Is There a Future for CAR-T Therapy in Acute Myeloid Leukemia?
Simple Summary
Abstract
1. Introduction
2. Induction Therapy
3. Consolidation Therapy
4. Maintenance Therapy
5. How to Treat Relapsed or Refractory (R/R) AML
6. CAR-T in Relapsed or Refractory AML
7. Open Issues and Solutions
8. Chimeric Antigen Receptor Natural Killer (CAR-NK)
9. Expert Opinion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- SEER 22, 2015–2019; Cancer Stat Facts: Leukemia—Acute Myeloid Leukemia (AML). 2022. Available online: https://seer.cancer.gov/statfacts/html/amyl.html (accessed on 7 March 2023).
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Juliusson, G. Older patients with acute myeloid leukemia benefit from intensive chemotherapy: An update from the Swedish Acute Leukemia Registry. Clin. Lymphoma Myeloma Leuk. 2011, 11, S54–S59. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Advanced Therapy Medicinal Products: Overview. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/advanced-therapy-medicinal-products-overview (accessed on 1 March 2025).
- US Food and Drug Administration. Considerations for the Development of Chimeric Antigen Receptor (CAR) T Cell Products: Guidance for Industry. January 2024. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-development-chimeric-antigen-receptor-car-t-cell-products (accessed on 1 March 2025).
- Nezvalova-Henriksen, K.; Langebrake, C.; Bauters, T.; Moreno-Martinez, M.-E.; Ahnfelt, E.; Ekelund, H.; Domingos, V.; Pires, V.; Bonnin, A.; Bojanić, I.; et al. Implementation and operational management of marketed chimeric antigen receptor T cell (CAR-T Cell) therapy-a guidance by the GoCART Coalition Pharmacist Working Group. Bone Marrow Transpl. 2023, 58, 1069–1074. [Google Scholar] [CrossRef]
- Iglesias-Lopez, C.; Obach, M.; Vallano, A.; Agustí, A. Comparison of regulatory pathways for the approval of advanced therapies in the European Union and the United States. Cytotherapy 2021, 23, 261–274. [Google Scholar] [CrossRef]
- Walter, R.B.; Othus, M.; Borthakur, G.; Ravandi, F.; Cortes, J.E.; Pierce, S.A.; Appelbaum, F.R.; Kantarjian, H.A.; Estey, E.H. Prediction of early death after induction therapy for newly diagnosed acute myeloid leukemia with pretreatment risk scores: A novel paradigm for treatment assignment. J. Clin. Oncol. 2011, 29, 4417–4423. [Google Scholar] [CrossRef]
- Krug, U.; Röllig, C.; Koschmieder, A.; Heinecke, A.; Sauerland, M.C.; Schaich, M.; Thiede, C.; Kramer, M.; Braess, J.; Spiekermann, K.; et al. Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leukaemia: A web-based application for prediction of outcomes. Lancet 2010, 376, 2000–2008. [Google Scholar] [CrossRef]
- Ferrara, F.; Barosi, G.; Venditti, A.; Angelucci, E.; Gobbi, M.; Pane, F.; Tosi, P.; Zinzani, P.; Tura, S. Consensus-based definition of unfitness to intensive and non-intensive chemotherapy in acute myeloidleukemia: A project of SIE, SIES and GITMO group on a new tool for therapy decision making. Leukemia 2013, 27, 997–999. [Google Scholar] [CrossRef]
- Erba, H.P.; Montesinos, P.; Kim, H.-J.; Patkowska, E.; Vrhovac, R.; Žák, P.; Wang, P.-N.; Mitov, T.; Hanyok, J.; Kamel, Y.M.; et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 1571–1583, Erratum in Lancet 2023, 402, 1328. https://doi.org/10.1016/S0140-6736(23)02235-3. [Google Scholar] [CrossRef]
- Dinardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Gao, J.; Wang, L.; Xie, F.; Zhang, C.; Mao, P.; Yan, J. Venetoclax and hypomethylating agents versus induction chemotherapy for newly diagnosed acute myeloid leukemia patients: A systematic review and meta-analysis. BMC Cancer 2025, 25, 894. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.H.; Montesinos, P.; Ivanov, V.; DiNardo, C.D.; Novak, J.; Laribi, K.; Kim, I.; Stevens, D.A.; Fiedler, W.; Pagoni, M.; et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial. Blood 2020, 135, 2137–2145. [Google Scholar] [CrossRef] [PubMed]
- Dombret, H.; Seymour, J.F.; Butrym, A.; Wierzbowska, A.; Selleslag, D.; Jang, J.H.; Kumar, R.; Cavenagh, J.; Schuh, A.C.; Candoni, A.; et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood 2015, 126, 291–299. [Google Scholar] [CrossRef]
- Niscola, P. Oral decitabine in acute myeloid leukemia: Assessing efficacy, safety, and future implications for older patients. Expert Rev. Hematol. 2025, 18, 323–331. [Google Scholar] [CrossRef]
- Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients with Newly Diagnosed Secondary Acute Myeloid Leukemia. J. Clin. Oncol. 2018, 36, 2684–2692. [Google Scholar] [CrossRef]
- Cortes, J.E.; Goldberg, S.L.; Feldman, E.J.; Rizzeri, D.A.; Hogge, D.E.; Larson, M.; Pigneux, A.; Recher, C.; Schiller, G.; Warzocha, K.; et al. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer 2015, 121, 234–242. [Google Scholar] [CrossRef]
- Amadori, S.; Suciu, S.; Selleslag, D.; Aversa, F.; Gaidano, G.; Musso, M.; Annino, L.; Venditti, A.; Voso, M.T.; Mazzone, C.; et al. Gemtuzumab Ozogamicin Versus Best Supportive Care in Older Patients withNewly Diagnosed Acute Myeloid Leukemia Unsuitable for Intensive Chemotherapy: Results of the Randomized Phase III EORTC-GIMEMA AML-19 Trial. J. Clin. Oncol. 2016, 34, 972–979, Erratum in J. Clin. Oncol. 2022, 40, 525. https://doi.org/10.1200/JCO.21.02939. [Google Scholar] [CrossRef]
- Lee, L.Y.; Hernandez, D.; Rajkhowa, T.; Smith, S.C.; Raman, J.R.; Nguyen, B.; Small, D.; Levis, M. Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood 2017, 129, 257–260. [Google Scholar] [CrossRef]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Levis, M. Quizartinib for the treatment of FLT3/ITD acute myeloid leukemia. Future Oncol. 2014, 10, 1571–1579. [Google Scholar] [CrossRef]
- De Botton, S.; Récher, C.; Cortes, J.; Curti, A.; Fenaux, P.; Peterlin, P.; Pigneux, A.; Yee, K.; Wei, A.; Mims, A.; et al. Olutasidenib demonstrates significant clinical activity in mutated IDH1 acute myeloid leukaemia arising from a prior myeloproliferative neoplasm. Br. J. Haematol. 2025, 206, 1121–1128. [Google Scholar] [CrossRef]
- Cai, S.F.; Huang, Y.; Lance, J.R.; Mao, H.C.; Dunbar, A.J.; McNulty, S.N.; Druley, T.; Li, Y.; Baer, M.R.; Stock, W.; et al. A study to assess the efficacy of enasidenib and risk-adapted addition of azacitidine in newly diagnosed IDH2-mutant AML. Blood Adv. 2024, 8, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Koenig, K.; Mims, A. Relapsed or primary refractory AML: Moving past MEC and FLAG-ida. Curr. Opin. Hematol. 2020, 27, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Tenold, M.E.; Moskoff, B.N.; Benjamin, D.J.; Hoeg, R.T.; Rosenberg, A.S.; Abedi, M.; Tuscano, J.M.; Jonas, B.A. Outcomes of Adults with Relapsed/Refractory Acute Myeloid Leukemia Treated with Venetoclax Plus Hypomethylating Agents at a Comprehensive Cancer Center. Front. Oncol. 2021, 11, 649209. [Google Scholar] [CrossRef]
- Thol, F.; Heuser, M. Treatment for Relapsed/Refractory Acute Myeloid Leukemia. Hemasphere 2021, 5, e572. [Google Scholar] [CrossRef]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef]
- Cortes, J.E.; Khaled, S.; Martinelli, G.; Perl, A.E.; Ganguly, S.; Russell, N.; Krämer, A.; Dombret, H.; Hogge, D.; A Jonas, B.; et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): A multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 984–997. [Google Scholar] [CrossRef]
- Passweg, J.R.; Baldomero, H.; Atlija, M.; Kleovoulou, I.; Witaszek, A.; Alexander, T.; Angelucci, E.; Averbuch, D.; Bazarbachi, A.; Ciceri, F.; et al. The 2023 EBMT report on hematopoietic cell transplantation and cellular therapies. Increased use of allogeneic HCT for myeloid malignancies and of CAR-T at the expense of autologous HCT. Bone Marrow Transpl. 2025, 60, 519–528. [Google Scholar] [CrossRef]
- Spellman, S.R.; Xu, K.; Oloyede, T.; Ahn, K.W.; Akhtar, O.; Bolon, Y.-T.; Broglie, L.; Bloomquist, J.; Bupp, C.; Chen, M.; et al. Current Activity Trends and Outcomes in Hematopoietic Cell Transplantation and Cellular Therapy—A Report from the CIBMTR. Transplant. Cell Ther. 2025, 31, 505–532. [Google Scholar] [CrossRef]
- Cornelissen, J.J.; Blaise, D. Hematopoietic stem cell transplantation for patients with AML in first complete remission. Blood 2016, 127, 62–70. [Google Scholar] [CrossRef]
- Gökbuget, N.; Boissel, N.; Chiaretti, S.; Dombret, H.; Doubek, M.; Fielding, A.K.; Foà, R.; Giebel, S.; Hoelzer, D.; Hunault, M.; et al. Management of ALL in adults: 2024 ELN recommendations from a European expert panel. Blood 2024, 143, 1903–1930. [Google Scholar] [CrossRef]
- Wei, A.H.; Döhner, H.; Pocock, C.; Montesinos, P.; Afanasyev, B.; Dombret, H.; Ravandi, F.; Sayar, H.; Jang, J.-H.; Porkka, K.; et al. QUAZAR AML-001 Trial Investigators. Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. N. Engl. J. Med. 2020, 383, 2526–2537. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E. Olutasidenib: A novel mutant IDH1 inhibitor for the treatment of relapsed or refractory acute myeloid leukemia. Expert Rev. Hematol. 2024, 17, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.M.; Dinardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef]
- Nadiminti, K.V.G.; Sahasrabudhe, K.D.; Liu, H. Menin inhibitors for the treatment of acute myeloid leukemia: Challenges and opportunities ahead. J. Hematol. Oncol. 2024, 17, 113. [Google Scholar] [CrossRef]
- DeWolf, S.; Tallman, M.S. How I treat relapsed or refractory AML. Blood 2020, 136, 1023–1032. [Google Scholar] [CrossRef]
- Shahswar, R.; Gabdoulline, R.; Krueger, K.; Wichmann, M.; Götze, K.S.; Braitsch, K.; Meggendorfer, M.; Schmalbrock, L.; Bullinger, L.; Modemann, F.; et al. A novel prognostic risk model for patients with refractory/relapsed acute myeloid leukemia receiving venetoclax plus hypomethylating agents. Leukemia 2025, 39, 614–622. [Google Scholar] [CrossRef]
- Tettamanti, S.; Pievani, A.; Biondi, A.; Dotti, G.; Serafini, M. Catch me if you can: How AML and its niche escape immunotherapy. Leukemia 2022, 36, 13–22. [Google Scholar] [CrossRef]
- Isidori, A.; Cerchione, C.; Daver, N.; DiNardo, C.; Garcia-Manero, G.; Konopleva, M.; Jabbour, E.; Ravandi, F.; Kadia, T.; Burguera, A.d.l.F.; et al. Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Front. Oncol. 2021, 11, 656218. [Google Scholar] [CrossRef]
- Restelli, C.; Ruella, M.; Paruzzo, L.; Tarella, C.; Pelicci, P.G.; Colombo, E. Recent Advances in Immune-Based Therapies for Acute Myeloid Leukemia. Blood Cancer Discov. 2024, 5, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, H.H. Breakthroughs of CAR T-cell therapy in acute myeloid leukemia: Updates from ASH 2024. Exp. Hematol. Oncol. 2025, 14, 57. [Google Scholar] [CrossRef]
- Zha, C.; Song, J.; Wan, M.; Lin, X.; He, X.; Wu, M.; Huang, R. Recent advances in CAR-T therapy for the treatment of acute myeloid leukemia. Ther. Adv. Hematol. 2024, 15, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Yang, D.; Chen, X.; Liang, D.; Zou, L.; Zhao, X. Chimeric antigen receptor T-cell therapy for T-ALL and AML. Front. Oncol. 2022, 12, 967754. [Google Scholar] [CrossRef] [PubMed]
- Badar, T.; Manna, A.; Gadd, M.E.; Kharfan-Dabaja, M.A.; Qin, H. Prospect of CAR T-cell therapy in acute myeloid leukemia. Expert Opin. Investig. Drugs 2022, 31, 211–220. [Google Scholar] [CrossRef]
- Vanhooren, J.; Dobbelaere, R.; Derpoorter, C.; Deneweth, L.; Van Camp, L.; Uyttebroeck, A.; De Moerloose, B.; Lammens, T. CAR-T in the Treatment of Acute Myeloid Leukemia: Barriers and How to Overcome Them. Hemasphere 2023, 7, e937. [Google Scholar] [CrossRef]
- Michelozzi, I.M.; Kirtsios, E.; Giustacchini, A. Driving CAR T Stem Cell Targeting in Acute Myeloid Leukemia: The Roads to Success. Cancers 2021, 13, 2816. [Google Scholar] [CrossRef]
- Epperly, R.; Gottschalk, S.; Velasquez, M.P. A Bump in the Road: How the Hostile AML Microenvironment Affects CAR T Cell Therapy. Front. Oncol. 2020, 10, 262. [Google Scholar] [CrossRef]
- Damiani, D.; Tiribelli, M. CAR-T Cells in Acute Myeloid Leukemia: Where Do We Stand? Biomedicines 2024, 12, 1194. [Google Scholar] [CrossRef]
- Cummins, K.D.; Gill, S. Will CAR T cell therapy have a role in AML? Promises and pitfalls. Semin. Hematol. 2019, 56, 155–163. [Google Scholar] [CrossRef]
- Ocaña-Cara, Á.; Mutis, T.; van der Schans, J.J. Emerging strategies in CAR-T cell therapy for acute myeloid leukemia: Overcoming heterogeneity and improving safety through dual-antigen targeting. Exp. Hematol. Oncol. 2025, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, J.; Zhang, H.; Zhao, M. CAR-DC combined with CAR-T therapy for relapsed/refractory acute myeloid leukaemia: Research progress and future perspectives. Clin. Transl. Med. 2025, 15, e70536. [Google Scholar] [CrossRef] [PubMed]
- Zugasti, I.; Espinosa-Aroca, L.; Fidyt, K.; Mulens-Arias, V.; Diaz-Beya, M.; Juan, M.; Urbano-Ispizua, Á.; Esteve, J. CAR-T cell therapy for cancer: Current challenges and future directions. Sig. Transduct. Target. Ther. 2025, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhao, D.; Deng, B.; Liu, D.; Li, B.; Xia, Y.; Zheng, R.; Wu, T.; Tong, C. The Safety and Efficacy of CD33 CAR-T Therapy for RR AML after HSCT. Blood 2024, 144, 3467. [Google Scholar] [CrossRef]
- Naik, S.; Renee, M.; Talleur, A.C.; Epperly, R.; Lockey, T.; Bran, J.; Tian, L.; Li, Y.; Keerthi, D.; Boyd, A.; et al. CD123-CAR T Cells Manufactured in the Presence of Dasatinib Induce High Grade CRS and/or IEC-HS without Improving Efficacy in Pediatric Patients with Recurrent/Refractory Leukemia. Blood 2024, 144, 2076. [Google Scholar] [CrossRef]
- Zhao, Y.; Bai, X.; Guo, S.; Zhang, X.; Liu, J.; Zhao, M.; Xie, T.; Meng, H.; Zhang, Y.; He, X.; et al. Efficacy and safety of CAR-T therapy targeting CLL1 in patients with extramedullary diseases of acute myeloid leukemia. J. Transl. Med. 2024, 22, 888. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, X.; Lv, H.; Bai, X.; Liu, P.; Pu, Y.; Meng, J.; Zhu, H.; Wang, Z.; Zhang, H.; et al. Development of This CART371 targeting CLL1 for the treatment of relapsed/refractory acute myeloid leukemia. Blood 2024, 144, 7210. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Zhao, Y.; Zhang, X.; Guo, S.; Lv, H.; Xiao, X.; Zhao, M. Distribution of infectious complications following CLL1 CAR-T cell therapy for R/R AML: A Single-Center experience. Blood 2024, 144, 6018. [Google Scholar] [CrossRef]
- Geyer, M.B.; DeWolf, S.; Mi, X.; Shaffer, B.C.; Cadzin, B.; McAvoy, D.; Hosszu, K.K.; Weis, K.; Lorenc, R.; Lewis, A.M.; et al. CD371-Targeted CAR T-Cells secreting Interleukin-18 exhibit robust expansion and disease clearance in patients with refractory acute myeloid leukemia. Blood 2024, 144, 2070.39541103. [Google Scholar] [CrossRef]
- Yin, J.; Cui, Q.; Dai, H.; Li, Z.; Kang, L.; Cui, W.; Tian, X.; Zhu, X.; Yu, L.; Wu, D.; et al. Unleashing the power of CD19 CAR-T in relapsed AML: Findings from a prospective Single-Center clinical trial. Blood 2024, 144, 4836. [Google Scholar] [CrossRef]
- Khalifeh, M.; Hopewell, E.; Salman, H. CAR-T cell therapy for treatment of acute myeloid leukemia, advances and outcomes. Mol. Ther. 2025, 33, 2441–2453. [Google Scholar] [CrossRef] [PubMed]
- Romer-Seibert, J.S.; Meyer, S.E. Genetic heterogeneity and clonal evolution in acute myeloid leukemia. Curr. Opin. Hematol. 2021, 28, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, L.C.; Tomaz, V.; de Souza, I.F.; Campregher, P.V.; Hamerschlak, N.; Kerbauy, L.N. Precision medicine with car cells in acute myeloid leukemia: Where are we? Front. Immunol. 2025, 16, 1653350. [Google Scholar] [CrossRef] [PubMed]
- Bordeleau, M.-E.; Audemard, É.; Métois, A.; Theret, L.; Lisi, V.; Farah, A.; Spinella, J.-F.; Chagraoui, J.; Moujaber, O.; Aubert, L.; et al. Immunotherapeutic targeting of surfaceome heterogeneity in AML. Cell Rep. 2024, 43, 114260. [Google Scholar] [CrossRef]
- Lamble, A.J.; Kosaka, Y.; Laderas, T.; Maffit, A.; Kaempf, A.; Brady, L.K.; Wang, W.; Long, N.; Saultz, J.N.; Mori, M.; et al. Reversible suppression of T cell function in the bone marrow microenvironment of acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 2020, 117, 14331–14341. [Google Scholar] [CrossRef]
- Kong, Y.; Zhu, L.; Schell, T.D.; Zhang, J.; Claxton, D.F.; Ehmann, W.C.; Rybka, W.B.; George, M.R.; Zeng, H.; Zheng, H. T-Cell Immunoglobulin and ITIM Domain (TIGIT) Associates with CD8+ T-Cell Exhaustion and Poor Clinical Outcome in AML Patients. Clin. Cancer Res. 2016, 22, 3057–3066. [Google Scholar] [CrossRef]
- Barakos, G.P.; Hatzimichael, E. Microenvironmental Features Driving Immune Evasion in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Diseases 2022, 10, 33. [Google Scholar] [CrossRef]
- Liu, M.; Yang, M.; Qi, Y.; Ma, Y.; Guo, Q.; Guo, L.; Liu, C.; Liu, W.; Xiao, L.; Yang, Y. Immunosuppressive cells in acute myeloid leukemia: Mechanisms and therapeutic target. Front. Immunol. 2025, 16, 1627161. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, J.; Shen, X. Targeting myeloid-derived suppressor cells in tumor immunotherapy: Current, future and beyond. Front. Immunol. 2023, 14, 1157537. [Google Scholar] [CrossRef]
- Hamza, T.; Barnett, J.B.; Li, B. Interleukin 12 a key immunoregulatory cytokine in infection applications. Int. J. Mol. Sci. 2010, 11, 789–806. [Google Scholar] [CrossRef]
- Li, Y.R.; Zhu, Y.; Yang, L. IL-18 revives dysfunctional CAR-T cells. Trends Cancer 2025, 11, 923–926. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wang, Y.; Hu, Q. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. Exploration 2022, 2, 20210106. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Luo, X.; Xie, Z.; Qiu, J.; Yang, J.; Deng, Y.; Long, R.; Tang, G.; Zhang, C.; Zuo, J. Prospects and challenges of CAR-T cell therapy combined with ICIs. Front. Oncol. 2024, 14, 1368732. [Google Scholar] [CrossRef] [PubMed]
- El Khawanky, N.; Hughes, A.; Yu, W.; Myburgh, R.; Matschulla, T.; Taromi, S.; Aumann, K.; Clarson, J.; Vinnakota, J.M.; Shoumariyeh, K.; et al. Demethylating therapy increases anti-CD123 CAR T cell cytotoxicity against acute myeloid leukemia. Nat. Commun. 2021, 12, 6436. [Google Scholar] [CrossRef]
- Li, C.; Teixeira, A.F.; Zhu, H.J.; Ten Dijke, P. Cancer associated-fibroblast-derived exosomes in cancer progression. Mol. Cancer 2021, 20, 154. [Google Scholar] [CrossRef]
- Kodumudi, K.N.; Siegel, J.; Weber, A.M.; Scott, E.; Sarnaik, A.A.; Pilon-Thomas, S. Immune Checkpoint Blockade to Improve Tumor Infiltrating Lymphocytes for Adoptive Cell Therapy. PLoS ONE 2016, 11, e0153053. [Google Scholar] [CrossRef]
- Wong, K.K.; Hassan, R.; Yaacob, N.S. Hypomethylating Agents and Immunotherapy: Therapeutic Synergism in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Front. Oncol. 2021, 11, 624742. [Google Scholar] [CrossRef]
- Tang, L.; Kong, Y.; Wang, H.; Zou, P.; Sun, T.; Liu, Y.; Zhang, J.; Jin, N.; Mao, H.; Zhu, X.; et al. Demethylating therapy increases cytotoxicity of CD44v6 CAR-T cells against acute myeloid leukemia. Front. Immunol. 2023, 14, 1145441. [Google Scholar] [CrossRef]
- Haubner, S.; Perna, F.; Köhnke, T.; Schmidt, C.; Berman, S.; Augsberger, C.; Schnorfeil, F.M.; Krupka, C.; Lichtenegger, F.S.; Liu, X.; et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia 2019, 33, 64–74. [Google Scholar] [CrossRef]
- Kenderian, S.S.; Ruella, M.; Shestova, O.; Klichinsky, M.; Aikawa, V.; Morrissette, J.J.D.; Scholler, J.; Song, D.; Porter, D.L.; Carroll, M.; et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 2015, 29, 1637–1647. [Google Scholar] [CrossRef]
- Naik, S.; Madden, R.M.; Lipsi, A. Safety and anti-leukemic activity of CD123-CAR T cells in pediatric patients with AML: Preliminary results from a phase 1 trial. Blood 2022, 140, 4584–4585. [Google Scholar] [CrossRef]
- Mosna, F. The immunotherapy of acute myeloid leukemia: A clinical point of view. Cancers 2024, 16, 2359. [Google Scholar] [CrossRef] [PubMed]
- Diermayr, S.; Himmelreich, H.; Durovic, B.; Mathys-Schneeberger, A.; Siegler, U.; Langenkamp, U.; Hofsteenge, J.; Gratwohl, A.; Tichelli, A.; Paluszewska, M.; et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines. Blood 2008, 111, 1428–1436. [Google Scholar] [CrossRef] [PubMed]
- Gillissen, M.A.; Kedde, M.; de Jong, G.; Yasuda, E.; Levie, S.E.; Bakker, A.Q.; Kersten, M.J.; Hensbergen, P.; Beaumont, T.; van Helden, P.M.; et al. Tumor specific glycosylated CD43 is a novel and highly specific target for acute myeloid leukemia and myelodysplastic syndrome. Blood 2016, 28, 1646. [Google Scholar] [CrossRef]
- Hosen, N.; Park, C.Y.; Tatsumi, N.; Oji, Y.; Sugiyama, H.; Gramatzki, M.; Krensky, A.M.; Weissman, I.L. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 2007, 104, 11008–11013. [Google Scholar] [CrossRef] [PubMed]
- Jordan, C.T.; Upchurch, D.; Szilvassy, S.J.; Guzman, M.L.; Howard, D.S.; Pettigrew, A.L.; Meyerrose, T.; Rossi, R.; Grimes, B.; Rizzieri, D.A.; et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000, 14, 1777–1784. [Google Scholar] [CrossRef]
- Kikushige, Y.; Shima, T.; Takayanagi, S.-I.; Urata, S.; Miyamoto, T.; Iwasaki, H.; Takenaka, K.; Teshima, T.; Tanaka, T.; Inagaki, Y.; et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010, 7, 708–717. [Google Scholar] [CrossRef]
- Konopleva, M.; Rissling, I.; Andreeff, M. CD38 in hematopoietic Malignancies. Chem. Immunol. 2000, 75, 189–206. [Google Scholar] [CrossRef]
- Krupka, C.; Lichtenegger, F.S.; Köhnke, T.; Bögeholz, J.; Bücklein, V.; Roiss, M.; Altmann, T.; Do, T.U.; Dusek, R.; Wilson, K.; et al. Targeting CD157 in AML using a novel, Fc-engineered antibody construct. Oncotarget 2017, 8, 35707–35717. [Google Scholar] [CrossRef]
- Legras, S.; Günthert, U.; Stauder, R.; Curt, F.; Oliferenko, S.; Kluin-Nelemans, H.; Marie, J.; Proctor, S.; Jasmin, C.; Smadja-Joffe, F. A strong expression of CD44-6v correlates with shorter survival of patients with acute myeloid leukemia. Blood 1998, 91, 3401–3413. [Google Scholar] [CrossRef]
- Majeti, R.; Chao, M.P.; Alizadeh, A.A.; Pang, W.W.; Jaiswal, S.; Gibbs, K.D.; Van Rooijen, N.; Weissman, I.L. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009, 138, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kitamura, H.; Hijikata, A.; Tomizawa-Murasawa, M.; Tanaka, S.; Takagi, S.; Uchida, N.; Suzuki, N.; Sone, A.; Najima, Y.; et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci. Transl. Med. 2010, 2, 17ra9. [Google Scholar] [CrossRef] [PubMed]
- Simpson, H.M.; Novak, A.; Danis, C.; Yarnell, M.; Duong, P.; Stevens, B.M.; Jordan, C.T.; Kohler, M.E. CD64 CAR-T Therapy Targets Venetoclax-Resistant Monocytic Acute Myeloid Leukemia. Blood 2024, 144, 3416. [Google Scholar] [CrossRef]
- Kuchenbauer, F.; Kern, W.; Schoch, C.; Kohlmann, A.; Hiddemann, W.; Haferlach, T.; Schnittger, S. Detailed analysis of FLT3 expression levels in acute myeloid leukemia. Haematologica 2005, 90, 1617–1625. [Google Scholar]
- Knorr, K.; Rahman, J.; Erickson, C.; Wang, E.; Monetti, M.; Li, Z.; Ortiz-Pacheco, J.; Jones, A.; Lu, S.X.; Stanley, R.F.; et al. Systematic evaluation of AML-associated antigens identifies anti-U5 SNRNP200 therapeutic antibodies for the treatment of acute myeloid leukemia. Nat. Cancer 2023, 4, 1675–1692. [Google Scholar] [CrossRef]
- Maiorova, V.; Mollaev, M.D.; Vikhreva, P.; Kibardin, A.; Maschan, M.A.; Larin, S.S. The Problem of Molecular Target Choice for CAR-T Cells in Acute Myeloid Leukemia Therapy. Int. J. Mol. Sci. 2025, 26, 5428. [Google Scholar] [CrossRef]
- Liao, Q.; Mao, Y.; Feng, M.; Zheng, N.; Ding, X.; Zhang, X.; Wang, Z.; Xu, J. Advances in CAR-T cell therapy for refractory diseases: Challenges, innovations, clinical breakthroughs, and future prospects. Clin. Cancer Bull. 2025, 4, 21. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, M.; Wang, M.; Zhou, R.; Deng, X.; Ouyang, X.; Chu, M.; Wei, X.; Yang, L.; Liu, J.; et al. From molecular design to clinical translation: Dual-targeted CAR-T strategies in cancer immunotherapy. Int. J. Biol. Sci. 2025, 21, 2676–2691. [Google Scholar] [CrossRef]
- Tomai, R.; Rivas, J.D.L.; Fetica, B.; Bergantim, R.; Filipic, B.; Gagic, Z.; Nikolic, K.; Gulei, D.; Kegyes, D.; Nistor, M.; et al. Challenges in the preclinical design and assessment of CAR-T cells. Front. Immunol. 2025, 16, 1564998. [Google Scholar] [CrossRef]
- Li, G.; Li, D.; Zhu, X. Next-generation T cell immunotherapy: Overcoming exhaustion, senescence, and suppression. Front. Immunol. 2025, 16, 1662145. [Google Scholar] [CrossRef]
- Tipanee, J.; Samara-Kuko, E.; Gevaert, T.; Chuah, M.K.; VandenDriessche, T. Universal allogeneic CAR T cells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy. Mol. Ther. 2022, 30, 3155–3175. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, Y.; Zhang, M.; Ge, W.; Li, Y.; Yang, L.; Wei, G.; Han, L.; Wang, H.; Yu, S.; et al. CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2021, 27, 2764–2772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fang, H.; Wang, G.; Yuan, G.; Dong, R.; Luo, J.; Lyu, Y.; Wang, Y.; Li, P.; Zhou, C.; et al. Cyclosporine A-resistant CAR-T cells mediate antitumour immunity in the presence of allogeneic cells. Nat. Commun. 2023, 14, 8491. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.; Bak, S.H.; Park, T.; Kim, J.W.; Yoon, S.-R.; Jung, H.; Noh, J.-Y. Understanding NK cell biology for harnessing NK cell therapies: Targeting cancer and beyond. Front. Immunol. 2023, 14, 1192907. [Google Scholar] [CrossRef] [PubMed]
- Heipertz, E.L.; Zynda, E.R.; Stav-Noraas, T.E.; Hungler, A.D.; Boucher, S.E.; Kaur, N.; Vemuri, M.C. Current perspectives on “Off-the-shelf” Allogeneic NK and CAR-NK cell therapies. Front. Immunol. 2021, 12, 732135. [Google Scholar] [CrossRef]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Kerbauy, L.N.; Overman, B.; Thall, P.; Kaplan, M.; et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef]
- Zhang, C.; Oberoi, P.; Oelsner, S.; Waldmann, A.; Lindner, A.; Tonn, T.; Wels, W.S. Chimeric antigen receptor-engineered NK-92 cells: An off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Front. Immunol. 2017, 8, 533. [Google Scholar] [CrossRef]
- Peng, L.; Sferruzza, G.; Yang, L.; Zhou, L.; Chen, S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell. Mol. Immunol. 2024, 21, 1089–1108. [Google Scholar] [CrossRef]
- Gao, C.; Li, X.; Xu, Y.; Zhang, T.; Zhu, H.; Yao, D. Recent advances in CAR-T cell therapy for acute myeloid leukaemia. J. Cell. Mol. Med. 2024, 28, e18369. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, L.Y.; Zhao, Y.; Chen, Y.; Ma, P.; Xie, J.C.; Pan, X.M.; Zhang, X.; Chen, Y.C.; Wang, Q.; Xie, L.L. CAR-T cell therapy clinical trials: Global progress, challenges, and future directions from ClinicalTrials.gov insights. Front. Immunol. 2025, 16, 1583116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bernasconi, P.; Borsani, O. Targeting Leukemia Stem Cell-Niche Dynamics: A New Challenge in AML Treatment. J. Oncol. 2019, 2019, 8323592. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.A.B.; Primo, D.; Barea, M.J.P.; Sierro, B.; Guijarro-Albaladejo, B.; Weng, X.; Omenaca, M.; Garcia-Guerrero, E.; Ballesteros, J.; Pérez-Simón, J.A. Innovative Bone Marrow CAR-T Cell Manufacturing for AML: Enhancing Viability and Tumor Migration. Blood 2024, 144, 3478. [Google Scholar] [CrossRef]
- Qi, T.; McGrath, K.; Ranganathan, R.; Dotti, G.; Cao, Y. Cellular kinetics: A clinical and computational review of CAR-T cell pharmacology. Adv. Drug Deliv. Rev. 2022, 188, 114421. [Google Scholar] [CrossRef] [PubMed]
- Alnefaie, A.; Albogami, S.; Asiri, Y.; Ahmad, T.; Alotaibi, S.S.; Al-Sanea, M.M.; Althobaiti, H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front. Bioeng. Biotechnol. 2022, 10, 797440. [Google Scholar] [CrossRef]
- Mansoori, S.; Noei, A.; Maali, A.; Seyed-Motahari, S.S.; Sharifzadeh, Z. Recent updates on allogeneic CAR-T cells in hematological malignancies. Cancer Cell Int. 2024, 24, 304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Medina-Olivares, F.J.; Gómez-De León, A.; Ghosh, N. Obstacles to global implementation of CAR T cell therapy in myeloma and lymphoma. Front. Oncol. 2024, 14, 1397613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pérez-Amill, L.; Bataller, À.; Delgado, J.; Esteve, J.; Juan, M.; Klein-González, N. Advancing CART therapy for acute myeloid leukemia: Recent breakthroughs and strategies for future development. Front. Immunol. 2023, 14, 1260470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guijarro-Albaladejo, B.; Marrero-Cepeda, C.; Rodríguez-Arbolí, E.; Sierro-Martínez, B.; Pérez-Simón, J.A.; García-Guerrero, E. Chimeric antigen receptor (CAR) modified T Cells in acute myeloid leukemia: Limitations and expectations. Front. Cell Dev. Biol. 2024, 12, 1376554. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naik, S.; Velasquez, M.P.; Gottschalk, S. Chimeric antigen receptor T-cell therapy in childhood acute myeloid leukemia: How far are we from a clinical application? Haematologica 2024, 109, 1656–1667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, S.; van den Brink, M.R.M. Allogeneic “Off-the-Shelf” CAR T cells: Challenges and advances. Best Pract. Res. Clin. Haematol. 2024, 37, 101566. [Google Scholar] [CrossRef] [PubMed]
- Duncan, B.B.; Dunbar, C.E.; Ishii, K. Applying a clinical lens to animal models of CAR-T cell therapies. Mol. Ther. Methods Clin. Dev. 2022, 27, 17–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fløe, L.V.B.; Pedersen, M.G.; Møller, B.K. Animal models in preclinical evaluation of CAR-T cell therapy: Advantages and limitations. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189455. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Bai, L. Progress, implications, and challenges in using humanized immune system mice in CAR-T therapy-Application evaluation and improvement. Anim. Model. Exp. Med. 2024, 7, 3–11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Damiani, D.; Tiribelli, M. Advancing Chimeric Antigen Receptor T-Cell Therapy for Acute Myeloid Leukemia: Current Limitations and Emerging Strategies. Pharmaceuticals 2024, 17, 1629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rozenbaum, M.; Meir, A.; Aharony, Y.; Itzhaki, O.; Schachter, J.; Bank, I.; Jacoby, E.; Besser, M.J. Gamma-Delta CAR-T Cells Show CAR-Directed and Independent Activity Against Leukemia. Front. Immunol. 2020, 11, 1347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, L.; Feng, Y.; Zhou, Z. A close look at current γδ T-cell immunotherapy. Front. Immunol. 2023, 14, 1140623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fang, Y.; Zhu, Y.; Kramer, A.; Chen, Y.; Li, Y.R.; Yang, L. Graft-versus-Host Disease Modulation by Innate T Cells. Int. J. Mol. Sci. 2023, 24, 4084. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dos Reis, F.D.; Saidani, Y.; Martín-Rubio, P.; Sanz-Pamplona, R.; Stojanovic, A.; Correia, M.P. CAR-NK cells: Harnessing the power of natural killers for advanced cancer therapy. Front. Immunol. 2025, 16, 1603757. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goldenson, B.H.; Zhu, H.; Wang, Y.M.; Heragu, N.; Bernareggi, D.; Ruiz-Cisneros, A.; Bahena, A.; Ask, E.H.; Hoel, H.J.; Malmberg, K.J.; et al. Umbilical Cord Blood and iPSC-Derived Natural Killer Cells Demonstrate Key Differences in Cytotoxic Activity and KIR Profiles. Front. Immunol. 2020, 11, 561553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, A.; Agha, M.; Raptis, A.; Hou, J.Z.; Farah, R.; Redner, R.L.; Im, A.; Dorritie, K.A.; Sehgal, A.; Rossetti, J.; et al. Outcomes of Patients with Acute Myeloid Leukemia Who Relapse After 5 Years of Complete Remission. Oncol. Res. 2021, 28, 811–814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ciftciler, R.; Demiroglu, H.; Haznedaroglu, I.C.; Sayınalp, N.; Aksu, S.; Ozcebe, O.; Goker, H.; Aydın, M.S.; Buyukasık, Y. Impact of Time Between Induction Chemotherapy and Complete Remission on Survival Outcomes in Patients withAcute Myeloid Leukemia. Clin. Lymphoma Myeloma Leuk. 2019, 19, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Baguet, C.; Larghero, J.; Mebarki, M. Early predictive factors of failure in autologous CAR T-cell manufacturing and/or efficacy in hematologic malignancies. Blood Adv. 2024, 8, 337–342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brezinger-Dayan, K.; Itzhaki, O.; Melnichenko, J.; Kubi, A.; Zeltzer, L.A.; Jacoby, E.; Avigdor, A.; Shapira Frommer, R.; Besser, M.J. Impact of cryopreservation on CAR T production and clinical response. Front. Oncol. 2022, 12, 1024362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mamonkin, M. CD7 CAR-T: A bridge to transplant in AML. Blood 2025, 145, 995–996. [Google Scholar] [CrossRef] [PubMed]
- Hoover, A.; Reimche, P.; Watson, D.; Tanner, L.; Gilchrist, L.; Finch, M.; Messinger, Y.H.; Turcotte, L.M. Healthcare cost and utilization for chimeric antigen receptor (CAR) T-cell therapy in the treatment of pediatric acute lymphoblastic leukemia: A commercial insurance claims database analysis. Cancer Rep. 2024, 7, e1980. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cliff, E.R.S.; Kelkar, A.H.; Russler-Germain, D.A.; Tessema, F.A.; Raymakers, A.J.N.; Feldman, W.B.; Kesselheim, A.S. High Cost of Chimeric Antigen Receptor T-Cells: Challenges and Solutions. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e397912. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, E. CAR-T cell therapies: Patient access and affordability solutions. Future Sci. OA 2025, 11, 2483613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thavorn, K.; Thompson, E.R.; Kumar, S.; Heiskanen, A.; Agarwal, A.; Atkins, H.; Shorr, R.; Hawrysh, T.; Chan, K.K.; Presseau, J.; et al. Economic Evaluations of Chimeric Antigen Receptor T-Cell Therapies for Hematologic and Solid Malignancies: A Systematic Review. Value Health 2024, 27, 1149–1173. [Google Scholar] [CrossRef] [PubMed]
- Abdo, L.; Batista-Silva, L.R.; Bonamino, M.H. Cost-effective strategies for CAR-T cell therapy manufacturing. Mol. Ther. Oncol. 2025, 33, 200980. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borgert, R. Improving outcomes and mitigating costs associated with CAR T-cell therapy. Am. J. Manag. Care 2021, 27, S253–S261. [Google Scholar] [CrossRef] [PubMed]
| Name and References | Characteristics | Indications |
|---|---|---|
| CPX-351 [13,15] | Dual-drug liposomal formulation that encapsulates cytarabine/daunorubicin in a 5:1 fixed molar ratio | Adults with newly diagnosed therapy-related AML or AML with myelodysplastic-related changes. |
| Gemtuzumab-Ozogamicin [16] | Humanized anti-CD33 IgG4 antibody chemically linked to a calicheamicin-based cytotoxic warhead. | In combination with daunorubicin and cytarabine for the treatment of patients aged 15 years and older with de novo, previously untreated CD33-positive AML, except acute promyelocytic leukemia. |
| Azacitidine [9,11,13] | DNA methylation inhibition. Azacytidine, once incorporated into DNA, irreversibly binds to DNA methyltransferases. | Adult patients who are not eligible for ALLO-SCT with the following:
|
| Dacitabine [14] | Synthetic nucleoside analogue of cytidine. Once inside the cell, it is incorporated into DNA during replication. When DNA methyltransferases attempt to methylate DNA containing decitabine, they become irreversibly bound to it. | Adult patients with newly diagnosed AML “de novo” or secondary, according to the WHO classification, who are not eligible for standard induction chemotherapy. |
| Midostaurin [18] | Protein kinase inhibitor. It works by blocking the action of specific proteins called kinases, which play a key role in the growth and division of cancer cells. By inhibiting these kinases, midostaurin helps to slow down or stop the proliferation of cancer cells. | In combination with standard induction chemotherapy with daunorubicin and cytarabine and consolidation with high-dose cytarabine, followed, for patients in complete response, by maintenance therapy as a single agent for adult patients with newly diagnosed AML with FLT3 mutation as monotherapy for the treatment of adult patients with aggressive systemic mastocytosis, systemic mastocytosis with associated hematological neoplasm, or mast cell leukemia. |
| Gilteritinib [17] | Tyrosine kinase inhibitor. Gilteritinib binds to the adenosine triphosphate (ATP)-binding site of the FLT3 receptor, which is often mutated (e.g., FLT3-ITD and FLT3-TKD mutations) and constitutively active in acute AML cells. Competitive inhibition of this site prevents the receptor from autophosphorylating and activating downstream signaling cascades. | Treatment of adult patients with relapsed or refractory AML that has an FLT3 mutation. |
| Quizartinib [8,19,26] | Oral and potent FLT3 inhibitor. It is the first drug developed specifically targeting FLT3, as other agents with FLT3 inhibition activities were investigated with other targets in mind. Additionally, quizartinib also demonstrates inhibitory activity toward FLT3 with ITD, although with a 10-fold lower affinity compared to wild-type FLT3. | In combination with standard induction chemotherapy based on cytarabine and anthracycline and standard consolidation chemotherapy based on cytarabine, followed by Quizartinibas maintenance monotherapy, for adult patients with newly diagnosed FLT3-ITD-positiveAML. |
| Venetoclax [9,10,11,12] | Potent selective inhibitor of BCL-2, an anti-apoptotic protein. Venetoclax binds directly to the BH3-binding domain of BCL-2, preventing the binding of pro-apoptotic proteins (such as BIM) that contain BH3 motifs, resulting in mitochondrial outer membrane permeabilization (MOMP), caspase activation, and programmed cell death. | In combination with a hypomethylating agent, it is indicated for the treatment of adult patients with newly diagnosed AML who are not eligible for intensive chemotherapy. |
| Ivosidenib [25,27] | First-in-class IDH1 inhibitor. IDH1 is an enzyme that is often mutated and overexpressed in some cancers, leading to aberrant cell growth and proliferation. Ivosidenib inhibits mutated IDH1, blocking its enzymatic activity and preventing the further differentiation of cancer cells. | Newly diagnosed AML in older adults in combination with azacitidine or as monotherapy, and relapsed or refractory myelodysplastic syndromes in adults. The drug is only effective in patients with a susceptible IDH1 mutation. |
| Olutasidenib [20,28] | Small-molecule inhibitor that works by selectively targeting the mutated IDH1 enzyme, preventing it from producing the oncometabolite 2-hydroxyglutarate. | Adult patients with R/R AML who have a susceptible IDH1 mutation. |
| Enasidenib [21,29] | It works by selectively inhibiting the mutant form of the IDH2 enzyme. This inhibition decreases the levels of the oncometabolite 2-hydroxyglutarate (2-HG), which, in turn, relieves the block on normal myeloid cell differentiation and promotes the maturation of leukemic cells into more functional white blood cells. | Adult patients with R/R AML who have an IDH2 mutation. |
| Menin inhibitors [30] | Menin inhibitors work by disrupting the interaction between the menin protein and the KMT2A (or MLL) complex, which is crucial for the survival of certain AML cell types. This disruption blocks the expression of genes such as HOX and MEIS1, leading to the differentiation, proliferation arrest, and apoptosis of cancer cells. | R/R AML, specifically those with either a KMT2A gene rearrangement or an NPM1 mutation. They are approved for adults and children aged one year and older. |
| Target (Reference) | Expression |
|---|---|
| CD33 [83] | Expressed in more than 90% of leukemic blasts. Expressed in normal progenitor cells, myeloid cells, monocytes, and tissue-resident macrophages. |
| CD123 [84] | Cell-surface markers are overexpressed on many AML cells. This overexpression is particularly noted in AML subtypes with NPM1 and/or FLT3 mutations, which may benefit from CD123-targeted treatments. |
| CLL-1 [85] | Highly expressed on AML blasts and demonstrates stable expression throughout disease progression. CLL-1’s consistent presence makes it an ideal candidate for monitoring minimal residual disease (MRD), which is a critical indicator for predicting relapse. |
| NKG2D ligand [86] | Proteins expressed on the surface of AML cells that are recognized by the NKG2D receptor on immune cells, like natural killer (NK) and T cells, which can then trigger an immune response to kill cancer cells. While some AML cells express a variety of NKG2D-L, others, particularly leukemia stem cells, often evade immune detection by downregulating or expressing low levels of these ligands. |
| CD43 [87] | A protein that is being studied as a potential new therapeutic target for AML, specifically a form called CD43s, which is present in leukemia cells but not in healthy cells. |
| CD96 [88] | Marker of leukemic stem cells (LSCs) in AML cells. Its expression is associated with tumor cell proliferation and dysfunction of natural killer (NK) cells that attack tumor cells. Therapies targeting CD96 could help eliminate residual LSCs and improve treatment outcomes, particularly in stem cell transplants. |
| interleukin-3 receptor alpha chain [89] | Also called CD123, it is a cell-surface protein that is a promising therapeutic target in AML because it is overexpressed on AML stem cells but not on normal stem cells. Targeting CD123 enables the selective destruction of leukemia cells with minimal impact on healthy blood cells. High CD123 expression in AML is associated with a worse prognosis and higher blast counts at diagnosis. |
| TIM-3 [90] | T-cell immunoglobulin mucin-3 (TIM-3) is expressed on LSCs in most types of primary AML, except for acute promyelocytic leukemia. TIM-3 is not expressed in normal hematopoietic stem cells (HSCs). Targeting TIM-3 with an anti-TIM-3 cytotoxic antibody could be sufficient to eradicate human AML LSCs without affecting normal human hematopoiesis. |
| CD38 [91] | Known to be expressed on most AML and myeloma cells, and its lack of expression on hematopoietic stem cells (HSCs) renders it a potential therapeutic target for relapsed AML. |
| CD157 [92] | It is a protein expressed in approximately 97% of patients with AML, especially with subtypes M4 and M5 (myelomonocytic and myeloid leukemia). It is considered a valuable marker for minimal residual disease (MRD), and leukemia cells that give rise to relapses have been found to contain CD157. CD157 signaling promotes AML cell survival and may increase resistance to chemotherapy. |
| CD44v6 [93] | Selectively and highly expressed in hematopoietic and epithelial tumors and is an indication of cancer stem cells for multiple cancers. The CD44 isoform 6 is relatively tumor-limited and associated with a poor prognosis. In AML, CD44v6 was selectively expressed in primary AML cells but not in HSCs, thereby ensuring its safety as a CAR-T therapeutic antigen. |
| CD47 [94] | It is a protein on leukemia cells (LSCs) and tumor cells that inhibits immune cells (macrophages) from eliminating them. Overexpression of CD47 in AML is linked to increased disease and a worse prognosis. Blocking this signal can overcome this immune suppression, engaging macrophages to eliminate AML cells. |
| CD64 [96] | Protein surface marker that can be used to identify and treat AML, particularly monocytic forms (AML-M5). The expression of CD64 can be a useful diagnostic tool for distinguishing AML subtypes and is a promising target for new targeted therapies. |
| U5 snRNP200 [98] | It is a nuclear protein, an essential component of the spliceosome, that acts as an RNA helicase and catalyzes the unwinding of the U4/U6 RNA duplex. It has an abnormal expression on the surface of hematological cancer cells (such as AML) and leukemic B cells. It is not present on normal hematopoietic stem cells. |
| FLT3 [97] | FLT3 gene mutations occur in 30% of AML cases and are associated with a poorer prognosis, particularly internal tandem duplications (FLT3-ITD). |
| Challenge | Comments | Advantages | Disadvantages |
|---|---|---|---|
| Target Antigen Selection | Most myeloid antigens (CD33, CD123, CLL-1) are shared with normal hematopoietic stem cells, creating risk of myeloablation | Potential for highly specific targeting. Multiple candidate antigens available. | On-target, off-tumor toxicity Risk of prolonged cytopenias May require stem cell rescue Limited truly leukemia-specific targets |
| Antigen Heterogeneity and Escape | AML blasts show significant inter- and intra-patient heterogeneity; single-antigen targeting allows antigen-negative relapse | Can use multi-targeted approaches. Combination strategies possible. | Antigen-loss variants emerge Clonal evolution favors escape Requires complex dual/tandem CAR designs |
| Immunosuppressive Tumor Microenvironment | AML creates hostile bone marrow environment with regulatory T cells, myeloid-derived suppressor cells, and inhibitory cytokines | Can potentially engineer CAR-T cells to resist suppression. Combination with checkpoint inhibitors possible. | CAR-T exhaustion and dysfunction Reduced persistence Impaired trafficking to bone marrow Poor expansion in vivo |
| Manufacturing Challenges | AML patients often have poor T-cell quality/quantity due to prior chemotherapy and disease burden | Allogeneic CAR-T options in development. Can use healthy donor T cells. | Failed or delayed manufacturing T-cell dysfunction in source material Higher costs and complexity Limited time window in aggressive disease |
| Disease Kinetics | AML is highly aggressive, with rapid progression compared to B-cell malignancies | Urgent treatment need may accelerate approvals. Clear unmet medical need. | Limited time for CAR-T manufacturing May require bridging chemotherapy Disease progression during production Patients may become too ill for treatment |
| Cytokine Release Syndrome (CRS) | Risk of severe inflammatory response, though potentially less severe than in ALL due to lower disease burden | Management protocols well-established. Tocilizumab and steroids effective. | Can be life-threatening. Requires ICU-level monitoring May limit dosing Can impact CAR-T efficacy if managed with steroids |
| Limited CAR-T Persistence | CAR-T cells often show poor long-term persistence in AML compared to lymphoid malignancies | Repeated dosing possible. Can optimize CAR design for persistence. | Higher relapse rates May require consolidation strategies Difficult to maintain remission Unknown optimal dosing schedule |
| Prior Treatment Effects | Heavy pre-treatment with chemotherapy, hypomethylating agents, and stem cell transplant affects immune function | Multiple lines of therapy validate refractory nature. Supports rationale for novel approaches. | Depleted/exhausted T cell repertoire Impaired CAR-T function Poor manufacturing substrate Increased toxicity risk |
| Myeloablation Risk | Targeting myeloid antigens risks eliminating normal hematopoiesis, potentially requiring permanent stem cell support | Can plan for stem cell rescue. Haploidentical rescue feasible. | Need for backup stem cells Risk of graft failure Long-term transfusion dependence Complicates risk–benefit analysis |
| Lack of Reliable Biomarkers | Difficult to predict which patients will respond or develop toxicity | Active area of research. May enable personalized approaches. | Cannot stratify patients effectively Unclear optimal selection criteria Inefficient use of resources Difficult trial design |
| Parameter | B-ALL (Success) | AML (Challenges) |
|---|---|---|
| Target antigen | CD19 (lineage-restricted) | CD33, CD123 (myeloid lineage) |
| TME immunosuppression | Low | High (MDSC, Treg-enriched) |
| Disease location | Circulating, marrow | Predominantly marrow niches |
| Metabolic stress | Moderate | Severe (hypoxia, acidosis) |
| On-target/off-tumor | Manageable (B-cell aplasia) | Severe (myeloablation) |
| Strategy | Description/Comments | Advantages | Disadvantages |
|---|---|---|---|
| Multi-target CAR-T cells | CAR-T cells targeting multiple antigens (e.g., CD33, CD123, CLL-1) simultaneously or sequentially | Reduces risk of antigen escape; broader leukemic cell coverage; improved tumor eradication | Complex manufacturing; potential for increased toxicity; risk of myeloablation requiring stem cell rescue |
| Logic-gated CAR designs | CAR constructs requiring recognition of multiple antigens (AND gates) or targeting one while avoiding another (NOT gates) | Enhanced specificity; reduced on-target/off-tumor toxicity; protects normal hematopoietic cells | Complex engineering; potentially reduced CAR-T activation; technically challenging to manufacture |
| Switchable/controllable CARs | Systems using adapter molecules or small molecule switches to control CAR-T activity | Titratable activity: can be turned off if toxicity occurs; improved safety profile | Requires continuous administration of adapter molecules; increased complexity and cost; potential immunogenicity |
| Armored CAR-T cells | CAR-T cells engineered to secrete cytokines (IL-15, IL-18) or express chemokine receptors | Enhanced persistence and proliferation; improved trafficking to tumor sites; resistance to immunosuppressive microenvironment | Risk of cytokine-related toxicity; potential for uncontrolled T-cell expansion; manufacturing complexity |
| Allogeneic (off-the-shelf) CAR-T | Universal donor-derived CAR-T cells with edited TCR and HLA to prevent GVHD and rejection | Immediate availability; reduced cost; standardized product; no need for patient leukapheresis | Risk of rejection; limited persistence; GVHD potential; requires sophisticated gene editing |
| Combination with chemotherapy | CAR-T therapy combined with lymphodepleting or targeted chemotherapy | Reduces tumor burden pre-infusion; lymphodepletion enhances CAR-T expansion; synergistic effects | Added toxicity; complexity in timing and dosing; may affect CAR-T cell quality if given before collection |
| Checkpoint inhibitor combination | CAR-T cells combined with PD-1/PD-L1 or CTLA-4 inhibitors | Prevents T-cell exhaustion; enhances CAR-T persistence; overcomes immunosuppressive microenvironment | Increased immune-related adverse events; potential for severe toxicity; cost implications |
| Targeting AML stem cells | CARs directed against stem cell markers (CD33, CD123, TIM-3, CD96) | Addresses root cause of relapse; potential for curative outcomes; prevents disease regeneration | Risk of hematopoietic stem cell depletion; requires stem cell transplant backup; long-term cytopenias |
| NK cell-based CAR therapy | CAR-engineered natural killer cells instead of T cells | Lower cytokine release syndrome risk; can use allogeneic sources; natural antitumor activity | Limited persistence compared to T cells; less clinical experience; expansion challenges |
| Suicide gene integration | Incorporation of safety switches (e.g., inducible caspase-9) for rapid CAR-T elimination | Enhanced safety; ability to quickly terminate therapy if severe toxicity occurs; patient reassurance | Irreversible elimination of CAR-T cells; may lose therapeutic benefit; requires additional genetic modification |
| Autologous stem cell backup | Collection and preservation of patient’s stem cells before CAR-T therapy | Allows aggressive targeting of myeloid antigens; safety net for myeloablation; enables hematopoietic rescue | Requires additional procedures; increased cost; stem cells may be contaminated with leukemic cells |
| Base editing/CRISPR enhancement | Precise gene editing to enhance CAR-T function, reduce exhaustion, or improve specificity | Highly specific modifications; can knockout inhibitory receptors; improved CAR-T functionality | Technical complexity; potential off-target effects; regulatory challenges; long-term safety unknown |
| CAR-NK or CAR-macrophage therapy | Using innate immune cells as CAR platforms instead of T cells | Different toxicity profile; can target tumor microenvironment; complementary mechanisms | Less established clinical data; persistence questions; manufacturing challenges |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Alati, C.; Pitea, M.; Molica, M.; Rossi, M.; Alvaro, M.E.; Porto, G.; Bilardi, E.; Utano, G.; Policastro, G.; Micò, M.C.; et al. Is There a Future for CAR-T Therapy in Acute Myeloid Leukemia? Cancers 2026, 18, 107. https://doi.org/10.3390/cancers18010107
Alati C, Pitea M, Molica M, Rossi M, Alvaro ME, Porto G, Bilardi E, Utano G, Policastro G, Micò MC, et al. Is There a Future for CAR-T Therapy in Acute Myeloid Leukemia? Cancers. 2026; 18(1):107. https://doi.org/10.3390/cancers18010107
Chicago/Turabian StyleAlati, Caterina, Martina Pitea, Matteo Molica, Marco Rossi, Maria Eugenia Alvaro, Gaetana Porto, Erica Bilardi, Giovanna Utano, Giorgia Policastro, Maria Caterina Micò, and et al. 2026. "Is There a Future for CAR-T Therapy in Acute Myeloid Leukemia?" Cancers 18, no. 1: 107. https://doi.org/10.3390/cancers18010107
APA StyleAlati, C., Pitea, M., Molica, M., Rossi, M., Alvaro, M. E., Porto, G., Bilardi, E., Utano, G., Policastro, G., Micò, M. C., Marafioti, V., & Martino, M. (2026). Is There a Future for CAR-T Therapy in Acute Myeloid Leukemia? Cancers, 18(1), 107. https://doi.org/10.3390/cancers18010107

