Prostate Cancer Disparities Between Public and Private Healthcare Patients in Tasmania, a Regional State of Australia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Prostate Cancer Outcomes Registry-Tasmania (PCOR-TAS)
2.2. Data Extraction
2.3. Variable Categorisation
- Active Surveillance (AS).
- Chemical Androgen Deprivation Therapy (ADT).
- Surgical ADT.
- Brachytherapy.
- Brachytherapy + ADT (Chemical).
- Chemotherapy.
- Chemotherapy + ADT (Chemical).
- Focal Gland Ablation Therapy.
- Radical Prostatectomy (RP).
- RP + ADT (Chemical).
- RP + Chemotherapy + ADT (Chemical).
- Watchful Waiting (WW).
- WW/AS Unspecified.
- Missing.
2.4. Statistical Analyses
3. Results

4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lardas, M.; Liew, M.; van den Bergh, R.C.; De Santis, M.; Bellmunt, J.; Van den Broeck, T.; Cornford, P.; Cumberbatch, M.G.; Fossati, N.; Gross, T.; et al. Quality of Life Outcomes after Primary Treatment for Clinically Localised Prostate Cancer: A Systematic Review. Eur. Urol. 2017, 72, 869–885. [Google Scholar] [CrossRef]
- Li, K.D.; Carlisle, M.N.; Jarosek, S.; Patel, H.V.; Faris, A.; Elliott, S.P.; Cooperberg, M.R.; Carroll, P.R.; Breyer, B.N. Evolving Risk of Urinary Adverse Events Across Localized Prostate Cancer Treatments: A Propensity-weighted Analysis of Surveillance, Epidemiology and End Results-Medicare Data. Eur. Urol. 2026, 89, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Moris, L.; Cumberbatch, M.G.; Van den Broeck, T.; Gandaglia, G.; Fossati, N.; Kelly, B.; Pal, R.; Briers, E.; Cornford, P.; De Santis, M.; et al. Benefits and Risks of Primary Treatments for High-risk Localized and Locally Advanced Prostate Cancer: An International Multidisciplinary Systematic Review. Eur. Urol. 2020, 77, 614–627. [Google Scholar] [CrossRef]
- Ajjawi, I.; Loeb, S.; Cooperberg, M.R.; Catalona, W.J.; Gross, C.P.; Ma, X.; Leapman, M.S. Active Surveillance or Watchful Waiting for Intermediate-Risk Prostate Cancer, 2010–2020. JAMA 2024, 332, 2033–2036. [Google Scholar] [CrossRef]
- Klotz, L. Active Surveillance for Prostate Cancer. Urol. Clin. N. Am. 2026, 53, 99–113. [Google Scholar] [CrossRef]
- Majumdar, J.R.; Flaherty, K.R.; Schofield, E.; Carlsson, S.V.; Shaffer, K.M.; Ehdaie, B.; Diefenbach, M.A.; Nelson, C.J. The interplay and influence of anxiety and depression among men with early-stage prostate cancer and their close allies. Support. Care Cancer 2025, 33, 1032. [Google Scholar] [CrossRef] [PubMed]
- Te Marvelde, L.; Milne, R.L.; Hornby, C.J.; Chapman, A.B.; Giles, G.G.; Haines, I.E. Differences in treatment choices for localised prostate cancer diagnosed in private and public health services. Med. J. Aust. 2020, 213, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Health and Welfare. Cancer Data in Australia. 2024. Available online: https://www.aihw.gov.au/reports/cancer/cancer-data-in-australia/contents/state-and-territory (accessed on 1 November 2025).
- Foley, G.R.; Blizzard, C.L.; Stokes, B.; Skala, M.; Redwig, F.; Dickinson, J.L.; FitzGerald, L.M. Urban-rural prostate cancer disparities in a regional state of Australia. Sci. Rep. 2022, 12, 3022. [Google Scholar] [CrossRef]
- Evans, S.M.; Nag, N.; Roder, D.; Brooks, A.; Millar, J.L.; Moretti, K.L.; Pryor, D.; Skala, M.; McNeil, J.J. Development of an International Prostate Cancer Outcomes Registry. BJU Int. 2016, 117, 60–67. [Google Scholar] [CrossRef]
- Mohler, J.; Bahnson, R.R.; Boston, B.; Busby, J.E.; D’Amico, A.; Eastham, J.A.; Enke, C.A.; George, D.; Horwitz, E.M.; Huben, R.P.; et al. NCCN clinical practice guidelines in oncology: Prostate cancer. J. Natl. Compr. Cancer Netw. 2010, 8, 162–200. [Google Scholar] [CrossRef]
- Pepdjonovic, L.; Tan, G.H.; Huang, S.; Mann, S.; Frydenberg, M.; Moon, D.; Hanegbi, U.; Landau, A.; Snow, R.; Grummet, J. Zero hospital admissions for infection after 577 transperineal prostate biopsies using single-dose cephazolin prophylaxis. World J. Urol. 2017, 35, 1199–1203. [Google Scholar] [CrossRef]
- Ber, Y.; Segal, N.; Tamir, S.; Benjaminov, O.; Yakimov, M.; Sela, S.; Halstauch, D.; Baniel, J.; Kedar, D.; Margel, D. A noninferiority within-person study comparing the accuracy of transperineal to transrectal MRI-US fusion biopsy for prostate-cancer detection. Prostate Cancer Prostatic Dis. 2020, 23, 449–456. [Google Scholar] [CrossRef]
- Emiliozzi, P.; Corsetti, A.; Tassi, B.; Federico, G.; Martini, M.; Pansadoro, V. Best approach for prostate cancer detection: A prospective study on transperineal versus transrectal six-core prostate biopsy. Urology 2003, 61, 961–966. [Google Scholar] [CrossRef]
- Mian, B.M.; Feustel, P.J.; Aziz, A.; Kaufman, R.P., Jr.; Bernstein, A.; Avulova, S.; Fisher, H.A.G. Complications Following Transrectal and Transperineal Prostate Biopsy: Results of the ProBE-PC Randomized Clinical Trial. J. Urol. 2024, 211, 205–213. [Google Scholar] [CrossRef]
- Ploussard, G.; Barret, E.; Fiard, G.; Lenfant, L.; Malavaud, B.; Giannarini, G.; Almeras, C.; Aziza, R.; Renard-Penna, R.; Descotes, J.L.; et al. Transperineal Versus Transrectal Magnetic Resonance Imaging-targeted Biopsies for Prostate Cancer Diagnosis: Final Results of the Randomized PERFECT trial (CCAFU-PR1). Eur. Urol. Oncol. 2024, 7, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.C.; Assel, M.; Allaf, M.E.; Ehdaie, B.; Vickers, A.J.; Cohen, A.J.; Ristau, B.T.; Green, D.A.; Han, M.; Rezaee, M.E.; et al. Transperineal Versus Transrectal Magnetic Resonance Imaging-targeted and Systematic Prostate Biopsy to Prevent Infectious Complications: The PREVENT Randomized Trial. Eur. Urol. 2024, 86, 61–68. [Google Scholar] [CrossRef]
- Mian, B.M.; Feustel, P.J.; Aziz, A.; Kaufman, R.P., Jr.; Bernstein, A.; Fisher, H.A.G. Clinically Significant Prostate Cancer Detection Following Transrectal and Transperineal Biopsy: Results of the Prostate Biopsy Efficacy and Complications Randomized Clinical Trial. J. Urol. 2024, 212, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.M.; Millar, J.L.; Davis, I.D.; Murphy, D.G.; Bolton, D.M.; Giles, G.G.; Frydenberg, M.; Andrianopoulos, N.; Wood, J.M.; Frauman, A.G.; et al. Patterns of care for men diagnosed with prostate cancer in Victoria from 2008 to 2011. Med. J. Aust. 2013, 198, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Begashaw, K.; Evans, M.; Earnest, A.; Evans, S.M.; Millar, J.L.; Murphy, D.G.; Moon, D. Patterns of care and outcomes for men diagnosed with prostate cancer in Victoria: An update. ANZ J. Surg. 2018, 88, 1037–1042. [Google Scholar] [CrossRef]
- Yap, M.L.; O’Connell, D.L.; Goldsbury, D.E.; Weber, M.F.; Smith, D.P.; Barton, M.B. Patterns of care for men with prostate cancer: The 45 and Up Study. Med. J. Aust. 2021, 214, 271–278. [Google Scholar] [CrossRef]
- Dinan, M.A.; Robinson, T.J.; Zagar, T.M.; Scales, C.D., Jr.; Curtis, L.H.; Reed, S.D.; Lee, W.R.; Schulman, K.A. Changes in initial treatment for prostate cancer among Medicare beneficiaries, 1999-2007. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e781–786. [Google Scholar] [CrossRef]
- Beckmann, K.; Pinnock, C.B.; Tamblyn, D.J.; Kopsaftis, T.; Stapleton, A.M.F.; Roder, D.M. Clinical and socio-demographic profile of an Australian multi-institutional prostate cancer cohort. Asia-Pac. J. Clin. Oncol. 2009, 5, 247–256. [Google Scholar] [CrossRef]
- Donovan, J.L.; Hamdy, F.C.; Lane, J.A.; Mason, M.; Metcalfe, C.; Walsh, E.; Blazeby, J.M.; Peters, T.J.; Holding, P.; Bonnington, S. Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2016, 375, 1425–1437. [Google Scholar] [CrossRef] [PubMed]
- Ralph, N.; Ng, S.K.; Zajdlewicz, L.; Lepore, S.J.; Heathcote, P.; Kneebone, A.; Dunn, J.C.; Chambers, S.K. Ten-year quality of life outcomes in men with prostate cancer. Psycho-Oncology 2020, 29, 444–449. [Google Scholar] [CrossRef]
- Mazariego, C.G.; Egger, S.; King, M.T.; Juraskova, I.; Woo, H.; Berry, M.; Armstrong, B.K.; Smith, D.P. Fifteen year quality of life outcomes in men with localised prostate cancer: Population based Australian prospective study. BMJ 2020, 371, m3503. [Google Scholar] [CrossRef]
- Resnick, M.J.; Koyama, T.; Fan, K.H.; Albertsen, P.C.; Goodman, M.; Hamilton, A.S.; Hoffman, R.M.; Potosky, A.L.; Stanford, J.L.; Stroup, A.M.; et al. Long-term functional outcomes after treatment for localized prostate cancer. N. Engl. J. Med. 2013, 368, 436–445. [Google Scholar]
- Johansson, E.; Steineck, G.; Holmberg, L.; Johansson, J.E.; Nyberg, T.; Ruutu, M.; Bill-Axelson, A. Long-term quality-of-life outcomes after radical prostatectomy or watchful waiting: The Scandinavian Prostate Cancer Group-4 randomised trial. Lancet Oncol. 2011, 12, 891–899. [Google Scholar] [CrossRef]
- Kerleau, C.; Guizard, A.-V.; Daubisse-Marliac, L.; Heutte, N.; Mercier, M.; Grosclaude, P.; Joly, F.; Woronoff, A.-S.; Trétarre, B.; Delafosse, P.; et al. Long-term quality of life among localised prostate cancer survivors: QALIPRO population-based study. Eur. J. Cancer 2016, 63, 143–153. [Google Scholar] [CrossRef] [PubMed]
- King, M.T.; Viney, R.; Smith, D.P.; Hossain, I.; Street, D.; Savage, E.; Fowler, S.; Berry, M.P.; Stockler, M.; Cozzi, P.; et al. Survival gains needed to offset persistent adverse treatment effects in localised prostate cancer. Br. J. Cancer 2012, 106, 638–645. [Google Scholar] [CrossRef] [PubMed]
| Public, % (n) | Private, % (n) | p | |||
|---|---|---|---|---|---|
| Included | 31.7% | (690) | 68.3% | (1490) | |
| Age at Diagnosis | 0.0968 | ||||
| <60 | 18.7% | (129) | 17.3% | (257) | |
| 60–64 | 17.8% | (123) | 18.7% | (278) | |
| 65–69 | 25.69% | (179) | 24.2% | (360) | |
| 70/74 | 21.0% | (145) | 18.7% | (279) | |
| ≥75 | 16.5% | (114) | 21.2% | (316) | |
| Age at Diagnosis (Median (IQR)) | 67.7 | (62.0–72.5) | 68.1 | (62.5–73.8) | 0.036 |
| SEIFA Quintile | <0.001 | ||||
| 1 (Most Disadvantaged) | 19.3% | (133) | 10.9% | (163) | |
| 2 | 32.8% | (226) | 22.0% | (327) | |
| 3 | 16.4% | (113) | 13.8% | (205) | |
| 4 | 20.1% | (139) | 24.7% | (368) | |
| 5 (Most Advantaged) | 10.6% | (73) | 28.2% | (420) | |
| Missing | 0.9% | (6) | 0.5% | (7) | |
| Residence | <0.001 | ||||
| Inner Regional | 53.0% | (366) | 66.8% | (996) | |
| Outer Regional/Remote | 46.1% | (318) | 32.7% | (487) | |
| Missing | 0.9% | (6) | 0.5% | (7) | |
| Method of Diagnosis | <0.001 | ||||
| TRUS | 32.5% | (224) | 11.5% | (171) | |
| TURP | 10.1% | (70) | 14.0% | (208) | |
| TP Biopsy | 55.4% | (382) | 73.6% | (1096) | |
| Other | 2.0% | (14) | 1.0% | (15) | |
| Diagnostic PSA (ng/mL) | <0.001 | ||||
| <4 | 6.4% | (44) | 13.0% | (193) | |
| 4.01–10 | 46.2% | (319) | 56.7% | (845) | |
| 10.01–20 | 21.5% | (148) | 16.6% | (247) | |
| >20.01 | 16.2% | (112) | 7.3% | (109) | |
| Missing | 9.7% | (67) | 6.4% | (96) | |
| Gleason Score | <0.001 | ||||
| <7 | 31.0% | (214) | 55.12% | (823) | |
| 7 (3 + 4) | 27.0% | (186) | 23.4% | (349) | |
| 7 (4 + 3) | 16.1% | (111) | 9.3% | (138) | |
| 8 | 12.5% | (86) | 5.4% | (80) | |
| >8 | 12.8% | (88) | 6.4% | (95) | |
| Missing | 0.7% | (5) | 0.3% | (5) | |
| Disease Risk Category | <0.001 | ||||
| Low | 18.1% | (125) | 39.1% | (582) | |
| Intermediate | 40.3% | (278) | 37.5% | (559) | |
| High | 15.5% | (107) | 9.5% | (141) | |
| Very High | 2.0% | (14) | 0.9% | (14) | |
| Metastatic | 16.7% | (115) | 6.9% | (103) | |
| Missing | 7.4% | (51) | 6.1% | (91) | |
| Primary Treatment | <0.001 | ||||
| Active Surveillance | 29.6% | (204) | 52.9% | (788) | |
| Active Treatment | 68.3% | (471) | 45.5% | (678) | |
| Watchful Waiting | 1.6% | (11) | 0.7% | (10) | |
| Unspecified WW/AS | 0.6% | (4) | 0.9% | (13) | |
| Missing | 0% | (0) | 0.1% | (1) | |
| Days to Active Treatment (Median (IQR)) | 119 | (79–167) | 73 | (52–114) | <0.001 |
| Unadjusted, PR (95% CI) | Adjusted *, PR (95% CI) | Adjusted †, PR (95% CI) | Adjusted ‡, PR (95% CI) | |||||
|---|---|---|---|---|---|---|---|---|
| Age at Diagnosis | ||||||||
| <60 | 1.08 | (0.90–1.31) | ||||||
| 60–64 | 0.96 | (0.79–1.16) | ||||||
| 65–69 | n.a. | |||||||
| 70–74 | 1.12 | (0.94–1.34) | ||||||
| ≥75 | 0.78 | (0.64–0.95) | ||||||
| SEIFA Quintile | ||||||||
| 1 (Most Disadvantaged) | 1.77 | (1.43–2.18) | 1.77 | (1.43–2.18) | ||||
| 2 | 1.50 | (1.30–1.73) | 1.50 | (1.30–1.73) | ||||
| 3 | n.a. | n.a. | ||||||
| 4 | 0.82 | (0.69–1.97) | 0.82 | (0.69–0.97) | ||||
| 5 (Most Advantaged) | 0.38 | (0.30–0.48) | 0.38 | (0.30–0.48) | ||||
| Residence | ||||||||
| Inner Regional | n.a. | n.a. | n.a. | |||||
| Outer Regional/Remote | 1.41 | (1.28–1.56) | 1.41 | (1.28–1.56) | 1.25 | (1.19–1.31) | ||
| Method of Diagnosis | ||||||||
| TRUS | 2.83 | (2.37–3.38) | 2.78 | (2.33–3.32) | 2.54 | (2.06–3.12) | ||
| TURP | n.a. | n.a. | n.a. | |||||
| TP Biopsy | 0.75 | (0.70–0.81) | 0.74 | (0.69–0.80) | 0.79 | (0.73–0.86) | ||
| Other | 2.02 | (0.98–4.15) | 2.28 | (1.13–4.59) | 2.04 | (0.87–4.79) | ||
| Diagnostic PSA (ng/mL) | ||||||||
| <4 | n.a. | n.a. | n.a. | |||||
| 4.01–10 | 0.84 | (0.77–0.92) | 0.92 | (0.84–1.01) | 0.88 | (0.79–0.98) | ||
| 10.01–20 | 1.34 | (1.12–1.61) | 1.15 | (0.94–1.40) | 0.99 | (0.75–1.26) | ||
| >20.01 | 2.30 | (1.80–2.94) | 1.76 | (1.35–2.31) | 2.45 | (1.74–3.44) | ||
| Gleason Score | ||||||||
| <7 | 0.56 | (0.50–0.64) | 0.56 | (0.50–0.63) | 0.57 | (0.50–0.65) | ||
| 7 (3 + 4) | n.a. | n.a. | n.a. | |||||
| 7 (4 + 3) | 1.74 | (1.38–2.20) | 1.74 | (1.38–2.20) | 1.70 | (1.31–2.20) | ||
| 8 | 2.33 | (1.74–3.12) | 2.34 | (1.76–3.11) | 2.13 | (1.54–2.95) | ||
| >8 | 2.01 | (1.52–2.65) | 2.03 | (1.57–2.63) | 2.45 | (1.82–3.31) | ||
| Disease Risk Category | ||||||||
| Low | 0.47 | (0.40–0.56) | 0.47 | (0.40–0.56) | 0.47 | (0.39–0.55) | ||
| Intermediate | n.a. | n.a. | n.a. | |||||
| High | 1.66 | (1.32–2.10) | 1.68 | (1.34–2.10) | 1.56 | (1.22–2.00) | ||
| Very High/Metastatic | 2.41 | (1.91–3.04) | 2.46 | (1.97–3.06) | 2.91 | (2.26–3.74) | ||
| Primary Treatment | ||||||||
| WW/AS | n.a. | n.a. | n.a. | n.a. | ||||
| Active | 1.50 | (1.39–1.62) | 1.49 | (1.39–1.61) | 1.25 | (1.19–1.30) | 1.07 | (1.03–1.11) |
| Treatment | Public, % (n) | Private, % (n) | Missing Institution Data, (n) | Total, % (n) | ||||
|---|---|---|---|---|---|---|---|---|
| Active Surveillance | 29.6% | (204) | 52.9% | (788) | 6.8% | (20) | 40.9% | (1012) |
| ADT (Chemical) | 15.2% | (105) | 8.9% | (132) | 0.3% | (1) | 9.6% | (238) |
| ADT (Surgical) | 0% | (0) | 0.3% | (4) | 0% | (0) | 0.2% | (4) |
| Brachytherapy | 1.5% | (10) | 2.1% | (31) | 1.4% | (4) | 1.8% | (45) |
| Brachytherapy + ADT (Chemical) | 0.4% | (3) | 0.1% | (2) | 0% | (0) | 0.2% | (5) |
| Chemotherapy | 0.3% | (2) | 0.2% | (3) | 0% | (0) | 0.2% | (5) |
| Chemotherapy + ADT (Chemical) | 6.2% | (43) | 1.3% | (20) | 0% | (0) | 2.5% | (63) |
| Focal Gland Ablation Therapy | 0% | (0) | 0% | (0) | 1.0% | (3) | 0.1% | (3) |
| Surgery | 43.0% | (297) | 31.3% | (467) | 48.0% | (142) | 36.6% | (906) |
| Surgery + ADT (Chemical) | 1.3% | (9) | 1.3% | (19) | 1.7% | (5) | 1.3% | (33) |
| Surgery + Chemotherapy + ADT (Chemical) | 0.3% | (2) | 0% | (0) | 0% | (0) | 0.1% | (2) |
| Watchful Waiting | 1.6% | (11) | 0.7% | (10) | 2.4% | (7) | 1.1% | (28) |
| WW/AS Unspecified | 0.6% | (4) | 0.9% | (13) | 0.7% | (2) | 0.8% | (19) |
| Missing | 0.1% | (1) | 0% | (0) | 37.8% | (112) | 4.6% | (113) |
| Total | 690 | 1490 | 296 | 2476 | ||||
| Low-Risk | Intermediate-Risk | High-Risk | Very High-Risk/Metastatic | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Public, % (n) | Private, % (n) | Public, % (n) | Private, % (n) | Public, % (n) | Private, % (n) | Public, % (n) | Private, % (n) | |||||||||
| Surveillance | 82.4% | (103) | 84.4% | (491) | 24.1% | (67) | 39.2% | (219) | 15.0% | (16) | 17.7% | (25) | 0.8% | (1) | 8.6% | (10) |
| Active | 17.6% | (22) | 15.6% | (91) | 75.9% | (211) | 60.6% | (339) | 85.0% | (91) | 82.3% | (116) | 99.2% | (128) | 91.4% | (107) |
| Treatment approach: | ||||||||||||||||
| Active Surveillance | 81.6% | (102) | 82.7% | (481) | 23.0% | (64) | 37.8% | (211) | 10.3% | (11) | 17.0% | (24) | 0.8% | (1) | 8.6% | (10) |
| Watchful Waiting | 0.8% | (1) | 0.7% | (4) | 1.1% | (3) | 0.5% | (3) | 2.8% | (3) | 0.7% | (1) | n.a. | (0) | n.a. | (0) |
| WW/AS Unspecified | n.a. | (0) | 1.0% | (6) | n.a. | (0) | 0.9% | (5) | 1.9% | (2) | n.a. | (0) | n.a. | (0) | n.a. | (0) |
| ADT (Chemical) | n.a. | (0) | 0.3% | (2) | 0.7% | (2) | 3.0% | (17) | 25.2% | (27) | 29.1% | (41) | 56.6% | (73) | 59.0% | (69) |
| ADT (Surgical) | n.a. | (0) | n.a. | (0) | n.a. | (0) | 0.2% | (1) | n.a. | (0) | 0.7% | (1) | n.a. | (0) | 1.7% | (2) |
| Brachytherapy | 3.2% | (4) | 1.4% | (8) | 2.2% | (6) | 3.8% | (21) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) |
| Brachytherapy + ADT (Chemical) | 0.8% | (1) | n.a. | (0) | 0.7% | (2) | 0.4% | (2) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) |
| Chemotherapy | 0.8% | (1) | n.a. | (0) | n.a. | (0) | 0.2% | (1) | n.a. | (0) | 0.7% | (1) | % | (0) | n.a. | (0) |
| Chemotherapy + ADT (Chemical) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) | % | (0) | 17.1% | (20) |
| Focal Gland Ablation Therapy | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) |
| Surgery | 12.0% | (15) | 13.8% | (80) | 70.9% | (197) | 52.8% | (295) | 57.9% | (62) | 46.1% | (65) | 6.2% | (8) | 7.7% | (9) |
| Surgery + ADT (Chemical) | 0.8% | (1) | 0.2% | (1) | 1.4% | (4) | 0.4% | (2) | 1.9% | (2) | 5.7% | (8) | 0.6% | (2) | 6.0% | (7) |
| Surgery + Chemotherapy + ADT (Chemical) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) | n.a. | (0) | 0.8% | (1) | n.a. | (0) |
| Missing | % | (0) | n.a. | (0) | % | (0) | 0.2% | (1) | % | (0) | n.a. | (0) | % | (0) | n.a. | (0) |
| Total | 125 | 582 | 278 | 559 | 107 | 141 | 129 | 117 | ||||||||
| p (Surveillance vs. Active) | 0.5866 | <0.001 | 0.5598 | 0.0032 | ||||||||||||
| Time in Days, Median (IQR) | Additional Time for Individuals Treated in Public Healthcare Facilities (n = 2038) | |||||||
|---|---|---|---|---|---|---|---|---|
| Unadjusted, MD (95% CI) | Adjusted *, MD (95% CI) | Adjusted †, MD (95% CI) | ||||||
| Time to Primary Active Treatment, Low-Risk (days) | ||||||||
| Private | 107 | (61.5–188.5) | n.a. | n.a. | n.a. | |||
| Public | 173.5 | (90–238) | 52.30 | (13.62–90.98) | 51.31 | (14.03–88.58) | 43.46 | (12.19–74.73) |
| (n) | (707) | |||||||
| Time to Primary Active Treatment, Intermediate-Risk (days) | ||||||||
| Private | 83 | (61–119) | n.a. | n.a. | n.a. | |||
| Public | 135 | (105–185) | 50.79 | (40.33–61.26) | 51.91 | (41.22–62.59) | 59.22 | (47.82–70.62) |
| (n) | (837) | |||||||
| Time to Primary Active Treatment, High-Risk (days) | ||||||||
| Private | 62 | (40–86) | n.a. | n.a. | n.a. | |||
| Public | 119 | (85–158) | 47.79 | (29.83–64.35) | 42.22 | (25.03–59.42) | 42.25 | (23.23–61.26) |
| (n) | (248) | |||||||
| Time to Primary Active Treatment, Very High-Risk/Metastatic (days) | ||||||||
| Private | 42.5 | (18.5–72) | n.a. | n.a. | n.a. | |||
| Public | 46.5 | (22–104) | 9.23 | (−5.16–23.62) | 8.66 | (−6.43–23.74) | 10.22 | (−2.43–22.87) |
| (n) | (246) | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Foley, G.R.; Blizzard, C.L.; Skala, M.; Redwig, F.; Roydhouse, J.; Dickinson, J.L.; FitzGerald, L.M. Prostate Cancer Disparities Between Public and Private Healthcare Patients in Tasmania, a Regional State of Australia. Cancers 2026, 18, 79. https://doi.org/10.3390/cancers18010079
Foley GR, Blizzard CL, Skala M, Redwig F, Roydhouse J, Dickinson JL, FitzGerald LM. Prostate Cancer Disparities Between Public and Private Healthcare Patients in Tasmania, a Regional State of Australia. Cancers. 2026; 18(1):79. https://doi.org/10.3390/cancers18010079
Chicago/Turabian StyleFoley, Georgea R., C. Leigh Blizzard, Marketa Skala, Frank Redwig, Jessica Roydhouse, Joanne L. Dickinson, and Liesel M. FitzGerald. 2026. "Prostate Cancer Disparities Between Public and Private Healthcare Patients in Tasmania, a Regional State of Australia" Cancers 18, no. 1: 79. https://doi.org/10.3390/cancers18010079
APA StyleFoley, G. R., Blizzard, C. L., Skala, M., Redwig, F., Roydhouse, J., Dickinson, J. L., & FitzGerald, L. M. (2026). Prostate Cancer Disparities Between Public and Private Healthcare Patients in Tasmania, a Regional State of Australia. Cancers, 18(1), 79. https://doi.org/10.3390/cancers18010079

