“Radiological Grading” for Preoperative Assessment of Central Cartilaginous Tumors
Simple Summary
Abstract
1. Introduction
2. Radiological Findings to Predict Histological Grade
| Author | Patients | Modality | Findings | Ref. |
|---|---|---|---|---|
| Geirnaerdt | Enchondroma (35) and chondrosarcoma (43) | X-ray | Ill-defined margin and lobulated contour | [13] |
| Murphy | Enchondroma (92) and chondrosarcoma (95) | X-ray | Cortical remodeling, cortical thickening, cortical destruction, pathologic fracture, periosteal reaction, and soft-tissue extension | [18] |
| CT | cortical destruction, periosteal reaction, and soft-tissue extension | |||
| MRI | Cortical destruction and soft-tissue extension | |||
| Bone scintigraphy | Uptake greater than in the anterior iliac crest | |||
| Brenner | Chondrosarcoma (31) | FDG-PET | Mean SUV in grade 1, 2, and 3 chondrosarcomas were 3.4 ± 1.6, 5.4 ± 3.1, and 7.1 ± 2.6, respectively | [24] |
| Higuchi | Enchondroma (3) and chondrosarcoma (19) | 201Tl scintigraphy | Only mesenchymal and dedifferentiated chondrosarcoma showed obvious 201Tl uptake | [11] |
| Choi | Enchondroma (16) and chondrosarcoma (18) | MRI | Findings correlating ACT/grade 1 chondrosarcoma: intermediate signal on T1-weighted images, multilocular appearance on contrast-enhanced T1-weighted images, cortical destruction, a soft tissue mass, adjacent bone marrow and soft tissue abnormal signal, and involvement of the epiphysis or flat bone | [9] |
| De Coninck | Enchondroma (75) and chondrosarcoma (31) | Dynamic contrast-enhanced MRI | A two-fold more relative enhancement compared with muscle (100% sensitivity and 63.3% specificity) | [25] |
| Crim | Enchondroma (32) and chondrosarcoma (12) | X-ray | Size, endosteal scalloping, cortical breakthrough, and bone expansion | [26] |
| MRI | Size, cortical breakthrough, large areas of enhancement by gadolinium, and soft mass | |||
| Alfaro | Enchondroma (5) and ACT/grade 1 chondrosarcoma (16) | X-ray, CT, and MRI | Endosteal scalloping and tumor size | [19] |
| Douis | Enchondroma (27) and chondrosarcoma (23) | MRI | Tumor length, endosteal scalloping > 2/3, cortical destruction, bone expansion, and soft tissue mass | [20] |
| Jo | Enchondroma (21) and chondrosarcoma (43) | 201Tl scintigraphy | Positivity for 201Tl uptake, defined as greater uptake compared with that of background, was more frequent in grade 1 chondrosarcoma | [21] |
| Annovazzi | Enchondroma (35) and chondrosarcoma (60) | FDG-PET | Cutoff value of SUVmax was 2.6 to differentiate between enchondroma and ACT/grade 1 chondrosarcoma, 3.7 to differentiate between ACT/grade 1 chondrosarcoma and grade 2–3 chondrosarcoma, and 7.7 to differentiate between ACT/grade 1–3 chondrosarcoma and dedifferentiated chondrosarcoma | [16] |
| Author | Patients | Modality | Finding | Ref. |
|---|---|---|---|---|
| Yoo | ACT/grade 1 chondrosarcoma (28) and high-grade chondrosarcoma (14) | MRI | Absence of entrapped fat and soft tissue mass formation | [22] |
| Douis | ACT/grade 1 chondrosarcoma (107), and high-grade chondrosarcoma (72) | MRI | Bone expansion, active periostitis, soft tissue mass, and tumor length | [23] |
| Kaya | Enchondroma (7) and chondrosarcoma (16) | 201Tl scintigraphy | Increased 201Tl uptake greater than background was observed in grade 2–3 chondrosarcoma | [10] |
3. Comprehensive Radiological Assessment to Predict Histological Grades
4. Radiomics-Based Prediction of Histological Grades
5. Future Perspectives and Clinical Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murphey, M.D.; Walker, E.A.; Wilson, A.J.; Kransdorf, M.J.; Temple, H.T.; Gannon, F.H. From the Archives of the AFIP. RadioGraphics 2003, 23, 1245–1278. [Google Scholar] [CrossRef]
- Choi, J.H.; Ro, J.Y. The 2020 WHO Classification of Tumors of Bone: An Updated Review. Adv. Anat. Pathol. 2021, 28, 119–138. [Google Scholar] [CrossRef]
- Fletcher, C.D.M.; Bridge, J.A.; Hogendoorn, P.; Mertens, F. WHO Classification of Tumours of the Soft Tissues and Bone; IARC Press: Lyon, France, 2013. [Google Scholar]
- WHO Classification of Tumours Editorial Board. WHO Classification of Tumours of Soft Tissue and Bone, 5th ed.; IARC Press: Lyon, France, 2020. [Google Scholar]
- Casali, P.G.; Bielack, S.; Abecassis, N.; Aro, H.T.; Bauer, S.; Biagini, R.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; Brennan, B.; et al. Bone sarcomas: ESMO–PaedCan–EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv79–iv95. [Google Scholar] [CrossRef] [PubMed]
- Roitman, P.D.; Farfalli, G.L.; Ayerza, M.A.; Múscolo, L.D.; Milano, F.E.; Aponte-Tinao, L.A. Is Needle Biopsy Clinically Useful in Preoperative Grading of Central Chondrosarcoma of the Pelvis and Long Bones? Clin. Orthop. Relat. Res. 2017, 475, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, Y.; Evans, S.; Stevenson, J.D.; Parry, M.; Fujiwara, T.; Laitinen, M.; Outani, H.; Jeys, L. Is the Width of a Surgical Margin Associated with the Outcome of Disease in Patients with Peripheral Chondrosarcoma of the Pelvis? A Multicenter Study. Clin. Orthop. Relat. Res. 2019, 477, 2432–2440. [Google Scholar] [CrossRef]
- Miwa, S.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Igarashi, K.; Tada, K.; Higuchi, T.; Yonezawa, H.; Morinaga, S.; Araki, Y.; et al. Diagnostic accuracies of intraoperative frozen section and permanent section examinations for histological grades during open biopsy of bone tumors. Int. J. Clin. Oncol. 2020, 26, 613–619. [Google Scholar] [CrossRef]
- Choi, B.-B.; Jee, W.-H.; Sunwoo, H.-J.; Cho, J.-H.; Kim, J.-Y.; Chun, K.-A.; Hong, S.-J.; Chung, H.W.; Sung, M.-S.; Lee, Y.-S.; et al. MR differentiation of low-grade chondrosarcoma from enchondroma. Clin. Imaging 2013, 37, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Kaya, G.C.; Demir, Y.; Ozkal, S.; Sengoz, T.; Manisalı, M.; Baran, O.; Koc, M.; Tuna, B.; Ozaksoy, D.; Havıtcıoglu, H. Tumor grade-related thallium-201 uptake in chondrosarcomas. Ann. Nucl. Med. 2010, 24, 279–286. [Google Scholar] [CrossRef]
- Higuchi, T.; Taki, J.; Sumiya, H.; Kinuya, S.; Nakajima, K.; Namura, M.; Tonami, N. Characterization of cartilaginous tumors with201Tl scintigraphy. Ann. Nucl. Med. 2005, 19, 95–99. [Google Scholar] [CrossRef]
- Kendell, S.D.; Collins, M.S.; Adkins, M.C.; Sundaram, M.; Unni, K.K. Radiographic differentiation of enchondroma from low-grade chondrosarcoma in the fibula. Skelet. Radiol. 2004, 33, 458–466. [Google Scholar] [CrossRef]
- Geirnaerdt, M.J.; Hermans, J.; Bloem, J.L.; Kroon, H.M.; Pope, T.L.; Taminiau, A.H.; Hogendoorn, P.C. Usefulness of radiography in differentiating enchondroma from central grade 1 chondrosarcoma. Am. J. Roentgenol. 1997, 169, 1097–1104. [Google Scholar] [CrossRef]
- Vanel, D.; Kreshak, J.; Larousserie, F.; Alberghini, M.; Mirra, J.; De Paolis, M.; Picci, P. Enchondroma vs. chondrosarcoma: A simple, easy-to-use, new magnetic resonance sign. Eur. J. Radiol. 2013, 82, 2154–2160. [Google Scholar] [CrossRef]
- Subhawong, T.K.; Winn, A.; Shemesh, S.S.; Pretell-Mazzini, J. F-18 FDG PET differentiation of benign from malignant chondroid neoplasms: A systematic review of the literature. Skelet. Radiol. 2017, 46, 1233–1239. [Google Scholar] [CrossRef]
- Annovazzi, A.; Anelli, V.; Zoccali, C.; Rumi, N.; Persichetti, A.; Novello, M.; Sciuto, R.; Bertoni, F.; Ferraresi, V.; Biagini, R. 18F-FDG PET/CT in the evaluation of cartilaginous bone neoplasms: The added value of tumor grading. Ann. Nucl. Med. 2019, 33, 813–821. [Google Scholar] [CrossRef]
- Choi, W.H.; Han, E.J.; Chang, K.B.; Joo, M.W. Quantitative SPECT/CT for differentiating between enchondroma and grade I chondrosarcoma. Sci. Rep. 2020, 10, 10587. [Google Scholar] [CrossRef] [PubMed]
- Murphey, M.D.; Flemming, D.J.; Boyea, S.R.; Bojescul, J.A.; Sweet, D.E.; Temple, H.T. Enchondroma versus chondrosarcoma in the appendicular skeleton: Differentiating features. RadioGraphics 1998, 18, 1213–1237. [Google Scholar] [CrossRef]
- Alfaro, P.A.; Ciani, G.; Herrera, C.A.; Donati, D.M.; Errani, C. Differential diagnosis and treatment of enchondromas and atypical cartilaginous tumours of the pelvis: Analysis of 21 patients. Eur. J. Orthop. Surg. Traumatol. 2019, 30, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Douis, H.; Parry, M.; Vaiyapuri, S.; Davies, A.M. What are the differentiating clinical and MRI-features of enchondromas from low-grade chondrosarcomas? Eur. Radiol. 2017, 28, 398–409. [Google Scholar] [CrossRef]
- Jo, O.; Schlicht, S.; Slavin, J.; Di Bella, C.; Pang, G.; Powell, G.; Spelman, T.; Choong, P.F. The role of Thallium-201 scintigraphy and Tc-99m pentavalent dimercaptosuccinic acid in diagnosis and grading of chondrosarcoma. Eur. J. Radiol. 2020, 125, 108846. [Google Scholar] [CrossRef]
- Yoo, H.J.; Hong, S.H.; Choi, J.-Y.; Moon, K.C.; Kim, H.-S.; Choi, J.-A.; Kang, H.S. Differentiating high-grade from low-grade chondrosarcoma with MR imaging. Eur. Radiol. 2009, 19, 3008–3014. [Google Scholar] [CrossRef] [PubMed]
- Douis, H.; Singh, L.; Saifuddin, A. MRI differentiation of low-grade from high-grade appendicular chondrosarcoma. Eur. Radiol. 2013, 24, 232–240. [Google Scholar] [CrossRef]
- Brenner, W.; Conrad, E.U.; Eary, J.F. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur. J. Nucl. Med. 2004, 31, 189–195. [Google Scholar] [CrossRef]
- De Coninck, T.; Jans, L.; Sys, G.; Huysse, W.; Verstraeten, T.; Forsyth, R.; Poffyn, B.; Verstraete, K. Dynamic contrast-enhanced MR imaging for differentiation between enchondroma and chondrosarcoma. Eur. Radiol. 2013, 23, 3140–3152. [Google Scholar] [CrossRef]
- Crim, J.; Schmidt, R.; Layfield, L.; Hanrahan, C.; Manaster, B.J. Can imaging criteria distinguish enchondroma from grade 1 chondrosarcoma? Eur. J. Radiol. 2015, 84, 2222–2230. [Google Scholar] [CrossRef]
- Miwa, S.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Igarashi, K.; Tada, K.; Yonezawa, H.; Morinaga, S.; Araki, Y.; Asano, Y.; et al. A Radiological Scoring System for Differentiation between Enchondroma and Chondrosarcoma. Cancers 2021, 13, 3558. [Google Scholar] [CrossRef] [PubMed]
- Gundavda, M.K.; Lazarides, A.L.; Burke, Z.D.C.; Focaccia, M.; Griffin, A.M.; Tsoi, K.M.; Ferguson, P.C.; Wunder, J.S. Is a radiological score able to predict resection-grade chondrosarcoma in primary intraosseous lesions of the long bones? Bone Jt. J. 2023, 105-B, 808–814. [Google Scholar] [CrossRef]
- Hong, J.H.; Jung, J.-Y.; Jo, A.; Nam, Y.; Pak, S.; Lee, S.-Y.; Park, H.; Lee, S.E.; Kim, S. Development and Validation of a Radiomics Model for Differentiating Bone Islands and Osteoblastic Bone Metastases at Abdominal CT. Radiology 2021, 299, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Yang, Y.; Hu, M.; Zhang, Z.; Zhou, X. Artificial intelligence-based radiomics in bone tumors: Technical advances and clinical application. Semin. Cancer Biol. 2023, 95, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Gitto, S.; Annovazzi, A.; Nulle, K.; Interlenghi, M.; Salvatore, C.; Anelli, V.; Baldi, J.; Messina, C.; Albano, D.; Di Luca, F.; et al. X-rays radiomics-based machine learning classification of atypical cartilaginous tumour and high-grade chondrosarcoma of long bones. EBioMedicine 2024, 101, 105018. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shi, X.; Wang, Y.; Pang, J.; Zhao, X.; Xu, Y.; Li, Q.; Wang, N.; Duan, F.; Nie, P. A CT-based radiomics nomogram for predicting histologic grade and outcome in chondrosarcoma. Cancer Imaging 2024, 24, 50. [Google Scholar] [CrossRef]
- Nie, P.; Zhao, X.; Ma, J.; Wang, Y.; Li, B.; Li, X.; Li, Q.; Wang, Y.; Xu, Y.; Dai, Z.; et al. Can the preoperative CT-based deep learning radiomics model predict histologic grade and prognosis of chondrosarcoma? Eur. J. Radiol. 2024, 181, 111719. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, M.; Yildirim, H. CT radiomics-based machine learning model for differentiating between enchondroma and low-grade chondrosarcoma. Medicine 2024, 103, e39311. [Google Scholar] [CrossRef]
- Li, X.; Lan, M.; Wang, X.; Zhang, J.; Gong, L.; Liao, F.; Lin, H.; Dai, S.; Fan, B.; Dong, W. Development and validation of a MRI-based combined radiomics nomogram for differentiation in chondrosarcoma. Front. Oncol. 2023, 13, 1090229. [Google Scholar] [CrossRef]
- Gitto, S.; Cuocolo, R.; van Langevelde, K.; van de Sande, M.A.; Parafioriti, A.; Luzzati, A.; Imbriaco, M.; Sconfienza, L.M.; Bloem, J.L. MRI radiomics-based machine learning classification of atypical cartilaginous tumour and grade II chondrosarcoma of long bones. EBioMedicine 2022, 75, 103757. [Google Scholar] [CrossRef]
- Yoon, H.; Choi, W.H.; Joo, M.W.; Ha, S.; Chung, Y.-A. SPECT/CT Radiomics for Differentiating between Enchondroma and Grade I Chondrosarcoma. Tomography 2023, 9, 1868–1875. [Google Scholar] [CrossRef]
- Yin, P.; Mao, N.; Liu, X.; Sun, C.; Wang, S.; Chen, L.; Hong, N. Can clinical radiomics nomogram based on 3D multiparametric MRI features and clinical characteristics estimate early recurrence of pelvic chondrosarcoma? J. Magn. Reson. Imaging 2019, 51, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, K.; Ma, X.; Liu, Z.; Wang, S.; Du, J.; Tian, K.; Zhou, X.; Wei, W.; Sun, K.; et al. Radiomic analysis of multiparametric magnetic resonance imaging for differentiating skull base chordoma and chondrosarcoma. Eur. J. Radiol. 2019, 118, 81–87. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Miwa, S.; Hayashi, K.; Higuchi, T.; Yonezawa, H.; Morinaga, S.; Asano, Y.; Demura, S. “Radiological Grading” for Preoperative Assessment of Central Cartilaginous Tumors. Cancers 2026, 18, 193. https://doi.org/10.3390/cancers18020193
Miwa S, Hayashi K, Higuchi T, Yonezawa H, Morinaga S, Asano Y, Demura S. “Radiological Grading” for Preoperative Assessment of Central Cartilaginous Tumors. Cancers. 2026; 18(2):193. https://doi.org/10.3390/cancers18020193
Chicago/Turabian StyleMiwa, Shinji, Katsuhiro Hayashi, Takashi Higuchi, Hirotaka Yonezawa, Sei Morinaga, Yohei Asano, and Satoru Demura. 2026. "“Radiological Grading” for Preoperative Assessment of Central Cartilaginous Tumors" Cancers 18, no. 2: 193. https://doi.org/10.3390/cancers18020193
APA StyleMiwa, S., Hayashi, K., Higuchi, T., Yonezawa, H., Morinaga, S., Asano, Y., & Demura, S. (2026). “Radiological Grading” for Preoperative Assessment of Central Cartilaginous Tumors. Cancers, 18(2), 193. https://doi.org/10.3390/cancers18020193

