, F. Socioeconomic, demographic and lifestyle-related factors associated with unhealthy diet: A cross-sectional study of university students. BMC Public Health 2018, 18, 1241. [Google Scholar] [CrossRef] [PubMed]
- Imanda, A.; Martini, S.; Artanti, K.D. Post hypertension and stroke: A case control study. Kesmas Natl. Public Health J. 2019, 13, 164–168. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, F.; Chevalier, N.; Corra, L.; Czerucka, D.; et al. Human health and ocean pollution. Ann. Glob. Health 2020, 86, 151. [Google Scholar] [CrossRef]
- Abutalip, K.; Al-Lahham, A.; El Saddik, A. Digital Twin of Atmospheric Environment: Sensory Data Fusion for High-Resolution PM2.5 Estimation and Action Policies Recommendation. IEEE Access 2023, 11, 14448–14457. [Google Scholar] [CrossRef]
- Xu, J.; Hu, W.; Liang, D.; Gao, P. Photochemical impacts on the toxicity of PM2.5. Crit. Rev. Environ. Sci. Technol. 2022, 52, 130–156. [Google Scholar] [CrossRef]
- Jiang, X.; Luo, Y.; Zhang, B. Prediction of pm2.5 concentration based on the lstm-tslightgbm variable weight combination model. Atmosphere 2021, 12, 1211. [Google Scholar] [CrossRef]
- Oh, J.; Choi, S.; Han, C.; Lee, D.-W.; Ha, E.; Kim, S.; Bae, H.-J.; Pyun, W.B.; Hong, Y.-C.; Lim, Y.-H. Association of long-term exposure to PM2.5 and survival following ischemic heart disease. Environ. Res. 2023, 216, 114440. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, W.; Wu, J. Ambient PM2.5 and annual lung cancer incidence: A nationwide study in 295 Chinese counties. Int. J. Environ. Res. Public Health 2020, 17, 1481. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Pan, B.; Wu, J.; Chen, E.; Chen, L. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: A meta-analysis. Oncotarget 2017, 8, 43322–43331. [Google Scholar] [CrossRef]
- Jalali, S.; Karbakhsh, M.; Momeni, M.; Taheri, M.; Amini, S.; Mansourian, M.; Sarrafzadegan, N. Long-term exposure to PM2.5 and cardiovascular disease incidence and mortality in an Eastern Mediterranean country: Findings based on a 15-year cohort study. Environ. Health 2021, 20, 112. [Google Scholar] [CrossRef]
- Amegah, A.K.; Dakuu, G.; Mudu, P.; Jaakkola, J.J.K. Particulate matter pollution at traffic hotspots of Accra, Ghana: Levels, exposure experiences of street traders, and associated respiratory and cardiovascular symptoms. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 333–342. [Google Scholar] [CrossRef]
- Chen, S.-J.; Huang, Y.; Yu, F.; Feng, X.; Zheng, Y.-Y.; Li, Q.; Niu, Q.; Jiang, Y.-H.; Zhao, L.-Q.; Wang, M.; et al. BMAL1/p53 mediating bronchial epithelial cell autophagy contributes to PM2.5-aggravated asthma. Cell Commun. Signal. 2023, 21, 39. [Google Scholar] [CrossRef]
- Wang, P.; Liu, H.; Fan, X.; Zhu, Z.; Zhu, Y. Effect of San’ao decoction on aggravated asthma mice model induced by PM2.5 and TRPA1/TRPV1 expressions. J. Ethnopharmacol. 2019, 236, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.; Xie, Z.; Liu, J.; Wei, L.; Wang, X.; Chen, M.; Ren, H. Global PM2.5-attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environ. Res. 2021, 197, 111123. [Google Scholar] [CrossRef] [PubMed]
- Moritz, S. Package imputeTS. 2022. Available online: https://cran.r-project.org/web/packages/imputeTS/imputeTS.pdf (accessed on 11 May 2023).
- Moritz, S.; Bartz-Beielstein, T. imputeTS: Time series missing value imputation in R. R J. 2017, 9, 207–218. [Google Scholar] [CrossRef]
- Flores, A.; Tito-Chura, H.; Centty-Villafuerte, D.; Ecos-Espino, A. Ecos-Espino, Pm2.5 Time Series Imputation with Deep Learning and Interpolation. Computers 2023, 12, 165. [Google Scholar] [CrossRef]
- Rakholia, R.; Le, Q.; Vu, K.; Ho, B.Q.; Carbajo, R.S. AI-based air quality PM2.5 forecasting models for developing countries: A case study of Ho Chi Minh City, Vietnam. Urban Clim. 2022, 46, 101315. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 4th ed.; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Tax, D.M.J.; Duin, R.P.W. Duin, Support vector domain description. Pattern Recognit. Lett. 1999, 20, 1191–1199. [Google Scholar] [CrossRef]
- Kumbure, M.M.; Luukka, P. A generalized fuzzy k-nearest neighbor regression model based on Minkowski distance. Granul. Comput. 2022, 7, 657–671. [Google Scholar] [CrossRef]
- Fan, G.-F.; Zhang, L.-Z.; Yu, M.; Hong, W.-C.; Dong, S.-Q. Applications of random forest in multivariable response surface for short-term load forecasting. Int. J. Electr. Power Energy Syst. 2022, 139, 108073. [Google Scholar] [CrossRef]
- Polo, J.; Martín-Chivelet, N.; Alonso-Abella, M.; Sanz-Saiz, C.; Cuenca, J.; de la Cruz, M. Exploring the PV Power Forecasting at Building Façades Using Gradient Boosting Methods. Energies 2023, 16, 1495. [Google Scholar] [CrossRef]
- Busari, G.A.; Lim, D.H. Crude oil price prediction: A comparison between AdaBoost-LSTM and AdaBoost-GRU for improving forecasting performance. Comput. Chem. Eng. 2021, 155, 107513. [Google Scholar] [CrossRef]
- L’heureux, A.; Grolinger, K.; Capretz, M.A.M. Transformer-Based Model for Electrical Load Forecasting. Energies 2022, 15, 4993. [Google Scholar] [CrossRef]
- Hertel, M.; Beichter, M.; Heidrich, B.; Neumann, O.; Schäfer, B.; Mikut, R.; Hagenmeyer, V. Transformer training strategies for forecasting multiple load time series. Energy Inform. 2023, 6, 20. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, P.; Zhao, L.; Wang, G.; Zhang, W.; Liu, J. Air quality predictions with a semi-supervised bidirectional LSTM neural network. Atmos. Pollut. Res. 2021, 12, 328–339. [Google Scholar] [CrossRef]
- Pak, U.; Ma, J.; Ryu, U.; Ryom, K.; Juhyok, U.; Pak, K.; Pak, C. Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China. Sci. Total Environ. 2020, 699, 133561. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W. SSA-LSTM neural network for hourly PM2.5 concentration prediction in Shenyang, China. J. Phys. 2021, 1780, 012015. [Google Scholar] [CrossRef]
- Wang, W.; Mao, W.; Tong, X.; Xu, G. A novel recursive model based on a convolutional long short-term memory neural network for air pollution prediction. Remote Sens. 2021, 13, 1284. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, L.; Jiang, M.; He, P. A novel hybrid ensemble model for hourly PM2.5 concentration forecasting. Int. J. Environ. Sci. Technol. 2023, 20, 219–230. [Google Scholar] [CrossRef]
- Zhu, M.; Xie, J. Investigation of nearby monitoring station for hourly PM2.5 forecasting using parallel multi-input 1D-CNN-biLSTM. Expert Syst. Appl. 2023, 211, 118707. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Le Nguyen, P.; Nguyen, K.; Le, V.A.; Nguyen, T.-H.; Ji, Y. PM2.5 Prediction Using Genetic Algorithm-Based Feature Selection and Encoder-Decoder Model. IEEE Access 2021, 9, 57338–57350. [Google Scholar] [CrossRef]
- Flores, A.; Valeriano-Zapana, J.; Yana-Mamani, V.; Tito-Chura, H. PM2.5 prediction with Recurrent Neural Networks and Data Augmentation. In Proceedings of the 2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Temuco, Chile, 2–4 November 2021. [Google Scholar] [CrossRef]
- Zheng, G.; Liu, H.; Yu, C.; Li, Y.; Cao, Z. A new PM2.5 forecasting model based on data preprocessing, reinforcement learning and gated recurrent unit network. Atmos. Pollut. Res. 2022, 13, 101475. [Google Scholar] [CrossRef]
- Li, X.; Luo, A.; Li, J.; Li, Y. Air Pollutant Concentration Forecast Based on Support Vector Regression and Quantum-Behaved Particle Swarm Optimization. Environ. Model. Assess. 2019, 24, 205–222. [Google Scholar] [CrossRef]
- Chu, J.; Dong, Y.; Han, X.; Xie, J.; Xu, X.; Xie, G. Short-term prediction of urban PM2.5 based on a hybrid modified variational mode decomposition and support vector regression model. Environ. Sci. Pollut. Res. 2021, 28, 56–72. [Google Scholar] [CrossRef]
- Li, J.; Garshick, E.; Hart, J.E.; Li, L.; Shi, L.; Al-Hemoud, A.; Huang, S.; Koutrakis, P. Estimation of ambient PM2.5 in Iraq and Kuwait from 2001 to 2018 using machine learning and remote sensing. Environ. Int. 2021, 151, 106445. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lei, T.-C.; Yao, S.; Wang, H.-P. Pm2.5 prediction model based on combinational hammerstein recurrent neural networks. Mathematics 2020, 8, 2178. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wang, K.; Cui, G. Atmospheric pm2.5 prediction based on multiple model adaptive unscented kalman filter. Atmosphere 2021, 12, 607. [Google Scholar] [CrossRef]
- Guo, H.; Guo, Y.; Zhang, W.; He, X.; Qu, Z. Research on a novel hybrid decomposition–ensemble learning paradigm based on VMD and IWOA for PM2.5 forecasting. Int. J. Environ. Res. Public Health 2021, 18, 1024. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Fang, X.; Ni, J.; Zhu, J. An improved attention-based integrated deep neural network for pm2.5 concentration prediction. Appl. Sci. 2021, 11, 4001. [Google Scholar] [CrossRef]
- Xing, H.; Wang, G.; Liu, C.; Suo, M. PM2.5 concentration modeling and prediction by using temperature-based deep belief network. Neural Netw. 2021, 133, 157–165. [Google Scholar] [CrossRef]
- Jiang, F.; Qiao, Y.; Jiang, X.; Tian, T. Multistep ahead forecasting for hourly pm10 and pm2.5 based on two-stage decomposition embedded sample entropy and group teacher optimization algorithm. Atmosphere 2021, 12, 64. [Google Scholar] [CrossRef]
- Yin, S.; Liu, H.; Duan, Z. Hourly PM2.5 concentration multi-step forecasting method based on extreme learning machine, boosting algorithm and error correction model. Digit. Signal Process. 2021, 118, 103221. [Google Scholar] [CrossRef]
- Shao, X.; Kim, C.S. Accurate multi-site daily-ahead multi-step PM2.5 concentrations forecasting using space-shared CNN-LSTM. Comput. Mater. Contin. 2022, 70, 5143–5160. [Google Scholar] [CrossRef]
- Liu, H.; Jin, K.; Duan, Z. Air PM2.5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases for four cities in China. Atmos. Pollut. Res. 2019, 10, 1588–1600. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.-J.; Chang, L.-C.; Kao, I.-F.; Wang, Y.-S.; Kang, C.-C. Multi-output support vector machine for regional multi-step-ahead PM2.5 forecasting. Sci. Total Environ. 2019, 651, 230–240. [Google Scholar] [CrossRef]
- Liu, Q.; Zou, Y.; Liu, X. A self-organizing memory neural network for aerosol concentration prediction. Comput. Model. Eng. Sci. 2019, 119, 617–637. [Google Scholar] [CrossRef]
- Liu, H.; Duan, Z.; Chen, C. A hybrid multi-resolution multi-objective ensemble model and its application for forecasting of daily PM2.5 concentrations. Inf. Sci. 2020, 516, 266–292. [Google Scholar] [CrossRef]
- Kow, P.-Y.; Wang, Y.-S.; Zhou, Y.; Kao, I.-F.; Issermann, M.; Chang, L.-C.; Chang, F.-J. Seamless integration of convolutional and back-propagation neural networks for regional multi-step-ahead PM2.5 forecasting. J. Clean. Prod. 2020, 261, 121285. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, X.; Cao, H.; Thé, J.; Tan, Z.; Yu, H. Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial–temporal attention and residual learning. Environ. Int. 2023, 171, 107691. [Google Scholar] [CrossRef]
- Li, H.; Yu, Y.; Huang, Z.; Sun, S.; Jia, X. A multi-step ahead point-interval forecasting system for hourly PM2.5 concentrations based on multivariate decomposition and kernel density estimation. Expert Syst. Appl. 2023, 226, 120140. [Google Scholar] [CrossRef]
- WHealth, Washington Children and Youth Activities Guide for Air Quality. 2024. Available online: https://doh.wa.gov/sites/default/files/legacy/Documents/Pubs/334-332.pdf (accessed on 20 June 2024).
- Arya, M.; Sastry, G.H.; Motwani, A.; Kumar, S.; Zaguia, A. A Novel Extra Tree Ensemble Optimized DL Framework (ETEODL) for Early Detection of Diabetes. Front. Public Health 2022, 9, 797877. Available online: https://www.frontiersin.org/article/10.3389/fpubh.2021.797877 (accessed on 20 June 2024). [CrossRef] [PubMed]
- Moreno, J.J.M.; Pol, A.P.; Abad, A.S. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema 2013, 25, 500–506. [Google Scholar] [CrossRef]
Related Research | This Work |
---|---|
|
|
|
|
|
|
|
|
Station | Total Hours | Train 80% | Test 20% |
---|---|---|---|
Pardo | 21,960 | 17,568 | 4392 |
Bolognesi | 18,120 | 14,496 | 3624 |
Pacocha | 16,344 | 13,080 | 3265 |
Day | Pacocha | Bolognesi | Pardo | Avg |
---|---|---|---|---|
1 | 0.2637 | 0.1952 | 0.1450 | 0.2013 ± 0.06 |
2 | 0.1903 | 0.1301 | 0.1378 | 0.1527 ± 0.03 |
3 | 0.3079 | 0.1488 | 0.2632 | 0.2400 ± 0.08 |
4 | 0.2539 | 0.0417 | 0.2411 | 0.1789 ± 0.12 |
5 | 0.2413 | 0.1026 | 0.1729 | 0.1723 ± 0.07 |
6 | 0.2404 | 0.0639 | 0.2595 | 0.1879 ± 0.11 |
7 | 0.3393 | 0.0650 | 0.2604 | 0.2216 ± 0.14 |
8 | 0.3589 | 0.0984 | 0.2152 | 0.2242 ± 0.13 |
9 | 0.1939 | 0.0779 | 0.2572 | 0.1763 ± 0.09 |
10 | 0.2409 | 0.1284 | 0.1451 | 0.1715 ± 0.06 |
11 | 0.1685 | 0.0992 | 0.1410 | 0.1362 ± 0.03 |
12 | 0.2378 | 0.1378 | 0.1965 | 0.1907 ± 0.05 |
13 | 0.2683 | 0.2056 | 0.1785 | 0.2175 ± 0.05 |
14 | 0.1554 | 0.2822 | 0.2514 | 0.2297 ± 0.07 |
15 | 0.2515 | 0.2429 | 0.2888 | 0.2611 ± 0.02 |
16 | 0.2057 | 0.2890 | 0.1607 | 0.2185 ± 0.07 |
17 | 0.0924 | 0.4475 | 0.0662 | 0.2020 ± 0.21 |
18 | 0.1612 | 0.2635 | 0.2781 | 0.2343 ± 0.06 |
19 | 0.0845 | 0.2231 | 0.0313 | 0.1130 ± 0.10 |
20 | 0.1950 | 0.1938 | 0.2017 | 0.1968 ± 0.00 |
21 | 0.1806 | −0.1380 | 0.1579 | 0.0668 ± 0.18 |
22 | 0.2255 | 0.0505 | 0.3517 | 0.2092 ± 0.15 |
23 | −0.2536 | −0.2328 | 0.1823 | −0.1014 ± 0.25 |
Technique | Predicted Hours | ||
---|---|---|---|
24 | 48 | 72 | |
RMSE | |||
WA | 4.8293 | 10.9212 | 12.9891 |
WA + PI | 4.0954 | 11.1827 | 12.9212 |
MAPE | |||
WA | 37.8821 | 31.0839 | 30.6611 |
WA + PI | 27.2208 | 29.95 | 29.5541 |
R2 | |||
WA | 0.7781 | 0.1642 | 0.1293 |
WA + PI | 0.5412 | 0.1175 | 0.1209 |
Technique | Predicted Hours | ||
---|---|---|---|
24 | 48 | 72 | |
RMSE | |||
WA | 2.9791 | 6.5504 | 5.7880 |
WA + PI | 3.2104 | 6.6086 | 5.7738 |
MAPE | |||
WA | 19.9318 | 25.1731 | 26.1533 |
WA + PI | 21.5751 | 25.2608 | 25.3131 |
R2 | |||
WA | 0.0111 | 0.0025 | 0.0031 |
WA + PI | 0.0086 | 0.0000 | 0.0054 |
Technique | Predicted Hours | ||
---|---|---|---|
24 | 48 | 72 | |
RMSE | |||
WA | 1.7193 | 2.1458 | 2.1535 |
WA + PI | 1.2283 | 1.7856 | 1.8002 |
MAPE | |||
WA | 13.3863 | 18.0499 | 20.9966 |
WA + PI | 13.5280 | 19.1461 | 20.3845 |
R2 | |||
WA | 0.2852 | 0.1614 | 0.0000 |
WA + PI | 0.6414 | 0.2315 | 0.0014 |
Model | Hyperparameters |
---|---|
LSTM | [30,30,30,n *], lr = 0.001, drop_rate = [‘’,0.1,0.1] |
BiLSTM | [30,30,30,n *], lr = 0.001, drop_rate = [‘’,0.1,0.1] |
GRU | [30,30,30,n *], lr = 0.001, drop_rate = [‘’,0.1,0.1] |
BiGRU | [30,30,30,n *] lr = 0.001, drop_rate = [‘’,0.1,0.1] |
LSTM-ATT | [100,1100,n *], lr = 0.001 |
Technique | Predicted Hours | ||
---|---|---|---|
24 | 48 | 72 | |
RMSE | |||
LSTM | 6.2482 | 11.1098 | 12.9222 |
BiLSTM | 5.0760 | 11.0872 | 12.8388 |
GRU | 5.9334 | 11.4898 | 13.2358 |
BiGRU | 5.2568 | 11.7640 | 13.5366 |
LSTM-ATT | 5.7577 | 12.7558 | 15.3852 |
WA + PI | 4.0954 | 11.1827 | 12.9212 |
MAPE | |||
LSTM | 49.9085 | 45.6897 | 43.9890 |
BiLSTM | 36.7623 | 38.0884 | 38.0875 |
GRU | 49.1408 | 45.6031 | 44.4407 |
BiGRU | 32.0877 | 36.7171 | 37.1657 |
LSTM-ATT | 30.5190 | 36.9551 | 40.6333 |
WA + PI | 27.2208 | 29.9500 | 29.5541 |
R2 | |||
LSTM | 0.1101 | 0.1057 | 0.0336 |
BiLSTM | 0.4451 | 0.3815 | 0.1410 |
GRU | 0.0069 | 0.0068 | 0.0062 |
BiGRU | 0.1653 | 0.1986 | 0.0377 |
LSTM-ATT | 0.0227 | 0.0738 | 0.0725 |
WA + PI | 0.5412 | 0.1175 | 0.1209 |
Technique | Predicted Hours | ||
---|---|---|---|
24 | 48 | 72 | |
RMSE | |||
LSTM | 2.6880 | 5.6406 | 5.1198 |
BiLSTM | 2.7096 | 6.0241 | 5.3871 |
GRU | 2.5525 | 5.7999 | 5.2771 |
BiGRU | 2.5477 | 6.2492 | 5.5734 |
LSTM-ATT | 2.2942 | 5.7173 | 5.0636 |
WA + PI | 3.2104 | 6.6086 | 5.7738 |
MAPE | |||
LSTM | 20.3258 | 19.8867 | 24.0068 |
BiLSTM | 20.0818 | 21.6240 | 24.8745 |
GRU | 18.9890 | 19.5996 | 24.2701 |
BiGRU | 17.4580 | 21.2114 | 24.5218 |
LSTM-ATT | 17.2521 | 18.6097 | 20.9124 |
WA + PI | 21.5751 | 25.2608 | 25.3131 |
R2 | |||
LSTM | 0.0543 | 0.0455 | 0.2520 |
BiLSTM | 0.0569 | 0.0002 | 0.0890 |
GRU | 0.0248 | 0.0203 | 0.1359 |
BiGRU | 0.1528 | 0.1011 | 0.0001 |
LSTM-ATT | 0.1875 | 0.0003 | 0.2360 |
WA + PI | 0.0086 | 0.0000 | 0.0005 |
Technique | Predicted Hours | ||
---|---|---|---|
24 | 48 | 72 | |
RMSE | |||
LSTM | 1.5667 | 2.2181 | 2.5044 |
BiLSTM | 1.4403 | 2.0565 | 2.3202 |
GRU | 1.5048 | 2.0773 | 2.3194 |
BiGRU | 1.5725 | 1.8373 | 1.8743 |
LSTM-ATT | 1.4485 | 1.8306 | 2.4208 |
WA + PI | 1.2283 | 1.7856 | 1.8002 |
MAPE | |||
LSTM | 17.0770 | 25.9310 | 30.9449 |
BiLSTM | 15.4638 | 23.7230 | 28.3142 |
GRU | 16.0796 | 23.7334 | 28.2635 |
BiGRU | 17.0590 | 21.0457 | 22.1567 |
LSTM-ATT | 15.7723 | 19.3737 | 28.1934 |
WA + PI | 13.5280 | 19.1461 | 20.3845 |
R2 | |||
LSTM | 0.6403 | 0.3008 | 0.1022 |
BiLSTM | 0.6472 | 0.3075 | 0.1133 |
GRU | 0.4997 | 0.2422 | 0.0007 |
BiGRU | 0.0876 | 0.0505 | 0.1475 |
LSTM-ATT | 0.6343 | 0.1627 | 0.0170 |
WA + PI | 0.6414 | 0.2315 | 0.0014 |
Day | Pacocha | Bolognesi | Pardo |
---|---|---|---|
1 | 0.293 | 0.0115 | 0.5334 |
2 | 0.0054 | 0.5976 | −0.2219 |
3 | 0.4315 | −0.009 | 0.6018 |
4 | 0.3573 | 0.5646 | 0.1011 |
5 | −0.3451 | 0.6147 | 0.2458 |
6 | 0.3808 | 0.1252 | 0.1812 |
7 | 0.323 | 0.0238 | 0.2447 |
8 | 0.2735 | 0.5718 | 0.3889 |
9 | 0.3125 | 0.3951 | 0.1212 |
10 | 0.275 | 0.7076 | 0.1224 |
11 | −0.2403 | 0.2895 | −0.0402 |
Work | Technique | Freq. | Steps | Metric | Value |
---|---|---|---|---|---|
[45] | ELM | Hourly | 3 | MAPE | [5.11–37.23] |
[46] | ELM | Hourly | 7 | MAPE | [5.12–22.2] |
[47] | CNN-LSTM | Hourly | 10 | MAPE | [22.09–25.94] |
[48] | Adaboost | Hourly | 3 | MAPE | [15.32–23.75] |
[49] | SVM | Hourly | 4 | RMSE | [8.16–39.04] |
[50] | LSTM | Daily | 1, 12 | MAPE | [6.66–14.08] |
[34] | LSTM | Hourly | 1, 6 | MAE | [4.395–7.246] |
[51] | BiLSTM | Hourly | 3 | MAPE | [27.33–40.73] |
[52] | CNN-BP | Hourly | 10 | RMSE | [5.42–10.21] |
[53] | ResCNN | Hourly | 4 | MAPE | [28.51–33.29] |
[54] | TMSG | Hourly | 3 | MAPE | [7.53–16.18] |
Proposal | WA + PI | Hourly | 24, 48, 72 | MAPE | [17.69–28.91] |
RMSE | [1.23–5.77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, A.; Tito-Chura, H.; Yana-Mamani, V.; Rosado-Chavez, C.; Ecos-Espino, A. Weighted Averages and Polynomial Interpolation for PM2.5 Time Series Forecasting. Computers 2024, 13, 238. https://doi.org/10.3390/computers13090238
Flores A, Tito-Chura H, Yana-Mamani V, Rosado-Chavez C, Ecos-Espino A. Weighted Averages and Polynomial Interpolation for PM2.5 Time Series Forecasting. Computers. 2024; 13(9):238. https://doi.org/10.3390/computers13090238
Chicago/Turabian StyleFlores, Anibal, Hugo Tito-Chura, Victor Yana-Mamani, Charles Rosado-Chavez, and Alejandro Ecos-Espino. 2024. "Weighted Averages and Polynomial Interpolation for PM2.5 Time Series Forecasting" Computers 13, no. 9: 238. https://doi.org/10.3390/computers13090238
APA StyleFlores, A., Tito-Chura, H., Yana-Mamani, V., Rosado-Chavez, C., & Ecos-Espino, A. (2024). Weighted Averages and Polynomial Interpolation for PM2.5 Time Series Forecasting. Computers, 13(9), 238. https://doi.org/10.3390/computers13090238