Oral Microbiome in Oral Cancer Research from Sampling to Analysis: Strategies, Challenges, and Recommendations
Simple Summary
Abstract
1. Introduction
Review Design/Literature Search Strategy
2. Sample Types and Collection Techniques
2.1. Saliva
2.2. Oral Rinse
2.3. Exfoliation by Swabbing, Brushing, and Scrapping
2.4. Biopsy Tissue Samples
3. Sample Preservation and Storage Condition
3.1. Commercial Stabilization Kits
3.2. Fixative-Type Preservation Media
3.3. Ethanol- and Non-Ethanol-Based Mouth Washes
3.4. Storage Conditions
4. DNA Extraction and Sequencing
4.1. Microbial DNA Extraction
4.2. Sequencing Strategies
4.2.1. 16S rRNA Gene Sequencing Preparation
4.2.2. Shotgun Metagenomic Sequencing Preparation
4.3. Sequencing Platform Selection
5. Data Processing and Analysis
5.1. Quality Control, Denoising, and Clustering
5.2. Reference Database for Taxonomic Assignment
5.3. Normalization and Data Transformation
5.4. Sampling Depth and Filtering
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| OSCC | Oral squamous cell carcinoma |
| OPMD | Oral potentially malignant disorders |
| OL | Oral leukoplakia |
| PVL | Proliferative verrucous leukoplakia |
| FISH | Fluorescence in situ hybridization |
| LDTM | Liquid dental transfer medium |
| ASV | Amplicon sequence variant |
| OTU | Operational taxonomic units |
| HOMD | Human Oral Microbiome Database |
| RDP | Ribosomal Database Project |
| OED | Oral epithelial dysplasia |
References
- Kilian, M.; Chapple, I.L.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M.; Tonetti, M.S.; Wade, W.G.; Zaura, E. The oral microbiome—An update for oral healthcare professionals. Br. Dent. J. 2016, 221, 657–666. [Google Scholar]
- Zaura, E.; Nicu, E.A.; Krom, B.P.; Keijser, B.J. Acquiring and maintaining a normal oral microbiome: Current perspective. Front. Cell. Infect. Microbiol. 2014, 4, 85. [Google Scholar] [CrossRef]
- Di Stefano, M.; Polizzi, A.; Santonocito, S.; Romano, A.; Lombardi, T.; Isola, G. Impact of Oral Microbiome in Periodontal Health and Periodontitis: A Critical Review on Prevention and Treatment. Int. J. Mol. Sci. 2022, 23, 5142. [Google Scholar] [CrossRef]
- Zhang, J.S.; Chu, C.-H.; Yu, O.Y. Oral Microbiome and Dental Caries Development. Dent. J. 2022, 10, 184. [Google Scholar] [CrossRef]
- Lalla, E.; Papapanou, P.N. Diabetes mellitus and periodontitis: A tale of two common interrelated diseases. Nat. Rev. Endocrinol. 2011, 7, 738–748. [Google Scholar] [CrossRef]
- Han, Y.W.; Wang, X. Mobile microbiome: Oral bacteria in extra-oral infections and inflammation. J. Dent. Res. 2013, 92, 485–491. [Google Scholar]
- Tonetti, M.S.; Van Dyke, T.E. working group 1 of the joint EFPAAPw. Periodontitis and atherosclerotic cardiovascular disease: Consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J. Periodontol. 2013, 84, S24–S29. [Google Scholar]
- Mikuls, T.R.; Payne, J.B.; Yu, F.; Thiele, G.M.; Reynolds, R.J.; Cannon, G.W.; Markt, J.; McGowan, D.; Kerr, G.S.; Redman, R.S.; et al. Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014, 66, 1090–1100. [Google Scholar] [CrossRef]
- Scannapieco, F.A. Role of oral bacteria in respiratory infection. J. Periodontol. 1999, 70, 793–802. [Google Scholar] [CrossRef]
- Eun, Y.G.; Lee, J.W.; Kim, S.W.; Hyun, D.W.; Bae, J.W.; Lee, Y.C. Oral microbiome associated with lymph node metastasis in oral squamous cell carcinoma. Sci. Rep. 2021, 11, 23176. [Google Scholar] [CrossRef]
- Irfan, M.; Delgado, R.Z.R.; Frias-Lopez, J. The Oral Microbiome and Cancer. Front. Immunol. 2020, 11, 591088. [Google Scholar] [CrossRef]
- Lu, H.; Zou, P.; Zhang, Y.; Zhang, Q.; Chen, Z.; Chen, F. The sampling strategy of oral microbiome. iMeta 2022, 1, e23. [Google Scholar] [CrossRef]
- Špiljak, B.; Ozretić, P.; Andabak Rogulj, A.; Lončar Brzak, B.; Brailo, V.; Škerlj, M.; Vidović Juras, D. Oral Microbiome Research in Biopsy Samples of Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma and Its Challenges. Appl. Sci. 2024, 14, 11405. [Google Scholar] [CrossRef]
- Sasaki, M.; Yamaura, C.; Ohara-Nemoto, Y.; Tajika, S.; Kodama, Y.; Ohya, T.; Harada, R.; Kimura, S. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis. 2005, 11, 151–156. [Google Scholar] [CrossRef]
- Pushalkar, S.; Ji, X.; Li, Y.; Estilo, C.; Yegnanarayana, R.; Singh, B.; Li, X.; Saxena, D. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol. 2012, 12, 144. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Yeh, Y.-M.; Yu, H.-Y.; Chin, C.-Y.; Hsu, C.-W.; Liu, H.; Huang, P.-J.; Hu, S.-N.; Liao, C.-T.; Chang, K.-P.; et al. Oral Microbiota Community Dynamics Associated With Oral Squamous Cell Carcinoma Staging. Front. Microbiol. 2018, 9, 862. [Google Scholar] [CrossRef]
- Yang, K.; Wang, Y.; Zhang, S.; Zhang, D.; Hu, L.; Zhao, T.; Zheng, H. Oral Microbiota Analysis of Tissue Pairs and Saliva Samples From Patients With Oral Squamous Cell Carcinoma—A Pilot Study. Front. Microbiol. 2021, 12, 719601. [Google Scholar] [CrossRef]
- Gopinath, D.; Menon, R.K.; Wie, C.C.; Banerjee, M.; Panda, S.; Mandal, D.; Behera, P.K.; Roychoudhury, S.; Kheur, S.; Botelho, M.G.; et al. Differences in the bacteriome of swab, saliva, and tissue biopsies in oral cancer. Sci. Rep. 2021, 11, 1181. [Google Scholar] [CrossRef]
- Shitozawa, Y.; Haro, K.; Ogawa, M.; Miyawaki, A.; Saito, M.; Fukuda, K. Differences in the microbiota of oral rinse, lesion, and normal site samples from patients with mucosal abnormalities on the tongue. Sci. Rep. 2022, 12, 16839. [Google Scholar] [CrossRef]
- Wright, R.J.; Pewarchuk, M.E.; Marshall, E.A.; Murray, B.; Rosin, M.P.; Laronde, D.M.; Zhang, L.; Lam, W.L.; Langille, M.G.I.; Rock, L.D. Exploring the microbiome of oral epithelial dysplasia as a predictor of malignant progression. BMC Oral Health 2023, 23, 206. [Google Scholar] [CrossRef]
- Mäkinen, A.I.; Pappalardo, V.Y.; Buijs, M.J.; Brandt, B.W.; Mäkitie, A.A.; Meurman, J.H.; Zaura, E. Salivary microbiome profiles of oral cancer patients analyzed before and after treatment. Microbiome 2023, 11, 171. [Google Scholar] [CrossRef]
- Deo, P.N.; Deshmukh, R.S.; Gaike, A.H.; Christopher, A.; Gujare, M.; Inamdar, M. Oral microbiome profiles in oral potentially malignant disorders and oral cancer—A diagnostic perspective. J. Oral Maxillofac. Pathol. 2025, 29, 87–97. [Google Scholar] [CrossRef]
- Intini, R.; Balsells, S.; Bagan, L.; Fortuna, G.; Sroussi, H.; Bagan, J. Comparative analysis of oral microbiome in saliva samples of oral leukoplakia, proliferative leukoplakia and oral squamous cell carcinoma. Front. Oral Health 2025, 6, 1600090. [Google Scholar] [CrossRef]
- Belstrøm, D.; Holmstrup, P.; Bardow, A.; Kokaras, A.; Fiehn, N.-E.; Paster, B.J. Comparative analysis of bacterial profiles in unstimulated and stimulated saliva samples. J. Oral Microbiol. 2016, 8, 30112. [Google Scholar] [CrossRef]
- Jo, R.; Nishimoto, Y.; Umezawa, K.; Yama, K.; Aita, Y.; Ichiba, Y.; Murakami, S.; Kakizawa, Y.; Kumagai, T.; Yamada, T.; et al. Comparison of oral microbiome profiles in stimulated and unstimulated saliva, tongue, and mouth-rinsed water. Sci. Rep. 2019, 9, 16124. [Google Scholar] [CrossRef]
- Gomar-Vercher, S.; Simón-Soro, A.; Montiel-Company, J.M.; Almerich-Silla, J.M.; Mira, A. Stimulated and unstimulated saliva samples have significantly different bacterial profiles. PLoS ONE 2018, 13, e0198021. [Google Scholar] [CrossRef]
- Belstrøm, D.; Holmstrup, P.; Bardow, A.; Kokaras, A.; Fiehn, N.-E.; Paster, B.J. Temporal Stability of the Salivary Microbiota in Oral Health. PLoS ONE 2016, 11, e0147472. [Google Scholar] [CrossRef]
- Cameron, S.J.S.; Huws, S.A.; Hegarty, M.J.; Smith, D.P.M.; Mur, L.A.J. The human salivary microbiome exhibits temporal stability in bacterial diversity. FEMS Microbiol. Ecol. 2015, 91, fiv091. [Google Scholar] [CrossRef]
- Hu, Y.; Amir, A.; Huang, X.; Li, Y.; Huang, S.; Wolfe, E.; Weiss, S.; Knight, R.; Xu, Z.Z. Diurnal and eating-associated microbial patterns revealed via high-frequency saliva sampling. Genome Res. 2022, 32, 1112–1123. [Google Scholar] [CrossRef]
- Galloway-Pena, J.R.; Smith, D.P.; Sahasrabhojane, P.; Wadsworth, W.D.; Fellman, B.M.; Ajami, N.J.; Shpall, E.J.; Daver, N.; Guindani, M.; Petrosino, J.F.; et al. Characterization of oral and gut microbiome temporal variability in hospitalized cancer patients. Genome Med. 2017, 9, 21. [Google Scholar] [CrossRef]
- Belstrom, D.; Holmstrup, P.; Fiehn, N.E.; Kirkby, N.; Kokaras, A.; Paster, B.J.; Bardow, A. Salivary microbiota in individuals with different levels of caries experience. J. Oral Microbiol. 2017, 9, 1270614. [Google Scholar] [CrossRef]
- Luo, T.; Srinivasan, U.; Ramadugu, K.; Shedden, K.A.; Neiswanger, K.; Trumble, E.; Li, J.J.; McNeil, D.W.; Crout, R.J.; Weyant, R.J.; et al. Effects of Specimen Collection Methodologies and Storage Conditions on the Short-Term Stability of Oral Microbiome Taxonomy. Appl. Environ. Microbiol. 2016, 82, 5519–5529. [Google Scholar] [CrossRef]
- Vogtmann, E.; Chen, J.; Kibriya, M.G.; Amir, A.; Shi, J.; Chen, Y.; Islam, T.; Eunes, M.; Ahmed, A.; Naher, J.; et al. Comparison of Oral Collection Methods for Studies of Microbiota. Cancer Epidemiol. Biomark. Prev. 2019, 28, 137–143. [Google Scholar] [CrossRef]
- Yu, G.; Phillips, S.; Gail, M.H.; Goedert, J.J.; Humphrys, M.; Ravel, J.; Ren, Y.; Caporaso, N.E. Evaluation of Buccal Cell Samples for Studies of Oral Microbiota. Cancer Epidemiol. Biomark. Prev. 2017, 26, 249–253. [Google Scholar] [CrossRef]
- Yano, Y.; Hua, X.; Wan, Y.; Suman, S.; Zhu, B.; Dagnall, C.L.; Hutchinson, A.; Jones, K.; Hicks, B.D.; Shi, J.; et al. Comparison of Oral Microbiota Collected Using Multiple Methods and Recommendations for New Epidemiologic Studies. mSystems 2020, 5, e00156-20. [Google Scholar] [CrossRef]
- Martinez-Medina, J.N.; Ghazisaeedi, F.; Kramer, C.; Ziegler, J.F.; McParland, V.; Mönch, P.W.; Siegmund, B.; Jarquín-Díaz, V.H.; Fulde, M.; Forslund-Startceva, S.K. Mucosal washes are useful for sampling intestinal mucus-associated microbiota despite low biomass. Gut Microbes 2025, 17, 2464296. [Google Scholar] [CrossRef]
- Noonan, A.J.C.; Myers, R.; Bartolomeu, C.; Borden, S.A.; Lam, S.; Hallam, S.J. Correlation Mapping of the Human Respiratory Tract Microbiome Reveals Lung-Specific Indicators and Subnetworks. In Proceedings of the American Thoracic Society 2024 International Conference, San Diego, CA, USA, 17–22 May 2024; American Thoracic Society: New York, NY, USA, 2024. [Google Scholar]
- Tsay, J.-C.J.; Wu, B.G.; Badri, M.H.; Clemente, J.C.; Shen, N.; Meyn, P.; Li, Y.; Yie, T.-A.; Lhakhang, T.; Olsen, E.; et al. Airway Microbiota Is Associated with Upregulation of the PI3K Pathway in Lung Cancer. Am. J. Respir. Crit. Care Med. 2018, 198, 1188–1198. [Google Scholar] [CrossRef]
- Yi, X.; Gao, J.; Wang, Z. The human lung microbiome—A hidden link between microbes and human health and diseases. iMeta 2022, 1, e33. [Google Scholar] [CrossRef]
- Mark Welch, J.L.; Rossetti, B.J.; Rieken, C.W.; Dewhirst, F.E.; Borisy, G.G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl. Acad. Sci. USA 2016, 113, E791–E800. [Google Scholar] [CrossRef]
- Wilbert, S.A.; Mark Welch, J.L.; Borisy, G.G. Spatial Ecology of the Human Tongue Dorsum Microbiome. Cell Rep. 2020, 30, 4003–4015.e4003. [Google Scholar] [CrossRef]
- Gu, J.; Wang, H.; Zhang, M.; Xiong, Y.; Yang, L.; Ren, B.; Huang, R. Application of Fluorescence In Situ Hybridization (FISH) in Oral Microbial Detection. Pathogens 2022, 11, 1450. [Google Scholar] [CrossRef]
- Nejman, D.; Livyatan, I.; Fuks, G.; Gavert, N.; Zwang, Y.; Geller, L.T.; Rotter-Maskowitz, A.; Weiser, R.; Mallel, G.; Gigi, E.; et al. The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science 2020, 368, 973–980. [Google Scholar] [CrossRef]
- Choo, J.M.; Leong, L.E.; Rogers, G.B. Sample storage conditions significantly influence faecal microbiome profiles. Sci. Rep. 2015, 5, 16350. [Google Scholar] [CrossRef]
- Superdock, D.K.; Zhang, W.; Poole, A.C. Processing and storage methods affect oral and gut microbiome composition. Front. Microbiol. 2023, 14, 1253570. [Google Scholar] [CrossRef]
- Zhou, X.; Nanayakkara, S.; Gao, J.L.; Nguyen, K.A.; Adler, C.J. Storage media and not extraction method has the biggest impact on recovery of bacteria from the oral microbiome. Sci. Rep. 2019, 9, 14968. [Google Scholar] [CrossRef]
- Bang, E.; Oh, S.; Ju, U.; Chang, H.E.; Hong, J.-S.; Baek, H.-J.; Kim, K.-S.; Lee, H.-J.; Park, K.U. Factors influencing oral microbiome analysis: From saliva sampling methods to next-generation sequencing platforms. Sci. Rep. 2023, 13, 10086. [Google Scholar] [CrossRef]
- Yano, Y.; Vogtmann, E.; Shreves, A.H.; Weinstein, S.J.; Black, A.; Diaz-Mayoral, N.; Wan, Y.; Zhou, W.; Hua, X.; Dagnall, C.L.; et al. Evaluation of alcohol-free mouthwash for studies of the oral microbiome. PLoS ONE 2023, 18, e0284956. [Google Scholar] [CrossRef]
- DNA Genotek Inc. OMNIgene Oral—Optimized Solutions for Sample Collection, Nucleic Acid Stabilization and Microbial Profile Snapshot; Report No.: PD-BR-00205 Issue 4; DNA Genotek Inc.: Ottawa, ON, Canada, 2020. [Google Scholar]
- Biognost Ltd. Saccomanno Fixative—Instructions for Use V2; Report No.: SF-X, V2-EN2; Biognost: Zagreb, Croatia, 2019. [Google Scholar]
- Inc AS. Liquid Dental Transport—LDT; Anaerobe Systems: Morgan Hill, CA, USA, 2017. [Google Scholar]
- Song, S.J.; Amir, A.; Metcalf, J.L.; Amato, K.R.; Xu, Z.Z.; Humphrey, G.; Knight, R. Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. mSystems 2016, 1, e00021-16. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, D.H.; Han, S.H.; Kim, S.-Y. Optimal storage time and temperature of human oral samples to minimize microbiome changes: A scoping review. Jpn. Dent. Sci. Rev. 2024, 60, 220–231. [Google Scholar] [CrossRef]
- Jenkins, S.V.; Vang, K.B.; Gies, A.; Griffin, R.J.; Jun, S.-R.; Nookaew, I.; Dings, R.P.M. Sample storage conditions induce post-collection biases in microbiome profiles. BMC Microbiol. 2018, 18, 227. [Google Scholar] [CrossRef]
- Pollock, J.; Glendinning, L.; Wisedchanwet, T.; Watson, M. The Madness of Microbiome: Attempting To Find Consensus “Best Practice” for 16S Microbiome Studies. Appl. Environ. Microbiol. 2018, 84, e02627-17. [Google Scholar] [CrossRef]
- Teng, F.; Darveekaran Nair, S.S.; Zhu, P.; Li, S.; Huang, S.; Li, X.; Xu, J.; Yang, F. Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci. Rep. 2018, 8, 16321. [Google Scholar]
- Horz, H.-P.; Scheer, S.; Huenger, F.; Vianna, M.E.; Conrads, G. Selective isolation of bacterial DNA from human clinical specimens. J. Microbiol. Methods 2008, 72, 98–102. [Google Scholar] [CrossRef]
- Liu, G.; Weston, C.Q.; Pham, L.K.; Waltz, S.; Barnes, H.; King, P.; Sphar, D.; Yamamoto, R.T.; Forsyth, R.A. Epigenetic Segregation of Microbial Genomes from Complex Samples Using Restriction Endonucleases HpaII and McrB. PLoS ONE 2016, 11, e0146064. [Google Scholar]
- Marotz, C.A.; Sanders, J.G.; Zuniga, C.; Zaramela, L.S.; Knight, R.; Zengler, K. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome 2018, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Tsompana, M.; Ruscitto, A.; Sharma, A.; Genco, R.; Sun, Y.; Buck, M.J. An accurate and efficient experimental approach for characterization of the complex oral microbiota. Microbiome 2015, 3, 48. [Google Scholar] [CrossRef]
- Kool, J.; Tymchenko, L.; Shetty, S.A.; Fuentes, S. Reducing bias in microbiome research: Comparing methods from sample collection to sequencing. Front. Microbiol. 2023, 14, 1094800. [Google Scholar] [CrossRef]
- Yu, X.; Shi, Y.; Yuan, R.; Chen, Z.; Dong, Q.; Han, L.; Wang, L.; Zhou, J. Microbial dysbiosis in oral squamous cell carcinoma: A systematic review and meta-analysis. Heliyon 2023, 9, e13198. [Google Scholar] [CrossRef]
- Al-Hebshi, N.N.; Nasher, A.T.; Idris, A.M.; Chen, T. Robust species taxonomy assignment algorithm for 16S rRNA NGS reads: Application to oral carcinoma samples. J. Oral Microbiol. 2015, 7, 28934. [Google Scholar] [CrossRef]
- Perera, M.; Al-Hebshi, N.N.; Perera, I.; Ipe, D.; Ulett, G.C.; Speicher, D.J.; Chen, T.; Johnson, N.W. Inflammatory Bacteriome and Oral Squamous Cell Carcinoma. J. Dent. Res. 2018, 97, 725–732. [Google Scholar] [CrossRef]
- Ganly, I.; Hao, Y.; Rosenthal, M.; Wang, H.; Migliacci, J.; Huang, B.; Katabi, N.; Brown, S.; Tang, Y.W.; Pei, Z.; et al. Oral Microbiome in Nonsmoker Patients with Oral Cavity Squamous Cell Carcinoma, Defined by Metagenomic Shotgun Sequencing. Cancers 2022, 14, 6096. [Google Scholar] [CrossRef] [PubMed]
- Feehery, G.R.; Yigit, E.; Oyola, S.O.; Langhorst, B.W.; Schmidt, V.T.; Stewart, F.J.; Dimalanta, E.T.; Amaral-Zettler, L.A.; Davis, T.; Quail, M.A.; et al. AMethod for Selectively Enriching Microbial DNAfrom Contaminating Vertebrate Host DNA. PLoS ONE 2013, 8, e76096. [Google Scholar] [CrossRef]
- Wensel, C.R.; Pluznick, J.L.; Salzberg, S.L.; Sears, C.L. Next-generation sequencing: Insights to advance clinical investigations of the microbiome. J. Clin. Investig. 2022, 132, e154944. [Google Scholar] [CrossRef] [PubMed]
- Bars-Cortina, D.; Ramon, E.; Rius-Sansalvador, B.; Guinó, E.; Garcia-Serrano, A.; Mach, N.; Khannous-Lleiffe, O.; Saus, E.; Gabaldón, T.; Ibáñez-Sanz, G.; et al. Comparison between 16S rRNA and shotgun sequencing in colorectal cancer, advanced colorectal lesions, and healthy human gut microbiota. BMC Genom. 2024, 25, 730. [Google Scholar] [CrossRef]
- Torralba, M.G.; Aleti, G.; Li, W.; Moncera, K.J.; Lin, Y.H.; Yu, Y.; Masternak, M.M.; Golusinski, W.; Golusinski, P.; Lamperska, K.; et al. Oral Microbial Species and Virulence Factors Associated with Oral Squamous Cell Carcinoma. Microb. Ecol. 2021, 82, 1030–1046. [Google Scholar] [CrossRef] [PubMed]
- Abdill, R.J.; Graham, S.P.; Rubinetti, V.; Ahmadian, M.; Hicks, P.; Chetty, A.; McDonald, D.; Ferretti, P.; Gibbons, E.; Rossi, M.; et al. Integration of 168,000 samples reveals global patterns of the human gut microbiome. Cell 2025, 188, 1100–1118.e1117. [Google Scholar] [CrossRef]
- Bharti, R.; Grimm, D.G. Current challenges and best-practice protocols for microbiome analysis. Brief. Bioinform. 2021, 22, 178–193. [Google Scholar] [CrossRef]
- Allali, I.; Arnold, J.W.; Roach, J.; Cadenas, M.B.; Butz, N.; Hassan, H.M.; Koci, M.; Ballou, A.; Mendoza, M.; Ali, R.; et al. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiol. 2017, 17, 194. [Google Scholar] [CrossRef]
- Buetas, E.; Jordán-López, M.; López-Roldán, A.; D’Auria, G.; Martínez-Priego, L.; De Marco, G.; Carda-Diéguez, M.; Mira, A. Full-length 16S rRNA gene sequencing by PacBio improves taxonomic resolution in human microbiome samples. BMC Genom. 2024, 25, 310. [Google Scholar] [CrossRef]
- Katiraei, S.; Anvar, Y.; Hoving, L.; Berbée, J.F.P.; Van Harmelen, V.; Willems Van Dijk, K. Evaluation of Full-Length Versus V4-Region 16S rRNA Sequencing for Phylogenetic Analysis of Mouse Intestinal Microbiota After a Dietary Intervention. Curr. Microbiol. 2022, 79, 276. [Google Scholar] [CrossRef]
- Biada, I.; Santacreu, M.A.; González-Recio, O.; Ibáñez-Escriche, N. Comparative analysis of Illumina, PacBio, and nanopore for 16S rRNA gene sequencing of rabbit’s gut microbiota. Front. Microbiomes 2025, 4, 1587712. [Google Scholar] [CrossRef]
- Jeske, J.T.; Gallert, C. Microbiome Analysis via OTU and ASV-Based Pipelines—A Comparative Interpretation of Ecological Data in WWTP Systems. Bioengineering 2022, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Breitwieser, F.P.; Lu, J.; Salzberg, S.L. A review of methods and databases for metagenomic classification and assembly. Brief. Bioinform. 2019, 20, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Braham Bioinformatics. FastQC A Quality Control Tool for High Throughput Sequence Data; Braham Bioinformatics: Cambridge, UK, 2010. [Google Scholar]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 2011, 17, 10. [Google Scholar] [CrossRef]
- Maidak, B.L.; Olsen, G.J.; Larsen, N.; Overbeek, R.; McCaughey, M.J.; Woese, C.R. The RDP (Ribosomal Database Project). Nucleic Acids Res. 1997, 25, 109–110. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, H.; Lyu, H.; Yang, H.; Yousuf, S.; Huang, S.; Liu, Y.X. Benchmarking short-read metagenomics tools for removing host contamination. Gigascience 2025, 14, giaf004. [Google Scholar] [CrossRef]
- Rumbavicius, I.; Rounge, T.B.; Rognes, T. HoCoRT: Host contamination removal tool. BMC Bioinform. 2023, 24, 371. [Google Scholar] [CrossRef]
- Chen, T.; Yu, W.-H.; Izard, J.; Baranova, O.V.; Lakshmanan, A.; Dewhirst, F.E. The Human Oral Microbiome Database: A web accessible resource for investigating oral microbe taxonomic and genomic information. Database 2010, 2010, baq013. [Google Scholar] [CrossRef]
- McDonald, D.; Jiang, Y.; Balaban, M.; Cantrell, K.; Zhu, Q.; Gonazalez, A.; Morton, J.T.; Nicolaou, G.; Parks, D.H.; Karst, S.M.; et al. Greengenes2 unifies microbial data in a single reference tree. Nat. Biotechnol. 2024, 42, 715–718. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017, 27, 824–834. [Google Scholar] [CrossRef]
- Bradnam, K.R.; Fass, J.N.; Alexandrov, A.; Baranay, P.; Bechner, M.; Birol, I.; Boisvert, S.; Chapman, J.A.; Chapuis, G.; Chikhi, R.; et al. Assemblathon 2: Evaluating de novo methods of genome assembly in three vertebrate species. Gigascience 2013, 2, 10. [Google Scholar] [CrossRef]
- Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 2017, 35, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Treangen, T.J.; Koren, S.; Sommer, D.D.; Liu, B.; Astrovskaya, I.; Ondov, B.; Darling, A.E.; Phillippy, A.M.; Pop, M. MetAMOS: A modular and open source metagenomic assembly and analysis pipeline. Genome Biol. 2013, 14, R2. [Google Scholar] [CrossRef] [PubMed]
- Roumpeka, D.D.; Wallace, R.J.; Escalettes, F.; Fotheringham, I.; Watson, M. A Review of Bioinformatics Tools for Bio-Prospecting from Metagenomic Sequence Data. Front. Genet. 2017, 8, 23. [Google Scholar] [CrossRef]
- Lu, J.; Breitwieser, F.P.; Thielen, P.; Salzberg, S.L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2017, 3, e104. [Google Scholar] [CrossRef]
- Breitwieser, F.P.; Baker, D.N.; Salzberg, S.L. KrakenUniq: Confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 2018, 19, 198. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J. Langmead B: Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Nearing, J.T.; Douglas, G.M.; Hayes, M.G.; MacDonald, J.; Desai, D.K.; Allward, N.; Jones, C.M.A.; Wright, R.J.; Dhanani, A.S.; Comeau, A.M.; et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 2022, 13, 342. [Google Scholar] [CrossRef] [PubMed]
- Hawinkel, S.; Mattiello, F.; Bijnens, L.; Thas, O. A broken promise: Microbiome differential abundance methods do not control the false discovery rate. Brief. Bioinform. 2019, 20, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome Datasets Are Compositional: And This Is Not Optional. Front. Microbiol. 2017, 8, 2224. [Google Scholar] [CrossRef]
- Willis, A.D. Rarefaction, Alpha Diversity, and Statistics. Front. Microbiol. 2019, 10, 2407. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput. Biol. 2014, 10, e1003531. [Google Scholar] [CrossRef]
- Fernandes, A.D.; Macklaim, J.M.; Linn, T.G.; Reid, G.; Gloor, G.B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE 2013, 8, e67019. [Google Scholar] [CrossRef]
- Lin, H.; Peddada, S.D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 2020, 11, 3514. [Google Scholar] [CrossRef]
- Calgaro, M.; Romualdi, C.; Waldron, L.; Risso, D.; Vitulo, N. Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data. Genome Biol. 2020, 21, 191. [Google Scholar] [CrossRef]
- Zhou, R.; Ng, S.K.; Sung, J.J.Y.; Goh, W.W.B.; Wong, S.H. Data pre-processing for analyzing microbiome data—A mini review. Comput. Struct. Biotechnol. J. 2023, 21, 4804–4815. [Google Scholar] [CrossRef]
- Zhi, J.; Liang, Y.; Zhao, W.; Qiao, J.; Zheng, Y.; Peng, X.; Li, L.; Wei, X.; Wang, W. Oral microbiome-derived biomarkers for non-invasive diagnosis of head and neck squamous cell carcinoma. NPJ Biofilms Microbiomes 2025, 11, 74. [Google Scholar] [CrossRef]
- Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Baker, J.L.; Mark Welch, J.L.; Kauffman, K.M.; McLean, J.S.; He, X. The oral microbiome: Diversity, biogeography and human health. Nat. Rev. Microbiol. 2024, 22, 89–104. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Costello, E.K.; Berg-Lyons, D.; Gonzalez, A.; Stombaugh, J.; Knights, D.; Gajer, P.; Ravel, J.; Fierer, N.; et al. Moving pictures of the human microbiome. Genome Biol. 2011, 12, R50. [Google Scholar] [CrossRef]
- Flores, G.E.; Caporaso, J.G.; Henley, J.B.; Rideout, J.R.; Domogala, D.; Chase, J.; Leff, J.W.; Vázquez-Baeza, Y.; Gonzalez, A.; Knight, R.; et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 2014, 15, 531. [Google Scholar] [CrossRef]
- Greathouse, K.L.; Sinha, R.; Vogtmann, E. DNA extraction for human microbiome studies: The issue of standardization. Genome Biol. 2019, 20, 212. [Google Scholar] [CrossRef] [PubMed]
- Salter, S.J.; Cox, M.J.; Turek, E.M.; Calus, S.T.; Cookson, W.O.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef]
- Hillmann, B.; Al-Ghalith, G.A.; Shields-Cutler, R.R.; Zhu, Q.; Gohl, D.M.; Beckman, K.B.; Knight, R.; Knights, D. Evaluating the Information Content of Shallow Shotgun Metagenomics. mSystems 2018, 3, e00069-18. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.C.; Wang, S.G.; Gao, Z.; Qing, M.F.; Pan, S.; Liu, Y.Y.; Li, F. Emerging salivary biomarkers for early detection of oral squamous cell carcinoma. World J. Clin. Oncol. 2025, 16, 103803. [Google Scholar] [CrossRef] [PubMed]
| Study (Year) | Sampling Method(s) | Sample Size | Study Goal | Key Findings |
|---|---|---|---|---|
| Sasaki et al., 2005 [14] | Tissue & dental plaque | 46 | Compare plaque and tissue in OSCC patients vs. controls | Tissue and plaque in OSCC show distinct microbial community shifts |
| Pushalkar et al., 2012 [15] | Tissue | 20 | Profile tumour-associated microbiome in OSCC | OSCC tissues enriched in anaerobes like Fusobacterium nucleatum |
| Yang et al., 2018 [16] | Oral rinse | 248 | Analyze oral rinse differences between OSCC and controls | Significant changes in community composition in OSCC group |
| Yang et al., 2021 [17] | Saliva (unstimulated) & tissue | 42 | Characterize OSCC-associated changes in saliva and tissue samples | Tumour tissues enriched with anaerobes including Fusobacterium nucleatum |
| Gopinath et al., 2021 [18] | Saliva, swabbing, & biopsy tissue | 94 | Compare microbiomes across niches in oral cancer patients | Surface vs. deep tissue niche differences, and saliva-tissue comparisons in terms of composition and metabolic pathways |
| Shitozawa et al., 2022 [19] | Rinse & swabbing | 10 | Compare intra-individual differences of microbiota between lesion and normal and swabbing, vs. oral rinse | Lesion-specific dysbiosis observed, highlighting importance of site-specific sampling |
| Wright et al., 2023 [20] | Brushing & swabbing | 90 | Compare lesional vs. normal site microbiome in OSCC cases | Lesional sites showed enrichment of Fusobacterium and reduced diversity vs. contralateral controls |
| Mäkinen et al., 2023 [21] | Saliva (stimulated) | 236 | Survey salivary microbiome in OSCC vs. controls | Salivary profiles showed distinct community shifts in OSCC, with increased pathogenic taxa |
| Deo et al., 2025 [22] | Saliva | 50 | Compare normal, OPMD, OSCC microbiomes | Gram-negative and periodontal taxa increased in OSCC; unique taxa found in OSCC group |
| Intini et al., 2025 [23] | Saliva | 66 | Differentiate OL, PVL, OSCC microbiomes | OL shows higher richness, OSCC lowest, beta diversity distinguishes OL from PVL/OSCC |
| Study (Year) | Collection Method | Preservation Buffer/Kit | Sample Size | Key Findings |
|---|---|---|---|---|
| Luo et al., (2016) [32] | Plaque, saliva, swabbing | OMNIgene ORAL, Liquid Dental Transfer Medium (LDTM) | 10 | OMNIgene yielded higher diversity than LDTM; OMNIgene stable up to 1 week at room temperature, LDTM stable across multiple temperatures but with different composition |
| Vogtmann et al., (2019) [33] | Rinse & saliva (Scope® mouthwash) | Scope® mouthwash, OMNIgene ORAL | 100 | Mouthwash samples remained stable at room temperature for 4 days. Microbial community profiles differed between methods. |
| Zhou et al., (2019) [46] | Dental plaque | 75% ethanol vs. bead solution | 20 | Storage medium influenced microbial recovery more than extraction method; ethanol and bead solutions maintained community structure well |
| Yano et al., (2020) [35] | Rinse (saline) | OMNIgene ORAL, Scope® mouthwash, non-ethanol rinse, Saccomano’s fixative | 40 | OMNIgene yielded distinct, stable profiles while Saccomano’s samples showed the greatest divergence in diversity and taxonomic composition |
| Bang et al., (2023) [47] | Saliva, rinse (saline) | DNA/RNA Shield, OMNIgene ORAL saliva kit | 3 | Oral rinses showed higher diversity; OMNIgene, DNA/RNA Shield and simple collections produced similar profiles; taxonomic differences were not significant |
| Yano et al., (2023) [48] | Oral rinse | Ethanol-free, ethanol-based mouthwash | 40 | Both stable up to 10 days; minor taxa shifts by formulation; similar composition overall |
Study (Year) | Sequencing Platform; 16S rRNA Region | General Processing Pipeline (Clustering) | Taxonomic Assignment | Depth (Reads) | Rarefied | Key Findings |
|---|---|---|---|---|---|---|
| Pushalkar et al., 2012 [15] | Sanger sequencing; V4–V5 | Greengenes NAST (OUT) | HOMD | ~95 | No (rarefaction only) | Tumour tissues are enriched with anaerobes including Fusobacterium nucleatum and Prevotella species |
| Yang et al., 2021 [17] | Illumina MiSeq; V3–V4 | DADA2 (ASV) | RDP, HOMD | ~23,645 | Not reported | Tumour and saliva showed distinct shifts. Fusobacterium is enriched in tumour tissue |
| Gopinath et al., 2021 [18] | Illumina MiSeq; V3–V5 | DADA2 (ASV) | HOMD | Not reported | Not reported | Tumour surface enriched in Prophyromonas, Fusobacteria, and Neisseria. Deeper tissue enriched in Prevotella and Treponema. Saliva reflected tissue composition but had higher metabolic pathway diversity |
| Shitozawa et al., 2022 [19] | Sanger sequencing; V3–V5 | CD-HIT-EST (OTU) | RDP | ~192 | No (rarefaction only) | Lesion microbiota is less diverse and distinct from contralateral sites. Oral rinses captured broader but less site-specific diversity |
| Mäkinen et al., 2023 [21] | Illumina MiSeq; V4 | UNOISE3 (ASV) | HOMD | Not reported | Not reported | Post-treatment saliva showed reduced diversity but persistence of pathogenic taxa associated with OSCC. |
| Wright et al., 2023 [20] | Illumina MiSeq; V1–V3 | Cutadapt, UNOISE3 (ASV) | HOMD | ~7907 | Yes | OEDs showed distinct microbial profiles with reduced diversity and enrichment of pro-inflammatory taxa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, K.Y.P.; Huang, A.; Pepin, C.; Shen, Y.; Tsang, P.; Poh, C.F. Oral Microbiome in Oral Cancer Research from Sampling to Analysis: Strategies, Challenges, and Recommendations. Cancers 2026, 18, 145. https://doi.org/10.3390/cancers18010145
Liu KYP, Huang A, Pepin C, Shen Y, Tsang P, Poh CF. Oral Microbiome in Oral Cancer Research from Sampling to Analysis: Strategies, Challenges, and Recommendations. Cancers. 2026; 18(1):145. https://doi.org/10.3390/cancers18010145
Chicago/Turabian StyleLiu, Kelly Yi Ping, Andrew Huang, Catherine Pepin, Ya Shen, Phoebe Tsang, and Catherine F. Poh. 2026. "Oral Microbiome in Oral Cancer Research from Sampling to Analysis: Strategies, Challenges, and Recommendations" Cancers 18, no. 1: 145. https://doi.org/10.3390/cancers18010145
APA StyleLiu, K. Y. P., Huang, A., Pepin, C., Shen, Y., Tsang, P., & Poh, C. F. (2026). Oral Microbiome in Oral Cancer Research from Sampling to Analysis: Strategies, Challenges, and Recommendations. Cancers, 18(1), 145. https://doi.org/10.3390/cancers18010145

