NDN Content Store and Caching Policies: Performance Evaluation
Abstract
:1. Introduction
2. The NDN Architecture Overview
3. In-Network Caching
3.1. Caching Decision Strategy
3.2. Caching Replacement Policies
4. Related Work
5. Simulation and Discussion
5.1. Simulation Environment Setup
5.2. Simulations Results
5.2.1. Cache Hit Ratio
- The network performance (in terms of CHR) increases with the increased number of CS. This result is achieved because with more CS in the network, there is a higher probability of finding the requested content on CS along the route before reaching the content producer. When the number of CS is decreased, the available CS are quickly filled up, and the cache replacement occurs more frequently. It is important to note that the size of the CS plays a role in the magnitude of the results achieved here. For a reduced size, as is the case in this work, more frequently, the CS is filled up, requiring frequent replacement for a new content. The reduced CS size is deliberately chosen. Considering the defined consumer request rate, the resulting traffic is busy enough to fill up the CS and, thus, activate the replacement policy.
- Although for each replacement policy, the higher gain on using CS is noticeable when increasing the percentage of CS from 0 to 50%, the difference among the policies in terms of their performance is more noticeable with a higher number of CS in the network. This result is a good metric for advising a specific scheme for a given network.
- Figure 2a shows LFU performing better with CS below 40%. After this threshold, LRU presents better performance. For CS above 50%, FIFO also presents a better performance than LFU and random.
5.2.2. Number of Upstream Hops
5.2.3. Network Traffic
- For a scenario with less CS in the network, the interest will take a longer route before finding the requested content. In this process, the probability of delay (as shown in Figure 8, Section 5.2.4) and the possible discarding of the packet is high;
- With more CS, as noted earlier, the CHR will be high. That is, the probability of finding the requested content closer to the consumer is also high, avoiding a longer route (or high number of hops, as explained in Section 5.2.2), and decreasing the probability of packet loss.
5.2.4. Retrieval Delay
5.2.5. Interest Retransmissions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Estrin, D.; Burke, J.; Jacobson, V.; Thornton, J.; Smertters, D.; Zhang, B.; Tsudik, G.; Claffy, K.C.; Krioukrov, D.; et al. Named Data Networking (NDN) Project; Technical Report NDN-001; NDN: Hong Kong, China, 2010. [Google Scholar]
- Zhang, L.; Afanasyev, A.; Burke, J.; Jacobson, V.; Claffy, K.C.; Crowley, P.; Papadopoulos, C.; Wang, L.; Zhang, B. Named data networking. Comput. Commun. Rev. 2014, 44, 66–73. [Google Scholar] [CrossRef]
- Rossini, G.; Rossi, D. Coupling Caching and Forwarding: Benefits, Analysis, and Implementation. In Proceedings of the 1st ACM Conference on Information-Centric Networking, ACM-ICN ’14, Paris France, 24–26 September 2014; pp. 127–136. [Google Scholar] [CrossRef]
- Yamamoto, M. A Survey of Caching Networks in Content Oriented Networks. IEICE Trans. Commun. 2016, 99, 961–973. [Google Scholar] [CrossRef] [Green Version]
- Aubry, E.; Silverston, T.; Chrisment, I. Green growth in NDN: Deployment of content stores. In Proceedings of the 2016 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), Rome, Italy, 13–15 July 2016; pp. 1–6. [Google Scholar]
- Kalghoum, A.; Gammar, S.M.; Saidane, L.A. Towards a Novel Cache Replacement Strategy for Named Data Networking Based on Software Defined Networking. Comput. Electr. Eng. 2018, 66, 98–113. [Google Scholar] [CrossRef]
- Ran, J.; Lv, N.; Zhang, D.; Ma, Y.; Xie, Z. On Performance of Cache Policies in Named Data Networking. In Proceedings of the 2013 International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013), Beijing, China, 25–26 July 2013. [Google Scholar] [CrossRef] [Green Version]
- Martina, V.; Garetto, M.; Leonardi, E. A unified approach to the performance analysis of caching systems. In Proceedings of the IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014; pp. 2040–2048. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, G.; Huang, T.; Chen, J.; Liu, Y. Modeling the sojourn time of items for in-network cache based on LRU policy. China Commun. 2014, 11, 88–95. [Google Scholar] [CrossRef]
- Yang, J.Y.; Choi, H.K. PPNDN: Popularity-based Caching for Privacy Preserving in Named Data Networking. In Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), Singapore, 6–8 June 2018; pp. 39–44. [Google Scholar] [CrossRef]
- Ostrovskaya, S.; Surnin, O.; Hussain, R.; Bouk, S.H.; Lee, J.; Mehran, N.; Ahmed, S.H.; Benslimane, A. Towards Multi-metric Cache Replacement Policies in Vehicular Named Data Networks. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Saltarin, J.; Braun, T.; Bourtsoulatze, E.; Thomos, N. PopNetCod: A Popularity-based Caching Policy for Network Coding enabled Named Data Networking. arXiv 2019, arXiv:1901.01187. [Google Scholar]
- Liu, Y.; Zhi, T.; Xi, H.; Quan, W.; Zhang, H. A Novel Cache Replacement Scheme against Cache Pollution Attack in Content-Centric Networks. In Proceedings of the 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, 11–13 August 2019; pp. 207–212. [Google Scholar] [CrossRef]
- Putra, M.A.P.; Kim, D.S.; Lee, J.M. Adaptive LRFU replacement policy for named data network in industrial IoT. ICT Express 2021. [Google Scholar] [CrossRef]
- Rashid, S.; Razak, S.A.; Ghaleb, F.A. IMU: A Content Replacement Policy for CCN, Based on Immature Content Selection. Appl. Sci. 2022, 12, 344. [Google Scholar] [CrossRef]
- Abdelkader Tayeb, H.; Ziani, B.; Kerrache, C.; Tahari, A.; Lagraa, N.; Mastorakis, S. CaDaCa: A new caching strategy in NDN using data categorization. Multimed. Syst. 2022. [Google Scholar] [CrossRef]
- Pires, S.; Ziviani, A.; Leobino, N. Contextual dimensions for cache replacement schemes in information-centric networks: A systematic review. PeerJ Comput. Sci. 2021, 7, e418. [Google Scholar] [CrossRef]
- Jacobson, V.; Smetters, D.K.; Thornton, J.D.; Plass, M.F.; Briggs, N.H.; Braynard, R.L. Networking Named Content. In Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, Rome, Italy, 1–4 December 2009; pp. 1–12. [Google Scholar] [CrossRef]
- Dannewitz, C.; Kutscher, D.; Ohlman, B.; Farrell, S.; Ahlgren, B.; Karl, H. Network of Information (NetInf)—An Information-centric Networking Architecture. Comput. Commun. 2013, 36, 721–735. [Google Scholar] [CrossRef]
- Koponen, T.; Chawla, M.; Chun, B.G.; Ermolinskiy, A.; Kim, K.H.; Shenker, S.; Stoica, I. A Data-oriented (and Beyond) Network Architecture. In Proceedings of the 2007 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Kyoto, Japan, 27–31 August 2007; pp. 181–192. [Google Scholar] [CrossRef]
- Lagutin, D.; Visala, K.; Tarkoma, S. Publish/Subscribe for Internet: PSIRP Perspective; Workingpaper; IOS Press: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Vasilakos, A.; Li, Z.; Simon, G.; You, W. Information centric network: Research challenges and opportunities. J. Netw. Comput. Appl. 2015, 52. [Google Scholar] [CrossRef]
- Zhang, L.; Burke, J.; Jacobson, V. FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP); Technical Report; NDN: Hong Kong, China, 2014. [Google Scholar]
- Alubady, R.; Hassan, S.; Habbal, A. A taxonomy of pending interest table implementation approaches in named data networking. J. Theor. Appl. Inf. Technol. 2016, 91, 411–423. [Google Scholar]
- Aljumaily, M. Content Delivery Networks Architecture, Features, and Benefits; Technical Report; University of Tennessee: Knoxville, TN, USA, 2016. [Google Scholar] [CrossRef]
- Saxena, D.; Raychoudhury, V.; Suri, N.; Becker, C.; Cao, J. Named Data Networking: A survey. Comput. Sci. Rev. 2016, 19, 15–55. [Google Scholar] [CrossRef] [Green Version]
- Tody Ariefianto, W.; Syambas, N. Routing in NDN Network: A Survey and Future Perspectives. 2017. Available online: https://www.semanticscholar.org/paper/Routing-in-NDN-network (accessed on 20 January 2022).
- Laoutaris, N.; Che, H.; Stavrakakis, I. The LCD interconnection of LRU caches and its analysis. Perform. Eval. 2006, 63, 609–634. [Google Scholar] [CrossRef]
- Eum, S.; Nakauchi, K.; Murata, M.; Shoji, Y.; Nishinaga, N. CATT: Potential Based Routing with Content Caching for ICN. In Proceedings of the Second Edition of the ICN Workshop on Information-centric Networking, Helsinki, Finland, 17 August 2012; pp. 49–54. [Google Scholar] [CrossRef]
- Psaras, I.; Chai, W.K.; Pavlou, G. Probabilistic In-network Caching for Information-centric Networks. In Proceedings of the Second Edition of the ICN Workshop on Information-centric Networking, Helsinki, Finland, 17 August 2012; pp. 55–60. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.; Lee, M.; Park, K.; Kwon, T.T.; Choi, Y.; Pack, S. WAVE: Popularity-based and collaborative in-network caching for content-oriented networks. In Proceedings of the 2012 Proceedings IEEE INFOCOM Workshops, Orlando, FL, USA, 25–30 March 2012; pp. 316–321. [Google Scholar] [CrossRef]
- Breslau, L.; Cao, P.; Fan, L.; Phillips, G.; Shenker, S. Web caching and Zipf-like distributions: Evidence and implications. In Proceedings of the Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, New York, NY, USA, 21–25 March 1999; Volume 1, pp. 126–134. [Google Scholar] [CrossRef]
- Mahanti, A.; Williamson, C.; Eager, D. Traffic analysis of a Web proxy caching hierarchy. IEEE Netw. 2000, 14, 16–23. [Google Scholar] [CrossRef]
- Doyle, R.P.; Chase, J.S.; Gadde, S.; Vahdat, A.M. The Trickle-Down Effect: Web Caching and Server Request Distribution. Comput. Commun. 2002, 25, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Gummadi, K.P.; Dunn, R.J.; Saroiu, S.; Gribble, S.D.; Levy, H.M.; Zahorjan, J. Measurement, Modeling, and Analysis of a Peer-to-peer File-sharing Workload. SIGOPS Oper. Syst. Rev. 2003, 37, 314–329. [Google Scholar] [CrossRef]
- Yu, H.; Zheng, D.; Zhao, B.Y.; Zheng, W. Understanding User Behavior in Large-scale Video-on-demand Systems. SIGOPS Oper. Syst. Rev. 2006, 40, 333–344. [Google Scholar] [CrossRef]
- Cha, M.; Kwak, H.; Rodriguez, P.; Ahn, Y.Y.; Moon, S. I Tube, You Tube, Everybody Tubes: Analyzing the World’s Largest User Generated Content Video System. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, San Diego, CA, USA, 24–26 October 2007; pp. 1–14. [Google Scholar] [CrossRef]
- Gill, P.; Arlitt, M.; Li, Z.; Mahanti, A. Youtube Traffic Characterization: A View from the Edge. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, San Diego, CA, USA, 24–26 October 2007; pp. 15–28. [Google Scholar] [CrossRef]
- Guillemin, F.; Kauffmann, B.; Moteau, S.; Simonian, A. Experimental Analysis of Caching Efficiency for YouTube Traffic in an ISP Network. 2013. Available online: https://ieeexplore.ieee.org/document/6662934 (accessed on 20 January 2022).
- Yu, M.; Li, R.; Liu, Y.; Li, Y. A caching strategy based on content popularity and router level for NDN. In Proceedings of the 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC), Macau, China, 21–23 July 2017; pp. 195–198. [Google Scholar] [CrossRef]
- Chai, W.K.; He, D.; Psaras, I.; Pavlou, G. Cache “less for more” in information-centric networks (extended version). Comput. Commun. 2013, 36, 758–770. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, C.; Silverston, T.; Festor, O. MPC: Popularity-based caching strategy for content centric networks. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 3619–3623. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Qi, W.; Westphal, C.; Wang, J.; Lu, K.; Liu, S.; Wang, S. MAGIC: A distributed MAx-Gain In-network Caching strategy in information-centric networks. In Proceedings of the 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 27 April–2 May 2014; pp. 470–475. [Google Scholar] [CrossRef]
- Rezazad, M.; Tay, Y.C. CCndnS: A strategy for spreading content and decoupling NDN caches. In Proceedings of the 2015 IFIP Networking Conference (IFIP Networking), Toulouse, France, 20–22 May 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.; Liu, B.; Lu, J.; Wang, Y.; Wang, X.; Zhang, Y.; Dong, L. Popularity-driven Coordinated Caching in Named Data Networking. In Proceedings of the Eighth ACM/IEEE Symposium on Architectures for Networking and Communications Systems, Austin, TX, USA, 29–30 October 2012; pp. 15–26. [Google Scholar] [CrossRef]
- Psaras, I.; Clegg, R.G.; L, R.; Chai, W.K. Modelling and Evaluation of CCN-Caching Trees. 2011. Available online: https://link.springer.com/content/pdf/10.1007 (accessed on 20 January 2022).
- Afanasyev, A.; Shi, J.; Zhang, B.; Zhang, L.; Moiseenko, I.; Yu, Y.; Shang, W.; Li, Y.; Mastorakis, S.; Huang, Y.; et al. NFD Developer’s Guide; Technical Report; UCLA: Los Angeles, CA, USA, 2018. [Google Scholar] [CrossRef]
- Podlipnig, S.; Böszörmenyi, L. A Survey of Web Cache Replacement Strategies. ACM Comput. Surv. 2003, 35, 374–398. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Lin, T. Caching in Information Centric Networking: A Survey. Comput. Netw. 2013, 57, 3128–3141. [Google Scholar] [CrossRef]
- Panigrahi, B.; Shailendra, S.; Rath, H.K.; Simha, A. Universal Caching Model and Markov-based cache analysis for Information Centric Networks. Photonic Netw. Commun. 2015, 30, 428–438. [Google Scholar] [CrossRef]
- Shailendra, S.; Sengottuvelan, S.; Rath, H.K.; Panigrahi, B.; Simha, A. Performance evaluation of caching policies in NDN—an ICN architecture. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.; Strogatz, S. Collective Dynamics of ’Small-World’ Networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Spring, N.; Mahajan, R.; Wetherall, D.; Anderson, T. Measuring ISP Topologies with Rocketfuel. IEEE/ACM Trans. Netw. 2004, 12, 2–16. [Google Scholar] [CrossRef]
- Abilene Info Sheet. Available online: http://www.internet2.edu/pubs/200502-IS-AN.pdf (accessed on 25 May 2021).
- Fayazbakhsh, S.K.; Lin, Y.; Tootoonchian, A.; Ghodsi, A.; Koponen, T.; Maggs, B.; Ng, K.; Sekar, V.; Shenker, S. Less Pain, Most of the Gain: Incrementally Deployable ICN. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, Hong Kong, China, 12–16 August 2013; pp. 147–158. [Google Scholar] [CrossRef]
- ITU. Framework of Software-Defined Networking; Technical Report; International Telecommunication Union (ITU): Geneva, Switzerland, 2014. [Google Scholar]
- Kalghoum, A.; Gammar, S.M. Towards New Information Centric Networking Strategy Based on Software Defined Networking. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 9–22 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Bilal, M.; Kang, S.G. A Cache Management Scheme for Efficient Content Eviction and Replication in Cache Networks. IEEE Access 2017, 5, 1692–1701. [Google Scholar] [CrossRef]
- Putra, M.A.P.; Situmorang, H.; Syambas, N.R. Least Recently Frequently Used Replacement Policy Named Data Networking Approach. In Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI), Bandung, Indonesia, 9–10 June 2019; pp. 423–427. [Google Scholar] [CrossRef]
- Mastorakis, S.; Afanasyev, A.; Zhang, L. On the Evolution of ndnSIM: An Open-Source Simulator for NDN Experimentation. ACM Comput. Commun. Rev. 2017. [Google Scholar] [CrossRef]
- NS-3: Network Simulator. Available online: https://www.nsnam.org/ (accessed on 31 October 2019).
- ndnSIM. NS-3 Based Named Data Networking (NDN) Simulator. Available online: https://ndnsim.net/1.0/intro.html (accessed on 31 October 2019).
- ndnSIM Testbed. NDN Testbed Snapshot. Available online: http://ndndemo.arl.wustl.edu/ndn.html (accessed on 3 November 2019).
- Khelifi, H.; Luo, S.; Nour, B.; Moungla, H. In-Network Caching in ICN-based Vehicular Networks: Effectiveness & Performance Evaluation. In Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
Reference | Topology (# Nodes) | Caching Policy | Number of CS, in % | Size of CS |
---|---|---|---|---|
Aubry et al. [5] | Abilene (11), GEANT (41) | LFU | 20, 40, 50, 80, 100 (of # nodes) | 1000 contents |
Ran et al. [7] | Hierarchical (20) | LFU, LRU, CCP 2 | 100 (of # nodes) | 40–60% of 200 contents |
Shailendra et al. [51] | Synthetic, Sprinter (52) | FIFO, LRU, UC 2 | 100 (of # nodes) | (2–20)% of cache 1 |
Panigrahi et al. [50] | Synthetic, Sprinter (52) | FIFO, LRU, UC 2 | 100 (of # nodes) | (2–20)% of cache 1 |
Kalghoum et al. [6] | Hierarchical (150–3000) | LRU, LFU, FIFO, NC-SDN 2 | 5 (of # nodes) | 1 |
Yang and Choi [10] | Synthetic (10) | LRU, FIFO, PPNDN 2 | 30 (of # nodes) | 10–70% of 1000 contents |
Ostrovskaya et al. [11] | Vehicular network (108) | LRU, FIFO, M2CRP 2 | 100 (of # nodes) | 50, 75, 100, 125, 150 MB |
Liu et al. [13] | Binary tree topology (12) | LFU, LRU, FIFO, PopuL 2 | 100 (of # nodes) | (10–190) MB |
Saltarin et al. [12] | Layered topology (169) | LRU, PopNetCod 2 | 27 (of # nodes) | 0.9–2.3% of 540,500 contents |
Putra et al. [14] | Substrate topology (15) | LRU, LFU, LRFU, adaptive LRFU 2 | 100 (of # nodes) | 10–100 blocks |
Rashid et al. [15] | GEANT (100) | LRU, FIFO, LFU, LFRU, IMU 2 | 100 (of # nodes) | 4–20% of 100,000 contents |
Abdelkader Tayeb et al. [16] | k- trees (1), Scale free topology (1) | FIFO, LRU, CaDaCa 2 | 100 (of # nodes) | 10% of 1000 contents |
Present work | Testbed (43), Abilene (11) | LFU, LRU, FIFO, Random | 5, 20, 30, 40, 50, 80, 100 (of # nodes) | 1000 contents |
Parameters | Value |
---|---|
Topology (nodes) | NDN Testbed (42), Abilene (11) |
Number of the catalogues | 1 |
Size of the catalogue | different content |
Number of producers | 1 (10) |
Number of consumers | 41 (32) |
Size of CS | 1000 contents |
Popularity ratio | MZipf () and () |
Content request rate | 100 packets/s, 5 packets/s ( packets/s) |
Caching strategy | LCD |
caching policy | LRU, LFU, FIFO, Random |
Forwarding strategy | Best Route |
Cache scenarios | 5%, 20%, 30%, 40%, 50%, 80%, 100% |
Metric | Cache Hit ratio, Traffic, Delay, Re-transmissions, # hops |
Simulations per scenario | 20 |
Duration of simulations | 240 s, 600 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, E.T.d.; Macedo, J.M.H.d.; Costa, A.L.D. NDN Content Store and Caching Policies: Performance Evaluation. Computers 2022, 11, 37. https://doi.org/10.3390/computers11030037
Silva ETd, Macedo JMHd, Costa ALD. NDN Content Store and Caching Policies: Performance Evaluation. Computers. 2022; 11(3):37. https://doi.org/10.3390/computers11030037
Chicago/Turabian StyleSilva, Elídio Tomás da, Joaquim Melo Henriques de Macedo, and António Luís Duarte Costa. 2022. "NDN Content Store and Caching Policies: Performance Evaluation" Computers 11, no. 3: 37. https://doi.org/10.3390/computers11030037
APA StyleSilva, E. T. d., Macedo, J. M. H. d., & Costa, A. L. D. (2022). NDN Content Store and Caching Policies: Performance Evaluation. Computers, 11(3), 37. https://doi.org/10.3390/computers11030037