Heterogeneous Colorectal Cancer Risk in Women with Metabolic Dysfunction-Associated Steatotic Liver Disease by Age, Lipid, and Waist-Circumference: A Nationwide Cohort Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Database
2.2. Study Design and Enrollment Criteria
2.3. Definition of Variables
2.4. Assessment of MASLD
2.5. Study Outcomes
2.6. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Factors Associated with Incident CRC
3.3. Subgroup Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eslam, M.; Sanyal, A.J.; George, J.; on behalf of the International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Lee, H.H.; Lee, H.A.; Kim, E.J.; Kim, H.Y.; Kim, H.C.; Ahn, S.H.; Lee, H.; Kim, S.U. Metabolic dysfunction-associated steatotic liver disease and risk of cardiovascular disease. Gut 2024, 73, 533–540. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Chen, J.; Bian, D.; Zang, S.; Yang, Z.; Tian, G.; Luo, Y.; Yang, J.; Xu, B.; Shi, J. The association between nonalcoholic fatty liver disease and risk of colorectal adenoma and cancer incident and recurrence: A meta-analysis of observational studies. Expert. Rev. Gastroenterol. Hepatol. 2019, 13, 385–395. [Google Scholar] [CrossRef] [PubMed]
- McHenry, S.; Zong, X.; Shi, M.; Fritz, C.D.; Pedersen, K.S.; Peterson, L.R.; Lee, J.K.; Fields, R.C.; Davidson, N.O.; Cao, Y. Risk of nonalcoholic fatty liver disease and associations with gastrointestinal cancers. Hepatol. Commun. 2022, 6, 3299–3310. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H.W.; Kim, S.U.; Kim, H.K. Metabolic dysfunction-associated fatty liver disease increases colon cancer risk: A nationwide cohort study. Clin. Transl. Gastroenterol. 2022, 13, e00435. [Google Scholar] [CrossRef]
- Li, Y.; Ma, X.M.; Jia, J.G.; Cao, L.Y. Association between metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction subtypes and risk of colorectal cancer: A prospective cohort study. Clin. Res. Hepatol. Gastroenterol. 2025, 49, 102573. [Google Scholar] [CrossRef]
- Kim, G.-A.; Lee, H.C.; Choe, J.; Kim, M.-J.; Lee, M.J.; Chang, H.-S.; Bae, I.Y.; Kim, H.-K.; An, J.; Shim, J.H.; et al. Association between non-alcoholic fatty liver disease and cancer incidence rate. J. Hepatol. 2018, 68, 140–146. [Google Scholar] [CrossRef]
- Björkström, K.; Widman, L.; Hagström, H. Risk of hepatic and extrahepatic cancer in NAFLD: A population-based cohort study. Liver Int. 2022, 42, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.-F.; Zhou, X.-D.; Sun, Y.-J.; Fang, D.-H.; Zhao, Q.; Huang, J.-H.; Jin, Y.; Wu, J.-S. Sex-influenced association of non-alcoholic fatty liver disease with colorectal adenomatous and hyperplastic polyps. World J. Gastroenterol. 2017, 23, 5206–5215. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.-C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding Algorithms for Defining Comorbidities in ICD-9-CM and ICD-10 Administrative Data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.-J.; Jung, G.-C.; Kwak, M.-S.; Yang, J.-I.; Yim, J.-Y.; Yu, S.-J.; Chung, G.-E. Fatty Liver Index for Predicting Nonalcoholic Fatty Liver Disease in an Asymptomatic Korean Population. Diagnostics 2021, 11, 2233. [Google Scholar] [CrossRef]
- Rothwell, P.M. Treating individuals 2: Subgroup analysis in randomised controlled trials—Importance, indications, and interpretation. Lancet 2005, 365, 176–186. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.; Jung, Y. Potential Therapeutic Application of Estrogen in Gender Disparity of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Cells 2019, 8, 1259. [Google Scholar] [CrossRef]
- Dong, J.; Dennis, K.M.J.H.; Venkatakrishnan, R.; Hodson, L.; Tomlinson, J.W. The Impact of Estrogen Deficiency on Liver Metabolism: Implications for Hormone Replacement Therapy. Endocr. Rev. 2025, 46, 790–809. [Google Scholar] [CrossRef]
- Zinkeng, A.; Taylor, F.L.; Cheong, S.H.; Song, H.; Merchant, J.L. Early Onset Colorectal Cancer: Molecular Underpinnings Accelerating Occurrence. Cell. Mol. Gastroenterol. Hepatol. 2024, 19, 101425. [Google Scholar] [CrossRef]
- Xu, P.; Tao, Z.; Yang, H.; Zhang, C. Obesity and early-onset colorectal cancer risk: Emerging clinical evidence and biological mechanisms. Front. Oncol. 2024, 14, 1366544. [Google Scholar] [CrossRef]
- Kim, S.; Jung, J.-H.; Han, K.; Koh, S.-J.; Im, J.P.; Kim, B.G.; Kim, J.S.; Lee, H.J. Association Between Nonalcoholic Fatty Liver Disease and Risk of Early-onset Colorectal Cancer. Clin. Gastroenterol. Hepatol. 2025, 23, 2550–2558.e2. [Google Scholar] [CrossRef]
- Jia, W.; Xie, G.; Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 111–128. [Google Scholar] [CrossRef]
- Lastuvkova, H.; Faradonbeh, F.A.; Schreiberova, J.; Hroch, M.; Mokry, J.; Faistova, H.; Nova, Z.; Hyspler, R.; Sa, I.C.I.; Nachtigal, P.; et al. Atorvastatin Modulates Bile Acid Homeostasis in Mice with Diet-Induced Nonalcoholic Steatohepatitis. Int. J. Mol. Sci. 2021, 22, 6468. [Google Scholar] [CrossRef]
- Kasana, R.; Thomas, C.; Das, G.; Hazarika, M.; Undela, K. Statin use and risk of cancer: An umbrella meta-analysis. Ann. Oncol. Res. Ther. 2023, 3, 14–31. [Google Scholar] [CrossRef]
- Li, M.; Liu, Q.; Shi, M.; Fu, M.; He, G. Association between remnant cholesterol and the risk of 4 site-specific cancers: Evidence from a cross-sectional and Mendelian randomization study. Lipids Health Dis. 2024, 23, 256. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lee, D.H.; Han, K.-D. Association between high fatty liver index and development of colorectal cancer: A nationwide cohort study with 21,592,374 Korean. Korean J. Intern. Med. 2020, 35, 1354–1363. [Google Scholar] [CrossRef]
- Souza, M.; Diaz, I.; Barchetta, I.; Mantovani, A. Gastrointestinal cancers in lean individuals with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Liver Int. 2023, 44, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Stepanova, M.; Negro, F.; Hallaji, S.B.; Younossi, Y.; Lam, B.; Srishord, M. Nonalcoholic Fatty Liver Disease in Lean Individuals in the United States. Medicine 2012, 91, 319–327. [Google Scholar] [CrossRef] [PubMed]



| Data Sources | Inclusion Criteria | Exclusion Criteria |
|---|---|---|
| Nationwide cohort (NHIS, HIRA, KCCR, Statistics of Korea) of women who participated in the National Health Screening Program between 2013 and 2016. | Aged 40–59 years at the time of the initial health screening during the study period (2013–2016) | History of colorectal cancer (ICD-10: C18–C20) within two years prior to the baseline health screening date |
| Diagnosis of any cancer other than colorectal cancer (ICD-10: C00–C97, excluding C18–C20) within one year before or after the baseline health screening date. | ||
| Heavy alcohol consumption (≥20 g/day). | ||
| Liver cirrhosis, viral hepatitis, chronic kidney disease, or organ transplantation. | ||
| Missing data on key covariates *. |
| MASLD Was Defined If All Three of the Following Criteria Were Met: | ||
|---|---|---|
| Hepatic steatosis | Metabolic dysfunction | Alcohol consumption |
| HSI ≥ 36 | Presence of at least one of the following five metabolic risk factors: | Non-heavy alcohol intake (<20 g/day). |
| ||
| ||
| ||
| ||
| ||
| Non-MASLD (n = 354,759) | MASLD (n = 128,642) | p-Value | |
|---|---|---|---|
| Age, years, No. (%) | <0.001 | ||
| 40–49 | 132,168 (37.3) | 38,835 (30.2) | |
| 50–59 | 222,591 (62.7) | 89,807 (69.8) | |
| BMI, kg/m2, No. (%) | <0.001 | ||
| ≤25 | 317,601 (89.5) | 26,633 (20.7) | |
| 25–30 | 36,956 (10.4) | 69,633 (54.1) | |
| ≥30 | 202 (0.1) | 32,376 (25.2) | |
| Waist circumference, cm, No. (%) | <0.001 | ||
| <85 | 326,996 (92.2) | 57,454 (44.7) | |
| ≥85 | 27,763 (7.8) | 71,188 (55.3) | |
| Income deciles *, No. (%) | <0.001 | ||
| 0 | 6381 (1.8) | 3475 (2.7) | |
| 1–3 | 105,785 (29.8) | 37,965 (29.5) | |
| 4–7 | 119,526 (33.7) | 46,102 (35.8) | |
| 8–10 | 123,067 (34.7) | 41,100 (32.0) | |
| Smoking status, No. (%) | <0.001 | ||
| Never | 340,887 (96.1) | 123,210 (95.8) | |
| Former | 4525 (1.3) | 1829 (1.4) | |
| Current | 9347 (2.6) | 3603 (2.8) | |
| Weekly alcohol consumption, No. (%) | <0.001 | ||
| None | 266,993 (75.3) | 102,400 (79.6) | |
| 1–2 | 78,837 (22.2) | 24,040 (18.7) | |
| 3–4 | 8016 (2.3) | 1961 (1.5) | |
| 5–7 | 913 (0.3) | 241(0.2) | |
| Physical activity quartile †, No. (%) | <0.001 | ||
| Q1 | 81,205 (22.9) | 35,625 (27.7) | |
| Q2 | 84,705 (24.0) | 31,215 (24.3) | |
| Q3 | 101,106 (28.5) | 35,208 (27.4) | |
| Q4 | 87,743 (24.7) | 26,594 (20.7) | |
| Diabetes mellitus, No. (%) | 21,646 (6.1) | 28,738 (22.3) | <0.001 |
| Hypertension, No. (%) | 60,367 (17.0) | 47,845 (37.2) | <0.001 |
| Dyslipidemia, No. (%) | 78,699 (22.2) | 45,076 (35.0) | <0.001 |
| Cardiac disease, No. (%) | 31,940 (9.0) | 17,980 (14.0) | <0.001 |
| CCI, mean ± SD | 2.69 ± 1.04 | 3.18 ± 1.40 | <0.001 |
| Univariable | Multivariable * | |||
|---|---|---|---|---|
| HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
| MASLD | 1.130 (1.035–1.234) | 0.006 | 1.095 (1.003–1.195) | 0.044 |
| Age, years | ||||
| 40–49 | ref | ref | ||
| 50–59 | 1.510 (1.380–1.652) | <0.001 | 1.508 (1.378–1.650) | <0.001 |
| BMI, kg/m2 | ||||
| ≤25 | ref | |||
| 25–30 | 1.143 (1.040–1.256) | 0.005 | ||
| ≥30 | 1.206 (1.036–1.403) | 0.015 | ||
| Waist circumference, cm | ||||
| <85 | ref | |||
| ≥85 | 1.128 (1.026–1.241) | 0.001 | ||
| Income deciles | ||||
| 0 | ref | ref | ||
| 1–3 | 0.873 (0.670–1.137) | 0.313 | 0.884 (0.677–1.152) | 0.361 |
| 4–7 | 0.861 (0.661–1.121) | 0.266 | 0.857 (0.658–1.117) | 0.254 |
| 8–10 | 0.752 (0.577–0.980) | 0.034 | 0.755 (0.579–0.986) | 0.038 |
| Smoking status | ||||
| Never | ref | ref | ||
| Former | 0.848 (0.576–1.248) | 0.401 | 0.874 (0.594–1.287) | 0.495 |
| Current | 1.337 (1.075–1.662) | 0.009 | 1.329 (1.068–1.653) | 0.010 |
| Weekly alcohol consumption | ||||
| None | ref | |||
| 1–2 | 0.964 (0.873–1.063) | 0.461 | ||
| 3–4 | 0.821 (0.603–1.119) | 0.212 | ||
| 5–7 | 1.388 (0.694–2.778) | 0.353 | ||
| Physical activity quartile | ||||
| Q1 | ref | |||
| Q2 | 0.928 (0.827–1.040) | 0.198 | ||
| Q3 | 0.985 (0.884–1.098) | 0.788 | ||
| Q4 | 0.935 (0.833–1.048) | 0.248 | ||
| Diabetes mellitus | 1.328 (1.181–1.493) | <0.001 | ||
| Hypertension | 1.189 (1.086–1.303) | <0.001 | ||
| Dyslipidemia | 1.127 (1.031–1.231) | 0.008 | ||
| CCI | 1.031 (0.997–1.065) | 0.073 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yoon, C.I.; Lee, H.S.; Jeon, S.; Lee, J.A.; Kim, D.; Lee, J.M. Heterogeneous Colorectal Cancer Risk in Women with Metabolic Dysfunction-Associated Steatotic Liver Disease by Age, Lipid, and Waist-Circumference: A Nationwide Cohort Study. Cancers 2026, 18, 125. https://doi.org/10.3390/cancers18010125
Yoon CI, Lee HS, Jeon S, Lee JA, Kim D, Lee JM. Heterogeneous Colorectal Cancer Risk in Women with Metabolic Dysfunction-Associated Steatotic Liver Disease by Age, Lipid, and Waist-Circumference: A Nationwide Cohort Study. Cancers. 2026; 18(1):125. https://doi.org/10.3390/cancers18010125
Chicago/Turabian StyleYoon, Chang Ik, Hye Sun Lee, Soyoung Jeon, Jin Ah Lee, Dooreh Kim, and Jong Min Lee. 2026. "Heterogeneous Colorectal Cancer Risk in Women with Metabolic Dysfunction-Associated Steatotic Liver Disease by Age, Lipid, and Waist-Circumference: A Nationwide Cohort Study" Cancers 18, no. 1: 125. https://doi.org/10.3390/cancers18010125
APA StyleYoon, C. I., Lee, H. S., Jeon, S., Lee, J. A., Kim, D., & Lee, J. M. (2026). Heterogeneous Colorectal Cancer Risk in Women with Metabolic Dysfunction-Associated Steatotic Liver Disease by Age, Lipid, and Waist-Circumference: A Nationwide Cohort Study. Cancers, 18(1), 125. https://doi.org/10.3390/cancers18010125

