Personalizing Treatment for Pancreatic Ductal Adenocarcinoma: The Emerging Role of Minimal Residual Disease in Perioperative Decision-Making
Simple Summary
Abstract
1. Introduction
2. Standard of Care Management of PDAC
2.1. Surgical Approach
2.2. Adjuvant Therapy
2.3. Neoadjuvant Therapy
3. Role of Minimal Residual Disease in Treatment Decision-Making
3.1. Definition
3.1.1. ctDNA
3.1.2. Circulating Tumor Cells
3.2. Prognostic Significance of MRD
| Study, Year | Type of Study | Patients | ctDNA Positivity, % | mOS | mRFS | mDFS | Reference | |||
|---|---|---|---|---|---|---|---|---|---|---|
| Months | HR | Months | HR | Months | HR | |||||
| Pietrasz et al., 2017 | Prospective, single-center | 36 | 16.6% | 19.3 vs. 32.2 | N/A | N/A | N/A | 4.6 vs. 17.6 | N/A | [54] |
| Nakano et al., 2018 | Retrospective, single-center | 45 | 44.4% | N/A | Univariate 3.18, 95%CI: 0.95–10.65 | N/A | N/A | N/A | Univariate: 2.2, 95%CI: 0.99–4.87 Multivariate: 2.91, 95%CI: 1.10–5.61 | [66] |
| Botta et al., 2024 | Retrospective, multi-center | 100 | 29% | N/A | N/A | N/A | N/A | 6.3 vs. 33.3 | 5.4, 95%CI: 2.9–10.1 | [55] |
| Lee et al., 2019 | Prospective, multi-center | 35 | 37% | N/A | 4.0, 95%CI: 1.2–13.6 | N/A | Univariate: 5.4, 95%: CI 1.9–25.2 Multivariate: 6.3; 95% CI:2.4–16.2 | N/A | N/A | [67] |
| Dickey et al., 2025 | Retrospective, single-center | 32 | 28.1% | 26.3 vs. NR | N/A | 3.6 vs. 29.0 | 72.1, 95%CI: 8.6–604.9 | N/A | N/A | [56] |
| Li et al., 2025 | Retrospective, two-institution | 27 | N/A | 25.5 vs. NR | 2.5, 95%CI: 0.6–10.2 | 6.6 vs. 25.0 | 3.1, 95%CI: 1.0–9.4 | N/A | N/A | [58] |
| Cecchini et al., 2024 | phase 2 nonrandomized controlled trial | 12 | 17% | N/A | Univariate: 11.7; 95%CI: 1.5–129.9 | N/A | 34.0; 95%CI: 2.6–4758.6 | N/A | N/A | [39] |
| Kitahata et al., 2022 | Prospective, single-center | 27 | 51.8% | 23.8 vs. NR | 5.01, 95%CI: 1.22–20.51 | 11.1 vs. 12.3 | N/A | N/A | N/A | [57] |
| Groot et al., 2019 | Prospective, single-center | 41 | 26.8% | N/A | N/A | 5.0 vs. 15.0 | N/A | N/A | N/A | [68] |
| Yamaguchi et al., 2021 | Retrospective, single-center | 97 | 28.0% | Pre+/post+: 13.5 Pre−/post+: 22.2 Pre−/post−: 52.6 Pre+/post−: 18.2 | Multivariate: 1.35; 95%CI: 0.75–2.39 | Pre+/post+: 4.7 Pre−/post+: 13.1 Pre−/post−: 22.3 Pre+/post−: 10.9 | Multivariate: 1.61, 95%CI: 0.90–2.77 | N/A | N/A | [61] |
| Hata et al., 2023 | Retrospective, single-center | 66 | 24.2% | N/A | Univariate: 2.7, 95%CI: 1.1–6.7 Multivariate: 2.1, 95%CI: 0.8–5.4 | N/A | N/A | N/A | Univariate: 2.1, 95%CI: 1.03–4.3 Multivariate: 2.7, 95%CI: 1.3–5.7 | [69] |
3.3. MRD in Guiding Adjuvant Strategies
3.4. Limitations of Current Studies
3.5. Limitations and Challenges in MRD Detection
4. Future Perspectives
4.1. Personalizing Perioperative Treatment
4.2. Ongoing Clinical Trials and Research Directions
4.3. ctDNA Within Multimarker Risk Stratification Frameworks
4.4. Translational Research Opportunities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J Clin 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Cronin, K.A.; Scott, S.; Firth, A.U.; Sung, H.; Henley, S.J.; Sherman, R.L.; Siegel, R.L.; Anderson, R.N.; Kohler, B.A.; Benard, V.B.; et al. Annual report to the nation on the status of cancer, part 1: National cancer statistics. Cancer 2022, 128, 4251–4284. [Google Scholar] [CrossRef]
- Theocharopoulos, C.; Ziogas, I.A.; Douligeris, C.-C.; Efstathiou, A.; Kolorizos, E.; Ziogas, D.C.; Kontis, E. Antibody-drug conjugates for hepato-pancreato-biliary malignancies: “Magic bullets” to the rescue? Cancer Treat. Rev. 2024, 129, 102806. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouche, O.; Guimbaud, R.; Becouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardiere, C.; et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, Z.A.; Melisi, D.; Macarulla, T.; Pazo Cid, R.; Chandana, S.R.; De La Fouchardiere, C.; Dean, A.; Kiss, I.; Lee, W.J.; Goetze, T.O.; et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): A randomised, open-label, phase 3 trial. Lancet 2023, 402, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.M.; Cameron, J.L.; Campbell, K.A.; Arnold, M.A.; Chang, D.C.; Coleman, J.; Hodgin, M.B.; Sauter, P.K.; Hruban, R.H.; Riall, T.S.; et al. 1423 pancreaticoduodenectomies for pancreatic cancer: A single-institution experience. J. Gastrointest. Surg. 2006, 10, 1199–1210; discussion 1210–1211. [Google Scholar] [CrossRef]
- Cameron, J.L.; Riall, T.S.; Coleman, J.; Belcher, K.A. One thousand consecutive pancreaticoduodenectomies. Ann. Surg. 2006, 244, 10–15. [Google Scholar] [CrossRef]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.L.; Chone, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef]
- Shaib, W.L.; Narayan, A.S.; Switchenko, J.M.; Kane, S.R.; Wu, C.; Akce, M.; Alese, O.B.; Patel, P.R.; Maithel, S.K.; Sarmiento, J.M.; et al. Role of adjuvant therapy in resected stage IA subcentimeter (T1a/T1b) pancreatic cancer. Cancer 2019, 125, 57–67. [Google Scholar] [CrossRef]
- Li, X.H.; Zhou, E.L.; Dong, X.Y.; Zhao, C.Y.; Han, Y.X.; Cui, B.K.; Lin, X.J. Adjuvant chemotherapy in pancreatic cancer at different AJCC stages: A propensity score matching analysis. Eur. J. Med. Res. 2023, 28, 606. [Google Scholar] [CrossRef]
- Belfiori, G.; Crippa, S.; Pagnanelli, M.; Gasparini, G.; Aleotti, F.; Camisa, P.R.; Partelli, S.; Pecorelli, N.; De Stefano, F.; Schiavo Lena, M.; et al. Very Early Recurrence After Curative Resection for Pancreatic Ductal Adenocarcinoma: Proof of Concept for a “Biological R2 Definition”. Ann. Surg. Oncol. 2024, 31, 4084–4095. [Google Scholar] [CrossRef]
- Tol, J.A.; Gouma, D.J.; Bassi, C.; Dervenis, C.; Montorsi, M.; Adham, M.; Andren-Sandberg, A.; Asbun, H.J.; Bockhorn, M.; Buchler, M.W.; et al. Definition of a standard lymphadenectomy in surgery for pancreatic ductal adenocarcinoma: A consensus statement by the International Study Group on Pancreatic Surgery (ISGPS). Surgery 2014, 156, 591–600. [Google Scholar] [CrossRef]
- Leonhardt, C.S.; Niesen, W.; Kalkum, E.; Klotz, R.; Hank, T.; Buchler, M.W.; Strobel, O.; Probst, P. Prognostic relevance of the revised R status definition in pancreatic cancer: Meta-analysis. BJS Open 2022, 6, zrac010. [Google Scholar] [CrossRef]
- Terai, T.; Kawai, M.; Kitahata, Y.; Satoi, S.; Hashimoto, D.; Nagai, M.; Nishiwada, S.; Yamamoto, T.; Yamaue, H.; Sho, M. Central pancreatectomy might be an acceptable surgical procedure for clinical T1 pancreatic body ductal adenocarcinoma: A multicenter retrospective analysis. J. Hepato-Biliary-Pancreat. Sci. 2023, 30, 1334–1342. [Google Scholar] [CrossRef]
- Calderon, E.; Day, R.W.; Stucky, C.C.; Gray, R.J.; Pockaj, B.A.; Chang, Y.H.; Wasif, N. Comparative Effectiveness of Pylorus-Preserving Versus Standard Pancreaticoduodenectomy in Clinical Practice. Pancreas 2020, 49, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.T.; Smeenk, H.G.; van Eijck, C.H.; Kazemier, G.; Hop, W.C.; Greve, J.W.; Terpstra, O.T.; Zijlstra, J.A.; Klinkert, P.; Jeekel, H. Pylorus preserving pancreaticoduodenectomy versus standard Whipple procedure: A prospective, randomized, multicenter analysis of 170 patients with pancreatic and periampullary tumors. Ann. Surg. 2004, 240, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Klotz, R.; Mihaljevic, A.L.; Kulu, Y.; Sander, A.; Klose, C.; Behnisch, R.; Joos, M.C.; Kalkum, E.; Nickel, F.; Knebel, P.; et al. Robotic versus open partial pancreatoduodenectomy (EUROPA): A randomised controlled stage 2b trial. Lancet Reg. Health Eur. 2024, 39, 100864. [Google Scholar] [CrossRef]
- Korrel, M.; Jones, L.R.; van Hilst, J.; Balzano, G.; Bjornsson, B.; Boggi, U.; Bratlie, S.O.; Busch, O.R.; Butturini, G.; Capretti, G.; et al. Minimally invasive versus open distal pancreatectomy for resectable pancreatic cancer (DIPLOMA): An international randomised non-inferiority trial. Lancet Reg. Health Eur. 2023, 31, 100673. [Google Scholar] [CrossRef] [PubMed]
- Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zuelke, C.; Burkart, C.; et al. Adjuvant chemotherapy with gemcitabine vs. observation in patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA 2007, 297, 267–277. [Google Scholar] [CrossRef]
- Ueno, H.; Kosuge, T.; Matsuyama, Y.; Yamamoto, J.; Nakao, A.; Egawa, S.; Doi, R.; Monden, M.; Hatori, T.; Tanaka, M.; et al. A randomised phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer: Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer. Br. J. Cancer 2009, 101, 908–915. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Stocken, D.D.; Friess, H.; Bassi, C.; Dunn, J.A.; Hickey, H.; Beger, H.; Fernandez-Cruz, L.; Dervenis, C.; Lacaine, F.; et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 2004, 350, 1200–1210. [Google Scholar] [CrossRef]
- Klaiber, U.; Hackert, T.; Neoptolemos, J.P. Adjuvant treatment for pancreatic cancer. Transl. Gastroenterol. Hepatol. 2019, 4, 27. [Google Scholar] [CrossRef]
- Kalser, M.H.; Ellenberg, S.S. Pancreatic cancer. Adjuvant combined radiation and chemotherapy following curative resection. Arch. Surg. 1985, 120, 899–903. [Google Scholar] [CrossRef]
- Bakkevold, K.E.; Arnesjo, B.; Dahl, O.; Kambestad, B. Adjuvant combination chemotherapy (AMF) following radical resection of carcinoma of the pancreas and papilla of Vater--results of a controlled, prospective, randomised multicentre study. Eur. J. Cancer 1993, 29A, 698–703. [Google Scholar] [CrossRef]
- Klinkenbijl, J.H.; Jeekel, J.; Sahmoud, T.; van Pel, R.; Couvreur, M.L.; Veenhof, C.H.; Arnaud, J.P.; Gonzalez, D.G.; de Wit, L.T.; Hennipman, A.; et al. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: Phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann. Surg. 1999, 230, 776–782; discussion 782–784. [Google Scholar] [CrossRef]
- Takada, T.; Amano, H.; Yasuda, H.; Nimura, Y.; Matsushiro, T.; Kato, H.; Nagakawa, T.; Nakayama, T.; Study Group of Surgical Adjuvant Therapy for Carcinomas of the Pancreas and Biliary Tract. Is postoperative adjuvant chemotherapy useful for gallbladder carcinoma? A phase III multicenter prospective randomized controlled trial in patients with resected pancreaticobiliary carcinoma. Cancer 2002, 95, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Regine, W.F.; Winter, K.A.; Abrams, R.; Safran, H.; Hoffman, J.P.; Konski, A.; Benson, A.B.; Macdonald, J.S.; Rich, T.A.; Willett, C.G. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the U.S. Intergroup/RTOG 9704 phase III trial. Ann. Surg. Oncol. 2011, 18, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Abel, U.; Debus, J.; Harig, S.; Hoffmann, K.; Herrmann, T.; Bartsch, D.; Klein, J.; Mansmann, U.; Jager, D.; et al. Open-label, multicenter, randomized phase III trial of adjuvant chemoradiation plus interferon Alfa-2b versus fluorouracil and folinic acid for patients with resected pancreatic adenocarcinoma. J. Clin. Oncol. 2012, 30, 4077–4083. [Google Scholar] [CrossRef] [PubMed]
- Neoptolemos, J.P.; Stocken, D.D.; Bassi, C.; Ghaneh, P.; Cunningham, D.; Goldstein, D.; Padbury, R.; Moore, M.J.; Gallinger, S.; Mariette, C.; et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs. gemcitabine following pancreatic cancer resection: A randomized controlled trial. JAMA 2010, 304, 1073–1081. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Palmer, D.H.; Ghaneh, P.; Psarelli, E.E.; Valle, J.W.; Halloran, C.M.; Faluyi, O.; O’Reilly, D.A.; Cunningham, D.; Wadsley, J.; et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet 2017, 389, 1011–1024. [Google Scholar] [CrossRef]
- Conroy, T.; Castan, F.; Lopez, A.; Turpin, A.; Ben Abdelghani, M.; Wei, A.C.; Mitry, E.; Biagi, J.J.; Evesque, L.; Artru, P.; et al. Five-Year Outcomes of FOLFIRINOX vs. Gemcitabine as Adjuvant Therapy for Pancreatic Cancer: A Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1571–1578. [Google Scholar] [CrossRef]
- Hackert, T.; Sachsenmaier, M.; Hinz, U.; Schneider, L.; Michalski, C.W.; Springfeld, C.; Strobel, O.; Jager, D.; Ulrich, A.; Buchler, M.W. Locally Advanced Pancreatic Cancer: Neoadjuvant Therapy With Folfirinox Results in Resectability in 60% of the Patients. Ann. Surg. 2016, 264, 457–463. [Google Scholar] [CrossRef]
- Yachida, S.; Jones, S.; Bozic, I.; Antal, T.; Leary, R.; Fu, B.; Kamiyama, M.; Hruban, R.H.; Eshleman, J.R.; Nowak, M.A.; et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010, 467, 1114–1117. [Google Scholar] [CrossRef]
- Haeno, H.; Gonen, M.; Davis, M.B.; Herman, J.M.; Iacobuzio-Donahue, C.A.; Michor, F. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell 2012, 148, 362–375. [Google Scholar] [CrossRef]
- Mackay, T.M.; Smits, F.J.; Roos, D.; Bonsing, B.A.; Bosscha, K.; Busch, O.R.; Creemers, G.J.; van Dam, R.M.; van Eijck, C.H.J.; Gerhards, M.F.; et al. The risk of not receiving adjuvant chemotherapy after resection of pancreatic ductal adenocarcinoma: A nationwide analysis. HPB 2020, 22, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Sohal, D.; Duong, M.T.; Ahmad, S.A.; Gandhi, N.; Beg, M.S.; Wang-Gillam, A.; Wade, J.L.; Chiorean, E.G.; Guthrie, K.A.; Lowy, A.M.; et al. SWOG S1505: Results of perioperative chemotherapy (peri-op CTx) with mfolfirinox versus gemcitabine/nab-paclitaxel (Gem/nabP) for resectable pancreatic ductal adenocarcinoma (PDA). J. Clin. Oncol. 2020, 38, 4504. [Google Scholar] [CrossRef]
- Maurel, J.; Sanchez-Cabus, S.; Laquente, B.; Gaba, L.; Visa, L.; Fabregat, J.; Poves, I.; Rosello, S.; Diaz-Beveridge, R.; Martin-Richard, M.; et al. Outcomes after neoadjuvant treatment with gemcitabine and erlotinib followed by gemcitabine-erlotinib and radiotherapy for resectable pancreatic cancer (GEMCAD 10-03 trial). Cancer Chemother. Pharmacol. 2018, 82, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Labori, K.J.; Bratlie, S.O.; Andersson, B.; Angelsen, J.H.; Biorserud, C.; Bjornsson, B.; Bringeland, E.A.; Elander, N.; Garresori, H.; Gronbech, J.E.; et al. Neoadjuvant FOLFIRINOX versus upfront surgery for resectable pancreatic head cancer (NORPACT-1): A multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2024, 9, 205–217. [Google Scholar] [CrossRef]
- Cecchini, M.; Salem, R.R.; Robert, M.; Czerniak, S.; Blaha, O.; Zelterman, D.; Rajaei, M.; Townsend, J.P.; Cai, G.; Chowdhury, S.; et al. Perioperative Modified FOLFIRINOX for Resectable Pancreatic Cancer: A Nonrandomized Controlled Trial. JAMA Oncol. 2024, 10, 1027–1035. [Google Scholar] [CrossRef]
- Bartolomucci, A.; Nobrega, M.; Ferrier, T.; Dickinson, K.; Kaorey, N.; Nadeau, A.; Castillo, A.; Burnier, J.V. Circulating tumor DNA to monitor treatment response in solid tumors and advance precision oncology. NPJ Precis. Oncol. 2025, 9, 84. [Google Scholar] [CrossRef]
- Chen, J.; Gale, R.P.; Hu, Y.; Yan, W.; Wang, T.; Zhang, W. Measurable residual disease (MRD)-testing in haematological and solid cancers. Leukemia 2024, 38, 1202–1212. [Google Scholar] [CrossRef]
- Yaghoubi Naei, V.; Bordhan, P.; Mirakhorli, F.; Khorrami, M.; Shrestha, J.; Nazari, H.; Kulasinghe, A.; Ebrahimi Warkiani, M. Advances in novel strategies for isolation, characterization, and analysis of CTCs and ctDNA. Ther. Adv. Med. Oncol. 2023, 15, 17588359231192401. [Google Scholar] [CrossRef] [PubMed]
- Ziogas, D.C.; Papadopoulou, E.; Gogas, H.; Sakellariou, S.; Felekouras, E.; Theocharopoulos, C.; Stefanou, D.T.; Theochari, M.; Boukovinas, I.; Matthaios, D.; et al. Digging into the NGS Information from a Large-Scale South European Population with Metastatic/Unresectable Pancreatic Ductal Adenocarcinoma: A Real-World Genomic Depiction. Cancers 2023, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Hendifar, A.; Gangi, A.; Zaghiyan, K.; Atkins, K.; Nasseri, Y.; Murrell, Z.; Figueiredo, J.C.; Salvy, S.; Haile, R.; et al. Clinical Applications of Minimal Residual Disease Assessments by Tumor-Informed and Tumor-Uninformed Circulating Tumor DNA in Colorectal Cancer. Cancers 2021, 13, 4547. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabieres, C. Minimal residual disease as a target for liquid biopsy in patients with solid tumours. Nat. Rev. Clin. Oncol. 2025, 22, 65–77. [Google Scholar] [CrossRef]
- Elazezy, M.; Joosse, S.A. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput. Struct. Biotechnol. J. 2018, 16, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Nakamura, T.; Kimura, Y.; Motoya, M.; Kojima, S.; Kuraya, T.; Murakami, T.; Kaneko, T.; Shinohara, Y.; Kitayama, Y.; et al. Tumor-Informed Approach Improved ctDNA Detection Rate in Resected Pancreatic Cancer. Int. J. Mol. Sci. 2022, 23, 11521. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Yao, D.; Dai, C.; Peng, S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol. Cancer Res. 2011, 9, 1608–1620. [Google Scholar] [CrossRef]
- Eslami, S.Z.; Cortes-Hernandez, L.E.; Alix-Panabieres, C. Epithelial Cell Adhesion Molecule: An Anchor to Isolate Clinically Relevant Circulating Tumor Cells. Cells 2020, 9, 1836. [Google Scholar] [CrossRef]
- Gorges, T.M.; Tinhofer, I.; Drosch, M.; Rose, L.; Zollner, T.M.; Krahn, T.; von Ahsen, O. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 2012, 12, 178. [Google Scholar] [CrossRef]
- Zhao, X.H.; Wang, Z.R.; Chen, C.L.; Di, L.; Bi, Z.F.; Li, Z.H.; Liu, Y.M. Molecular detection of epithelial-mesenchymal transition markers in circulating tumor cells from pancreatic cancer patients: Potential role in clinical practice. World J. Gastroenterol. 2019, 25, 138–150. [Google Scholar] [CrossRef]
- Harouaka, R.A.; Nisic, M.; Zheng, S.Y. Circulating tumor cell enrichment based on physical properties. J. Lab. Autom. 2013, 18, 455–468. [Google Scholar] [CrossRef]
- Pietrasz, D.; Pecuchet, N.; Garlan, F.; Didelot, A.; Dubreuil, O.; Doat, S.; Imbert-Bismut, F.; Karoui, M.; Vaillant, J.C.; Taly, V.; et al. Plasma Circulating Tumor DNA in Pancreatic Cancer Patients Is a Prognostic Marker. Clin. Cancer Res. 2017, 23, 116–123. [Google Scholar] [CrossRef]
- Botta, G.P.; Abdelrahim, M.; Drengler, R.L.; Aushev, V.N.; Esmail, A.; Laliotis, G.; Brewer, C.M.; George, G.V.; Abbate, S.M.; Chandana, S.R.; et al. Association of personalized and tumor-informed ctDNA with patient survival outcomes in pancreatic adenocarcinoma. Oncologist 2024, 29, 859–869. [Google Scholar] [CrossRef]
- Dickey, E.M.; Martos, M.P.; Yanala, U.; Corona, A.; Ezenwajiaku, N.; Pizzolato, J.; Franceschi, D.; Livingstone, A.S.; Terrero, G.; Hester, C.A.; et al. Utility of tumor-informed circulating tumor DNA for detection of minimal residual disease after curative-intent therapy in localized pancreatic cancer. Surg. Oncol. Insight 2025, 2, 100116. [Google Scholar] [CrossRef]
- Kitahata, Y.; Kawai, M.; Hirono, S.; Okada, K.I.; Miyazawa, M.; Motobayashi, H.; Ueno, M.; Hayami, S.; Miyamoto, A.; Yamaue, H. Circulating Tumor DNA as a Potential Prognostic Marker in Patients with Borderline-Resectable Pancreatic Cancer Undergoing Neoadjuvant Chemotherapy Followed by Pancreatectomy. Ann. Surg. Oncol. 2022, 29, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Li, P.C.-W.; Winters, H.D.; Geng, X.; Wang, H.; Schumann, A.; Noel, M.S.; He, A.R.; Weinberg, B.A.; Marshall, J.; Tesfaye, A.A.; et al. Real-world microscopic residual disease (MRD) monitoring with circulating tumor DNA (ctDNA) in pancreatic adenocarcinoma (PDAC). J. Clin. Oncol. 2025, 43, 696. [Google Scholar] [CrossRef]
- Sausen, M.; Phallen, J.; Adleff, V.; Jones, S.; Leary, R.J.; Barrett, M.T.; Anagnostou, V.; Parpart-Li, S.; Murphy, D.; Kay Li, Q.; et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat. Commun. 2015, 6, 7686. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.; Alloghbi, A.; Coffin, P.; Yin, C.; Mukherji, R.; Weinberg, B.A. Prognostic utility of preoperative and postoperative KRAS-mutated circulating tumor DNA (ctDNA) in resected pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Surg. Oncol. 2023, 51, 102007. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Uemura, K.; Murakami, Y.; Kondo, N.; Nakagawa, N.; Okada, K.; Seo, S.; Hiyama, E.; Takahashi, S.; Sueda, T. Clinical Implications of Pre- and Postoperative Circulating Tumor DNA in Patients with Resected Pancreatic Ductal Adenocarcinoma. Ann. Surg. Oncol. 2021, 28, 3135–3144. [Google Scholar] [CrossRef]
- Vidal, L.; Pando, E.; Blanco, L.; Fabregat-Franco, C.; Castet, F.; Sierra, A.; Macarulla, T.; Balsells, J.; Charco, R.; Vivancos, A. Liquid biopsy after resection of pancreatic adenocarcinoma and its relation to oncological outcomes. Systematic review and meta-analysis. Cancer Treat. Rev. 2023, 120, 102604. [Google Scholar] [CrossRef]
- Maulat, C.; Canivet, C.; Cabarrou, B.; Pradines, A.; Selves, J.; Casanova, A.; Doussine, A.; Hanoun, N.; Cuellar, E.; Boulard, P.; et al. Prognostic impact of circulating tumor DNA detection in portal and peripheral blood in resected pancreatic ductal adenocarcinoma patients. Sci. Rep. 2024, 14, 27296. [Google Scholar] [CrossRef]
- Avula, L.R.; Hagerty, B.; Alewine, C. Molecular mediators of peritoneal metastasis in pancreatic cancer. Cancer Metastasis Rev. 2020, 39, 1223–1243. [Google Scholar] [CrossRef]
- Leick, K.M.; Tomanek-Chalkley, A.; Coleman, K.L.; Chan, C.H.F. Peritoneal Cell-Free Tumor DNA is a Biomarker of Locoregional and Peritoneal Recurrence in Resected Pancreatic Ductal Adenocarcinomas. Ann. Surg. Oncol. 2023, 30, 6652–6660. [Google Scholar] [CrossRef]
- Nakano, Y.; Kitago, M.; Matsuda, S.; Nakamura, Y.; Fujita, Y.; Imai, S.; Shinoda, M.; Yagi, H.; Abe, Y.; Hibi, T.; et al. KRAS mutations in cell-free DNA from preoperative and postoperative sera as a pancreatic cancer marker: A retrospective study. Br. J. Cancer 2018, 118, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Lipton, L.; Cohen, J.; Tie, J.; Javed, A.A.; Li, L.; Goldstein, D.; Burge, M.; Cooray, P.; Nagrial, A.; et al. Circulating tumor DNA as a potential marker of adjuvant chemotherapy benefit following surgery for localized pancreatic cancer. Ann. Oncol. 2019, 30, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Groot, V.P.; Mosier, S.; Javed, A.A.; Teinor, J.A.; Gemenetzis, G.; Ding, D.; Haley, L.M.; Yu, J.; Burkhart, R.A.; Hasanain, A.; et al. Circulating Tumor DNA as a Clinical Test in Resected Pancreatic Cancer. Clin. Cancer Res. 2019, 25, 4973–4984. [Google Scholar] [CrossRef] [PubMed]
- Hata, T.; Mizuma, M.; Motoi, F.; Ohtsuka, H.; Nakagawa, K.; Morikawa, T.; Unno, M. Prognostic impact of postoperative circulating tumor DNA as a molecular minimal residual disease marker in patients with pancreatic cancer undergoing surgical resection. J. Hepato-Biliary-Pancreat. Sci. 2023, 30, 815–824. [Google Scholar] [CrossRef]
- Tie, J.; Wang, Y.; Lo, S.N.; Lahouel, K.; Cohen, J.D.; Wong, R.; Shapiro, J.D.; Harris, S.J.; Khattak, A.; Burge, M.E.; et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer: 5-year outcomes of the randomized DYNAMIC trial. Nat. Med. 2025, 31, 1509–1518. [Google Scholar] [CrossRef]
- Tie, J.; Cohen, J.D.; Lahouel, K.; Lo, S.N.; Wang, Y.; Kosmider, S.; Wong, R.; Shapiro, J.; Lee, M.; Harris, S.; et al. Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer. N. Engl. J. Med. 2022, 386, 2261–2272. [Google Scholar] [CrossRef]
- Verschoor, N.; Bos, M.K.; Oomen-de Hoop, E.; Martens, J.W.M.; Sleijfer, S.; Jager, A.; Beije, N. A review of trials investigating ctDNA-guided adjuvant treatment of solid tumors: The importance of trial design. Eur. J. Cancer 2024, 207, 114159. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Tie, J.; Wang, Y.; Cohen, J.D.; Shapiro, J.D.; Wong, R.; Aghmesheh, M.; Kiberu, A.D.; Francesconi, A.; Burge, M.E.; et al. The potential role of serial circulating tumor DNA (ctDNA) testing after upfront surgery to guide adjuvant chemotherapy for early stage pancreatic cancer: The AGITG DYNAMIC-Pancreas trial. J. Clin. Oncol. 2024, 42, 107. [Google Scholar] [CrossRef]
- Pascual, J.; Attard, G.; Bidard, F.C.; Curigliano, G.; De Mattos-Arruda, L.; Diehn, M.; Italiano, A.; Lindberg, J.; Merker, J.D.; Montagut, C.; et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2022, 33, 750–768. [Google Scholar] [CrossRef]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224ra224. [Google Scholar] [CrossRef]
- Henriksen, T.V.; Demuth, C.; Frydendahl, A.; Nors, J.; Nesic, M.; Rasmussen, M.H.; Reinert, T.; Larsen, O.H.; Jaensch, C.; Love, U.S.; et al. Unraveling the potential clinical utility of circulating tumor DNA detection in colorectal cancer-evaluation in a nationwide Danish cohort. Ann. Oncol. 2024, 35, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Umemoto, K.; Sunakawa, Y.; Ueno, M.; Furukawa, M.; Mizuno, N.; Sudo, K.; Kawamoto, Y.; Kajiwara, T.; Ohtsubo, K.; Okano, N.; et al. Clinical significance of circulating-tumour DNA analysis by metastatic sites in pancreatic cancer. Br. J. Cancer 2023, 128, 1603–1608. [Google Scholar] [CrossRef]
- Bai, H.; Wang, Z.; Chen, K.; Zhao, J.; Lee, J.J.; Wang, S.; Zhou, Q.; Zhuo, M.; Mao, L.; An, T.; et al. Influence of chemotherapy on EGFR mutation status among patients with non-small-cell lung cancer. J. Clin. Oncol. 2012, 30, 3077–3083. [Google Scholar] [CrossRef]
- Evan, T.; Wang, V.M.; Behrens, A. The roles of intratumour heterogeneity in the biology and treatment of pancreatic ductal adenocarcinoma. Oncogene 2022, 41, 4686–4695. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.; Wells, A.; Cox, M.; Dawravoo, K.; Abad, J.; D’Souza, A.; Suh, G.; Bayer, R.; Chaudhry, S.; Zhang, Q.; et al. Prospective Evaluation of Circulating Tumor DNA Using Next-generation Sequencing as a Biomarker During Neoadjuvant Chemotherapy in Localized Pancreatic Cancer. Ann. Surg. 2025, 281, 997–1005. [Google Scholar] [CrossRef]
- Bryant, J.M.; Ruffolo, L.; Soares, K.; Hoffe, S.; Lowy, A.M. Evolving concepts in adjuvant/neoadjuvant therapy for resectable pancreas cancer. J. Clin. Investig. 2025, 135, e191944. [Google Scholar] [CrossRef] [PubMed]
- Vitello, D.J.; Shah, D.; Wells, A.; Masnyk, L.; Cox, M.; Janczewski, L.M.; Abad, J.; Dawravoo, K.; D’Souza, A.; Suh, G.; et al. Mutant KRAS in Circulating Tumor DNA as a Biomarker in Localized Pancreatic Cancer in Patients Treated with Neoadjuvant Chemotherapy. Ann. Surg. 2024. [Google Scholar] [CrossRef]
- Toledano-Fonseca, M.; Brozos-Vazquez, E.; Garcia-Ortiz, M.V.; Costa-Fraga, N.; Diaz-Lagares, A.; Rodriguez-Ariza, A.; Lopez-Lopez, R.; Aranda, E. Unveilling the potential of liquid biopsy in pancreatic cancer for molecular diagnosis and treatment guidance. Crit. Rev. Oncol. Hematol. 2025, 212, 104807. [Google Scholar] [CrossRef]
- Valle, J.W.; Palmer, D.; Jackson, R.; Cox, T.; Neoptolemos, J.P.; Ghaneh, P.; Rawcliffe, C.L.; Bassi, C.; Stocken, D.D.; Cunningham, D.; et al. Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: Ongoing lessons from the ESPAC-3 study. J. Clin. Oncol. 2014, 32, 504–512. [Google Scholar] [CrossRef]
- Ceelen, W.; Demuytere, J.; de Hingh, I. Hyperthermic Intraperitoneal Chemotherapy: A Critical Review. Cancers 2021, 13, 3114. [Google Scholar] [CrossRef]
- Sugarbaker, P.H.; Stuart, O.A. Intraperitoneal gemcitabine chemotherapy is safe for patients with resected pancreatic cancer: Final clinical and pharmacologic data from a phase II protocol and recommended future directions. J. Gastrointest. Oncol. 2021, 12, S99–S109. [Google Scholar] [CrossRef] [PubMed]
- Tentes, A.K. Hyperthermic intra-operative intraperitoneal chemotherapy as an adjuvant to pancreatic cancer resection. J. Gastrointest. Oncol. 2021, 12, S91–S98. [Google Scholar] [CrossRef]
- Kasi, A.; Diaz, F.; Al-Rajabi, R.M.d.T.; Baranda, J.C.; Carroll, E.; Belcher, C.; Olyaee, M.; Rastogi, A.; Schmitt, T.; Kumer, S.; et al. Targeting minimal residual disease (MRD) in resected RAS mutated pancreatic cancer with vaccine TG01/QS-21 +/- PD-1 inhibitor, balstilimab: A randomized phase II study (TESLA). J. Clin. Oncol. 2023, 41, TPS4205. [Google Scholar] [CrossRef]
- Pinson, J.; Henriques, J.; Beaussire, L.; Sarafan-Vasseur, N.; Sa Cunha, A.; Bachet, J.B.; Vernerey, D.; Di Fiore, F.; Schwarz, L.; group, P.P. New Biomarkers to Define a Biological Borderline Situation for Pancreatic Adenocarcinoma: Results of an Ancillary Study of the PANACHE01-PRODIGE48 Trial. Ann. Surg. 2024, 280, 734–744. [Google Scholar] [CrossRef]
- O’Kane, G.M.; Grunwald, B.T.; Jang, G.H.; Masoomian, M.; Picardo, S.; Grant, R.C.; Denroche, R.E.; Zhang, A.; Wang, Y.; Lam, B.; et al. GATA6 Expression Distinguishes Classical and Basal-like Subtypes in Advanced Pancreatic Cancer. Clin. Cancer Res. 2020, 26, 4901–4910. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Naiki-Ito, A.; Naitoh, I.; Hayashi, K.; Nakazawa, T.; Shimizu, S.; Nishi, Y.; Okumura, F.; Inoue, T.; Takada, H.; et al. The absence of class III beta-tubulin is predictive of a favorable response to nab-paclitaxel and gemcitabine in patients with unresectable pancreatic ductal adenocarcinoma. Hum. Pathol. 2018, 74, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Sahin, T.K.; Isik, A.; Guven, D.C.; Ceylan, F.; Babaoglu, B.; Akyol, A.; Yalcin, S.; Dizdar, O. The prognostic and predictive role of class III beta-Tubulin and hENT1 expression in patients with advanced pancreatic ductal adenocarcinoma. Pancreatology 2024, 24, 279–288. [Google Scholar] [CrossRef]
- Theocharopoulos, C.; Davakis, S.; Ziogas, D.C.; Theocharopoulos, A.; Foteinou, D.; Mylonakis, A.; Katsaros, I.; Gogas, H.; Charalabopoulos, A. Deep Learning for Image Analysis in the Diagnosis and Management of Esophageal Cancer. Cancers 2024, 16, 3285. [Google Scholar] [CrossRef]
- Alum, E.U.; Ugwu, O.P.-C. Artificial intelligence in personalized medicine: Transforming diagnosis and treatment. Discov. Appl. Sci. 2025, 7, 193. [Google Scholar] [CrossRef]
- Dixon, D.; Sattar, H.; Moros, N.; Kesireddy, S.R.; Ahsan, H.; Lakkimsetti, M.; Fatima, M.; Doshi, D.; Sadhu, K.; Junaid Hassan, M. Unveiling the Influence of AI Predictive Analytics on Patient Outcomes: A Comprehensive Narrative Review. Cureus 2024, 16, e59954. [Google Scholar] [CrossRef]
- Abbosh, C.; Birkbak, N.J.; Swanton, C. Early stage NSCLC—Challenges to implementing ctDNA-based screening and MRD detection. Nat. Rev. Clin. Oncol. 2018, 15, 577–586. [Google Scholar] [CrossRef]
- Shin, S.H.; Cha, S.; Lee, H.Y.; Shin, S.H.; Kim, Y.J.; Park, D.; Han, K.Y.; Oh, Y.J.; Park, W.Y.; Ahn, M.J.; et al. Machine learning model for circulating tumor DNA detection in chronic obstructive pulmonary disease patients with lung cancer. Transl. Lung Cancer Res. 2024, 13, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Widman, A.J.; Shah, M.; Frydendahl, A.; Halmos, D.; Khamnei, C.C.; Ogaard, N.; Rajagopalan, S.; Arora, A.; Deshpande, A.; Hooper, W.F.; et al. Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment. Nat. Med. 2024, 30, 1655–1666. [Google Scholar] [CrossRef]
- Shen, C.; Rawal, S.; Brown, R.; Zhou, H.; Agarwal, A.; Watson, M.A.; Cote, R.J.; Yang, C. Automatic detection of circulating tumor cells and cancer associated fibroblasts using deep learning. Sci. Rep. 2023, 13, 5708. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Nie, Y.; Wang, Y.; He, W.; Wang, G.; Li, Z.; Chen, J.; Xu, W. CTCNet: A fine-grained classification network for fluorescence images of circulating tumor cells. Med. Biol. Eng. Comput. 2025, 63, 1661–1682. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Z.; Hao, T.; Ye, M.; Li, J.; Zhang, Q.; Guo, Z. Deep Learning-Assisted Assessing of Single Circulating Tumor Cell Viability via Cellular Morphology. Anal. Chem. 2024, 96, 16777–16782. [Google Scholar] [CrossRef] [PubMed]

| National 06287749. | Study Type | Status | Primary Endpoint |
|---|---|---|---|
| NCT06287749 (FRENCH.MRD.PDAC) | Observational | Recruiting | Association between DFS and ctDNA status after curative-intent surgery and adjuvant chemotherapy |
| NCT06102889 (GUIDEMRD) | Observational | Enrolling by invitation | Association between DFS and ctDNA status after curative-intent surgery and adjuvant chemotherapy |
| NCT05788744 (CIRCPAC) | Interventional | Recruiting |
|
| NCT05059444 (ORACLE) | Observational | Recruiting | Association between distant recurrence free interval and postoperative ctDNA status |
| NCT06867146 | Interventional | Active, not recruiting | Association of DFS with MRD |
| NCT05638698 (TESLA) | Interventional | Active, not recruiting | 6-month molecular disease control rate, as defined by ctDNA stability, decrease or clearance in patient with ctDNA+ resected PDAC with no evidence of disease on imaging, treated with TG01, QS-21 or Balstilimab |
| NCT06966440 (ADAPT-MRD) | Interventional | Active | Impact of ct-DNA-guided adjuvant therapy on DFS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Theocharopoulos, C.; Machairas, N.; Ziogas, I.A.; Mungo, B.; Del Chiaro, M.; Glatzounis, G.K.; Schulick, R.; Sotiropoulos, G.C. Personalizing Treatment for Pancreatic Ductal Adenocarcinoma: The Emerging Role of Minimal Residual Disease in Perioperative Decision-Making. Cancers 2026, 18, 94. https://doi.org/10.3390/cancers18010094
Theocharopoulos C, Machairas N, Ziogas IA, Mungo B, Del Chiaro M, Glatzounis GK, Schulick R, Sotiropoulos GC. Personalizing Treatment for Pancreatic Ductal Adenocarcinoma: The Emerging Role of Minimal Residual Disease in Perioperative Decision-Making. Cancers. 2026; 18(1):94. https://doi.org/10.3390/cancers18010094
Chicago/Turabian StyleTheocharopoulos, Charalampos, Nikolaos Machairas, Ioannis A. Ziogas, Benedetto Mungo, Marco Del Chiaro, Georgios K. Glatzounis, Richard Schulick, and Georgios C. Sotiropoulos. 2026. "Personalizing Treatment for Pancreatic Ductal Adenocarcinoma: The Emerging Role of Minimal Residual Disease in Perioperative Decision-Making" Cancers 18, no. 1: 94. https://doi.org/10.3390/cancers18010094
APA StyleTheocharopoulos, C., Machairas, N., Ziogas, I. A., Mungo, B., Del Chiaro, M., Glatzounis, G. K., Schulick, R., & Sotiropoulos, G. C. (2026). Personalizing Treatment for Pancreatic Ductal Adenocarcinoma: The Emerging Role of Minimal Residual Disease in Perioperative Decision-Making. Cancers, 18(1), 94. https://doi.org/10.3390/cancers18010094

