Tuberculosis and Lung Cancer: Insights from a Narrative Review
Simple Summary
Abstract
1. Introduction
Methods
2. Bidirectional Epidemiology: TB and Cancer Risk
| Ref. | Study | Design/Population | Key Findings (TB → LC) | Notes |
|---|---|---|---|---|
| [8] | Vento & Lanzafame, 2011 | Review | TB-driven chronic inflammation can promote carcinogenesis. | Mechanistic review; no numerical data. |
| [8] | Sisti & Boffetta, 2012 | Risk factors in never-smokers | Prior TB listed as contributor to LC in never-smokers. | TB considered among minor but relevant risk factors. |
| [12] | Cabrera-Sánchez et al., 2022 | Systematic review + meta-analysis | LC risk is higher after TB; pooled HR/OR ~1.5–1.7. | Most comprehensive quantitative synthesis. |
| [13] | Bhowmik et al., 2022 | Literature review | Consistently higher LC incidence in TB patients across studies. | Summarizes last decade’s TB—LC data. |
| [14] | Park et al., 2022 | COPD cohort with/without TB | Prior TB raises LC incidence compared to COPD-only controls. | TB identified as independent LC risk factor. |
| [6] | Safiri et al., 2021 | Global burden analysis | TB included among global LC-attributable risk factors. | Provides population-attributable estimates. |
| Ref. | Study | Design/Population | Key Findings (LC → TB) | Notes |
|---|---|---|---|---|
| [8] | Vento & Lanzafame, 2011 | Review | LC increases TB reactivation risk due to immunosuppression. | Emphasizes bidirectional nature of relationship. |
| [13] | Bhowmik et al., 2022 | Literature review | LC patients lowers immunity, which results in higher TB incidence. | Summarizes chemotherapy, RT, malnutrition effects. |
| [20] | Choi et al., 2023 | LC post-radiotherapy cohort | Chronic infections after RT; TB appears among reported infections. | TB not dominant but clinically relevant. |
| [21] | Wang et al., 2025 | LC on immune checkpoint inhibitors | Serious infections raises under ICI therapy; TB a recognized risk. | ICI-related immune shifts may enable TB. |
| [7] | Sharma & Khubchandani, 2024 | Global LC burden analysis | Infectious comorbidities, including TB, cluster in high-TB regions. | Contextual global epidemiology. |
3. Pathophysiological and Immunological Links
4. Clinical and Diagnostic Overlap
5. Therapeutic Interactions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| TB | Tuberculosis |
| LC | Lung Cancer |
| NCDs | Non-Communicable Diseases |
| TBL | Tracheal, Bronchus, and Lung |
| DALYs | Disability-Adjusted Life Years |
| COPD | Chronic Obstructive Pulmonary Disease |
| PAF | Population Attributable Fraction |
| IRRs | Incidence Rate Ratios |
| CPI | Chronic Pulmonary Infection |
| ICIs | Immune Checkpoint Inhibitors |
| Mtb | Mycobacterium tuberculosis |
| TME | Tumor Microenvironment |
| TNF-α | Necrosis Factor-Alpha |
| IFN-γ | Type II Interferon |
| BCG | Bacille Calmette-Guérin |
| circRNAs | Circular RNAs |
| miRNAs | MicroRNAs |
| LTBI | Latent Tuberculosis Infection |
| TST | Tuberculin Skin Test |
| PTB | Pulmonary Tuberculosis |
| TAMs | Tumor-Associated Macrophages |
References
- Chen, G.-L.; Guo, L.; Yang, S.; Ji, D.-M. Cancer risk in tuberculosis patients in a high endemic area. BMC Cancer 2021, 21, 1–7. [Google Scholar] [CrossRef]
- Ferdosnejad, K.; Zamani, M.S.; Soroush, E.; Fateh, A.; Siadat, S.D.; Tarashi, S. Tuberculosis and lung cancer: Metabolic pathways play a key role. Nucleosides Nucleotides Nucleic Acids 2024, 43, 1262–1281. [Google Scholar] [CrossRef] [PubMed]
- Luczynski, P.; Poulin, P.; Romanowski, K.; Johnston, J.C. Tuberculosis and risk of cancer: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0278661. [Google Scholar] [CrossRef]
- Zhou, W.; Lu, H.; Lin, J.; Zhu, J.; Liang, J.; Xie, Y.; Hu, J.; Su, N. Coexisting Lung Cancer and Pulmonary Tuberculosis: A Comprehensive Review From Incidence to Management. Cancer Rep. 2025, 8, e70213. [Google Scholar] [CrossRef]
- Ho, J.C.-M.; Leung, C.-C. Management of co-existent tuberculosis and lung cancer. Lung Cancer 2018, 122, 83–87. [Google Scholar] [CrossRef]
- Safiri, S.; Sohrabi, M.-R.; Carson-Chahhoud, K.; Bettampadi, D.; Taghizadieh, A.; Almasi-Hashiani, A.; Ashrafi-Asgarabad, A.; Sepidarkish, M.; Eagen, A.; Mansournia, M.-A.; et al. Burden of Tracheal, Bronchus, and Lung Cancer and Its Attributable Risk Factors in 204 Countries and Territories, 1990 to 2019. J. Thorac. Oncol. 2021, 16, 945–959. [Google Scholar] [CrossRef]
- Sharma, R.; Khubchandani, J. Global, Regional, and National Burden of Tracheal, Bronchus, and Lung Cancer in 2022: Evidence from the GLOBOCAN Study. Epidemiologia 2024, 5, 785–795. [Google Scholar] [CrossRef]
- Vento, S.; Lanzafame, M. Tuberculosis and cancer: A complex and dangerous liaison. Lancet Oncol. 2011, 12, 520–522. [Google Scholar] [CrossRef]
- Sisti, J.; Boffetta, P. What proportion of lung cancer in never-smokers can be attributed to known risk factors? Int. J. Cancer 2012, 131, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.Y.; Kim, J.Y.; Lee, H.S.; Lee, S.; Kim, D.; Kim, S.; Hyun, J.H.; Shin, J.I.; Lee, K.H.; Han, S.H.; et al. Pulmonary Tuberculosis and Risk of Lung Cancer: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 765. [Google Scholar] [CrossRef] [PubMed]
- Yau, S.T.Y.; Hung, C.T.; Leung, E.Y.M.; Lee, A.; Yeoh, E.K. The interactions among factors associated with the risk of lung cancer among diabetes patients: A survival tree analysis. npj Prim. Care Respir. Med. 2025, 35, 1–6. [Google Scholar] [CrossRef]
- Cabrera-Sanchez, J.; Cuba, V.; Vega, V.; Van der Stuyft, P.; Otero, L. Lung cancer occurrence after an episode of tuberculosis: A systematic review and meta-analysis. Eur. Respir. Rev. 2022, 31, 220025. [Google Scholar] [CrossRef]
- Bhowmik, S.; Mohanto, N.C.; Sarker, D.; Sorove, A.A. Incidence and Risk of Lung Cancer in Tuberculosis Patients, and Vice Versa: A Literature Review of the Last Decade. BioMed Res. Int. 2022, 2022, 1702819. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Kang, D.; Shin, S.H.; Choi, H.; Jang, S.H.; Lee, C.-H.; Kim, H.; Kwon, O.J.; Rhee, C.K.; Cho, J. Pulmonary Tuberculosis and the Incidence of Lung Cancer among Patients with Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2022, 19, 640–648. [Google Scholar] [CrossRef]
- Mata-Marín, J.A.; Apaez-Iglesias, M.; Cano-Díaz, A.L.; Sánchez-Navarro, J.P.; Fernández-Madinaveitia, D.E.; Barriga-Angulo, G.; Triana-González, S.; Chaparro-Sánchez, A.; Pompa-Mera, E.N.; Gaytán-Martínez, J.E. Prevalence and Risk Factors of Latent Tuberculosis Infection Detected by IGRA in Patients with Immune-Mediated Inflammatory Diseases Before and During Biologic DMARD Therapy (TITAN Study). J. Clin. Med. 2025, 14, 4990. [Google Scholar] [CrossRef]
- Kumar, D.S.; A Ronald, L.; Romanowski, K.; Rose, C.; Shulha, H.P.; Cook, V.J.; Johnston, J.C. Risk of active tuberculosis in migrants diagnosed with cancer: A retrospective cohort study in British Columbia, Canada. BMJ Open 2021, 11, e037827. [Google Scholar] [CrossRef]
- Nanthanangkul, S.; Promthet, S.; Suwanrungruang, K.; Santong, C.; Vatanasapt, P. Incidence of and Risk Factors for Tuberculosis among Cancer Patients in Endemic Area: A Regional Cohort Study. Asian Pac. J. Cancer Prev. 2020, 21, 2715–2721. [Google Scholar] [CrossRef]
- Huang, J.-Y.; Jian, Z.-H.; Nfor, O.N.; Jhang, K.-M.; Ku, W.-Y.; Ko, P.-C.; Jan, S.-R.; Ho, C.-C.; Lung, C.-C.; Pan, H.-H.; et al. The Impact of Coexisting Asthma, Chronic Obstructive Pulmonary Disease and Tuberculosis on Survival in Patients with Lung Squamous Cell Carcinoma. PLoS ONE 2015, 10, e0133367. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.-C.; Ting, W.-Y.; Lee, M.-C.; Huang, S.-F.; Chiu, C.-H.; Lai, S.-L.; Chen, Y.-M.; Shih, J.-F.; Lin, C.-H.; Kao, S.-J.; et al. Latent TB infection in newly diagnosed lung cancer patients – A multicenter prospective observational study. Lung Cancer 2014, 85, 472–478. [Google Scholar] [CrossRef]
- Choi, Y.; Noh, J.M.; Shin, S.H.; Lee, K.; Um, S.-W.; Kim, H.; Pyo, H.; Ahn, Y.C.; Jeong, B.-H. The Incidence and Risk Factors of Chronic Pulmonary Infection after Radiotherapy in Patients with Lung Cancer. Cancer Res. Treat. 2023, 55, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Y.-X.; Hu, W.-P.; Zhang, J. Incidence and risk factors of serious infections occurred in patients with lung cancer following immune checkpoint blockade therapy. BMC Cancer 2025, 25, 307. [Google Scholar] [CrossRef]
- Bickett, T.E.; Karam, S.D. Tuberculosis–Cancer Parallels in Immune Response Regulation. Int. J. Mol. Sci. 2020, 21, 6136. [Google Scholar] [CrossRef]
- Vu, A.; Glassman, I.; Campbell, G.; Yeganyan, S.; Nguyen, J.; Shin, A.; Venketaraman, V. Host Cell Death and Modulation of Immune Response against Mycobacterium tuberculosis Infection. Int. J. Mol. Sci. 2024, 25, 6255. [Google Scholar] [CrossRef]
- Fang, H.; Xiong, Y.; Fu, B.; Wu, H. Targeting alveolar macrophages in tuberculosis: Exploiting trained immunity for novel therapeutic approaches. Int. Immunopharmacol. 2025, 163, 115211. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Q.; Wu, J.; Lu, M.; Wang, J.; Ma, T. The Biological Role of Macrophage in Lung and Its Implications in Lung Cancer Immunotherapy. Adv. Biol. 2024, 8, e2400119. [Google Scholar] [CrossRef]
- Yang, L.; Zhuang, L.; Ye, Z.; Li, L.; Guan, J.; Gong, W. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions. iScience 2023, 26, 107881. [Google Scholar] [CrossRef]
- Jabeen, S.; Ahmed, N.; Rashid, F.; Lal, N.; Kong, F.; Fu, Y.; Zhang, F. Circular RNAs in tuberculosis and lung cancer. Clin. Chim. Acta 2024, 561, 119810. [Google Scholar] [CrossRef]
- Hong, M.; Huang, X.; Zhu, H.; Ma, J.; Li, F. The role of circular RNA in immune response to tuberculosis and its potential as a biomarker and therapeutic target. Front. Immunol. 2025, 16, 1542686. [Google Scholar] [CrossRef]
- Hussen, B.M.; Abdullah, S.R.; Faraj, G.S.H.; Rasul, M.F.; Salihi, A.; Ghafouri-Fard, S.; Taheri, M.; Mokhtari, M. Exosomal circular RNA: A signature for lung cancer progression. Cancer Cell Int. 2022, 22, 378. [Google Scholar] [CrossRef]
- Guan, L.; Hao, Q.; Shi, F.; Gao, B.; Wang, M.; Zhou, X.; Han, T.; Ren, W. Regulation of the tumor immune microenvironment by cancer-derived circular RNAs. Cell Death Dis. 2023, 14, 132. [Google Scholar] [CrossRef]
- Hemati, Z.; Neamati, F.; Khaledi, M.; Gheibihayat, S.M.; Jafarzadeh, L.; Momen-Heravi, M.; Haddadi, M.H.; Sameni, F.; Fathizadeh, H. Circular RNAs and tuberculosis infection. Int. J. Biol. Macromol. 2022, 226, 1218–1225. [Google Scholar] [CrossRef]
- Su, V.Y.-F.; Yen, Y.-F.; Pan, S.-W.; Chuang, P.-H.; Feng, J.-Y.; Chou, K.-T.; Chen, Y.-M.; Chen, T.-J.; Su, W.-J. Latent Tuberculosis Infection and the Risk of Subsequent Cancer. Medicine 2016, 95, e2352. [Google Scholar] [CrossRef]
- Leung, C.Y.; Huang, H.-L.; Rahman, M.; Nomura, S.; Abe, S.K.; Saito, E.; Shibuya, K. Cancer incidence attributable to tuberculosis in 2015: Global, regional, and national estimates. BMC Cancer 2020, 20, 412. [Google Scholar] [CrossRef]
- Cheng, M.P.; Chakra, C.N.A.; Yansouni, C.P.; Cnossen, S.; Shrier, I.; Menzies, D.; Greenaway, C. Risk of Active Tuberculosis in Patients with Cancer: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2017, 64, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, H.W.; O Elmaria, M.; Abdelghany, D.A.; Akl, F.M.; Shehta, M.; Elnagar, R.M.; Farrag, N.S.; Akl, M.F.; Ehab, A. Screening of latent TB infection in patients with recently diagnosed bronchogenic carcinoma. Asian Cardiovasc. Thorac. Ann. 2020, 29, 208–213. [Google Scholar] [CrossRef]
- Mortezazadeh, M.; Karimi, M.; Esfandbod, M.; Mofidi, A.; Hemmati, N.; Kashani, M.; Shirsalimi, N.; Mahmoudi, S.T.S.; Yazdi, E.K. Investigation of the prevalence of latent tuberculosis in cancer patients compared to non-cancer patients: A case-control study. Oncol. Rev. 2024, 18, 1445678. [Google Scholar] [CrossRef]
- Ravimohan, S.; Kornfeld, H.; Weissman, D.; Bisson, G.P. Tuberculosis and lung damage: From epidemiology to pathophysiology. Eur. Respir. Rev. 2018, 27, 170077. [Google Scholar] [CrossRef]
- Chu, Z.-G.; Zhang, Y.; Li, W.-J.; Li, Q.; Zheng, Y.-N.; Lv, F.-J. Primary solid lung cancerous nodules with different sizes: Computed tomography features and their variations. BMC Cancer 2019, 19, 1060. [Google Scholar] [CrossRef]
- Wei, S.; Shi, B.; Zhang, J.; Li, N. Differentiating mass-like tuberculosis from lung cancer based on radiomics and CT features. Cancer Res. 2021, 10, 4454–4463. [Google Scholar] [CrossRef]
- Hammen, I. Tuberculosis mimicking lung cancer. Respir. Med. Case Rep. 2015, 16, 45–47. [Google Scholar] [CrossRef]
- Goyal, A. Every Hot Spot is not Cancer—Pulmonary Tuberculosis Mimicking Lung Cancer in PET-CT. Int. J. Clin. Stud. Med Case Rep. 2023, 25. [Google Scholar] [CrossRef]
- Lang, S.; Sun, J.; Wang, X.; Xiao, Y.; Wang, J.; Zhang, M.; Ao, T.; Wang, J. Asymptomatic pulmonary tuberculosis mimicking lung cancer on imaging: A retrospective study. Exp. Ther. Med. 2017, 14, 2180–2188. [Google Scholar] [CrossRef]
- Sheikhpour, M.; Mirbahari, S.N.; Sadr, M.; Maleki, M.; Arabi, M.; Abolfathi, H. A Comprehensive Study on the Correlation of Treatment, Diagnosis and Epidemiology of Tuberculosis and Lung Cancer. Tanaffos 2023, 22, 7–18. [Google Scholar]
- Tamura, A.; Ikeda, M.; Shimada, M.; Yamane, A. Tuberculosis during lung cancer treatment-A case series. J. Infect. Chemother. 2022, 28, 339–342. [Google Scholar] [CrossRef]
- Wang, H.; Gao, L.; Cai, X.; Li, J.; Lang, Y.; Zheng, R.; Yang, S. Simultaneous Anti-Tuberculosis and Anti-Tumor Treatment with Immune Checkpoint Inhibitors for Co-Existent Pulmonary Tuberculosis and Advanced Lung Cancer. Infect. Drug Resist. 2025, 18, 107–112. [Google Scholar] [CrossRef]
- Fang, C.; He, X.; Tang, F.; Wang, Z.; Pan, C.; Zhang, Q.; Wu, J.; Wang, Q.; Liu, D.; Zhang, Y. Where lung cancer and tuberculosis intersect: Recent advances. Front. Immunol. 2025, 16, 1561719. [Google Scholar] [CrossRef]
- Mini Review: Reactivation of Tuberculosis in Patients with Solid Cancer. Cancer Ther. Oncol. Int. J. 2022, 21, 01–03. [CrossRef]
- Ahmed, M.; Tezera, L.B.; Elkington, P.T.; Leslie, A.J. The paradox of immune checkpoint inhibition re-activating tuberculosis. Eur. Respir. J. 2022, 60, 2102512. [Google Scholar] [CrossRef]
- Chen, H.-W.; Kuo, Y.-W.; Chen, C.-Y.; Chang, C.-H.; Wang, S.-M.; Chien, Y.-C.; Lu, W.-C.; Chen, J.-P.; Chang, C.-Y.; Wei, Y.-F.; et al. Increased Tuberculosis Reactivation Risk in Patients Receiving Immune Checkpoint Inhibitor-Based Therapy. Oncologist 2024, 29, e498–e506. [Google Scholar] [CrossRef]
- Anastasopoulou, A.; Ziogas, D.C.; Samarkos, M.; Kirkwood, J.M.; Gogas, H. Reactivation of tuberculosis in cancer patients following administration of immune checkpoint inhibitors: Current evidence and clinical practice recommendations. J. Immunother. Cancer 2019, 7, 239. [Google Scholar] [CrossRef]
- Lin, C.; Xu, G.; Gao, S.; Feng, T.; Li, S. Tuberculosis infection following immune checkpoint inhibitor treatment for advanced cancer: A case report and literature review. Front. Immunol. 2023, 14, 1162190. [Google Scholar] [CrossRef]
- Yew, W. Clinically Significant Interactions with Drugs Used in the Treatment of Tuberculosis. Drug Saf. 2002, 25, 111–133. [Google Scholar] [CrossRef]
- Lee, H.-S.; Wei, Y.-F.; Shu, C.-C. Influence of Rifamycin on Survival in Patients with Concomitant Lung Cancer and Pulmonary Tuberculosis. Biomedicines 2023, 11, 3130. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Raymond, K. Roles of rifampicin in drug-drug interactions: Underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann. Clin. Microbiol. Antimicrob. 2006, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.R. Pharmacokinetic Interaction of Rifampicin with Oral Versus Intravenous Anticancer Drugs: Challenges, Dilemmas and Paradoxical Effects Due to Multiple Mechanisms. Drugs R&D 2016, 16, 141–148. [Google Scholar] [CrossRef] [PubMed]
| Feature | Tuberculosis (TB) | Lung Cancer (LC) | Notes/Overlap |
|---|---|---|---|
| CT Appearance | Heterogeneous: cavitation, fibrosis, nodular infiltrates, often combined patterns [37] | Pulmonary nodules: solid or subsolid; features include spiculation, lobulation, vascular convergence, pleural retraction [38] | Both can present as nodules; TB can mimic malignancy |
| Nodule Density | Variable; may have calcification in chronic TB [37] | Solid or subsolid; solid nodules have higher malignant potential [38] | Overlap possible in granulomatous TB |
| Borders/Margins | Often irregular, ill-defined; may have fibrotic strands [37] | Spiculated or lobulated margins suggest malignancy [38] | Irregular TB lesions can resemble spiculated nodules |
| Lobe Involvement | Upper lobe predominance common; may involve multiple lobes [37] | Variable; can be peripheral or central; usually localized [38] | Both may be single or multiple lesions |
| Enhancement/Contrast Pattern | Variable enhancement; subjective assessment [39] | Often heterogeneous enhancement in malignant nodules [39] | Imaging alone may not differentiate reliably |
| Mediastinal Lymphadenopathy | Common in TB; may have central necrosis [40] | May occur in LC; often associated with nodal metastases [40] | PET uptake can be high in both |
| Functional Impact | Pulmonary function may range from normal to severely reduced depending on fibrosis or cavitation [37] | Usually minimal unless large or obstructive tumor [38] | TB causes more heterogeneous functional impairment |
| PET/FDG Uptake | High metabolic activity; tuberculoma and active lesions show uptake [38,40] | High metabolic activity; FDG uptake correlates with malignancy [40,41] | Both can be false positives; PET cannot reliably distinguish TB from LC |
| Diagnostic Consideration | Mimics malignancy; often requires microbiological confirmation [40] | Requires biopsy and histopathology for definitive diagnosis [36] | Misdiagnosis common; imaging alone insufficient |
| Key Challenge | Variable presentation; “diagnostic chameleon” [40] | Small lesions may lack classic malignant features [38] | Definitive differentiation often requires tissue confirmation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cotea, A.-A.; Constantin, A.-A.; Mihaltan, F.-D. Tuberculosis and Lung Cancer: Insights from a Narrative Review. Cancers 2026, 18, 83. https://doi.org/10.3390/cancers18010083
Cotea A-A, Constantin A-A, Mihaltan F-D. Tuberculosis and Lung Cancer: Insights from a Narrative Review. Cancers. 2026; 18(1):83. https://doi.org/10.3390/cancers18010083
Chicago/Turabian StyleCotea, Antonio-Andrei, Ancuta-Alina Constantin, and Florin-Dumitru Mihaltan. 2026. "Tuberculosis and Lung Cancer: Insights from a Narrative Review" Cancers 18, no. 1: 83. https://doi.org/10.3390/cancers18010083
APA StyleCotea, A.-A., Constantin, A.-A., & Mihaltan, F.-D. (2026). Tuberculosis and Lung Cancer: Insights from a Narrative Review. Cancers, 18(1), 83. https://doi.org/10.3390/cancers18010083

