T-Cell Redirecting Therapies in Multiple Myeloma: Pathogenesis and Management of Toxicities Beyond CRS and ICANS
Simple Summary
Abstract
1. Introduction
2. Cytopenias
2.1. Incidence of Cytopenias from Clinical Trials and Real-World Setting
Ide-Cel | Cilta-Cel | Teclistamab | Elranatamab | Talquetamab | ||||
---|---|---|---|---|---|---|---|---|
KarMMa [1] | KarMMa-3 [2,18] | CARTITUDE-1 [25,26,27] | CARTITUDE-4 [3,28] | MajesTEC-1 [4,29,30] | MagnetisMM-3 [5] | MonumenTAL-1 [6,31,32] | ||
405 μg QW | 800 μg Q2W | |||||||
Neutropenia | ||||||||
All grade | 91% | 78% | 96% | 90% | 72% | 49% | 67% | 36% |
Grade ≥ 3 | 89% | 76% | 95% | 90% | 65% | 49% | 60% | 32% |
Persistent * grade ≥ 3 | 41% | 40% | 30% | 26% | / | / | / | / |
Thrombocytopenia | ||||||||
All grade | 63% | 54% | 79% | 54% | 42% | 31% | 37% | 23% |
Grade ≥ 3 | 52% | 42% | 60% | 41% | 23% | 24% | 23% | 11% |
Persistent * grade ≥ 3 | 48% | 37% | 41% | 26% | / | / | / | / |
Anaemia | ||||||||
All grade | 70% | 66% | 81% | 54% | 55% | 49% | 60% | 42% |
Grade ≥ 3 | 60% | 51% | 68% | 36% | 38% | 37% | 30% | 23% |
Hypogammaglobulinemia | ||||||||
All grade § | 21% | 11% | 12% | 42% | 74.5% | 75.5% | 87% | 71% |
Infections | ||||||||
All grade | 69% | 58% | 58% | 62% | 80% | 70% | 58% | 65% |
Grade ≥ 3 | 22% | 24% | 20% | 27% | 55% | 40% | 22% | 16% |
Grade 5 | UR | 4% | 4% | 6% | 13% | 6.5% | <1.5% | |
IEC-HS | ||||||||
3% | 1% | No cases reported |
2.2. Pathophysiology and Factors Contributing to Cytopenias
2.3. Diagnostic Work-Up and Management of Cytopenias
3. Hypogammaglobulinemia
3.1. Incidence of Hypogammaglobulinemia from Clinical Trials and Real-World Setting
3.2. Management of Hypogammaglobulinemia
4. Infections
4.1. Incidence of Infections from Clinical Trials and Real-World Setting
4.2. Pathophysiology and Risk Factors
4.3. Aetiologies and Infection Sites
4.4. Management of Infectious Risk
5. Immune Effector Cell Hemophagocytic Lymphohistiocytosis-like Syndrome (IEC-HS)
5.1. Incidence of IEC-HS from Clinical Trials and Real-World Setting
5.2. Pathophysiology and Factors Contributing to IEC-HS
5.3. Diagnostic Work-Up and Management
6. Discussion and Future Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R.; et al. Ide-cel or Standard Regimens in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- San-Miguel, J.; Dhakal, B.; Yong, K.; Spencer, A.; Anguille, S.; Mateos, M.-V.; de Larrea, C.F.; Martínez-López, J.; Moreau, P.; Touzeau, C.; et al. Cilta-cel or Standard Care in Lenalidomide-Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 389, 335–347. [Google Scholar] [CrossRef]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Lesokhin, A.M.; Tomasson, M.H.; Arnulf, B.; Bahlis, N.J.; Prince, H.M.; Niesvizky, R.; Rodrίguez-Otero, P.; Martinez-Lopez, J.; Koehne, G.; Touzeau, C.; et al. Elranatamab in relapsed or refractory multiple myeloma: Phase 2 MagnetisMM-3 trial results. Nat. Med. 2023, 29, 2259–2267. [Google Scholar] [CrossRef] [PubMed]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-Cell-Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef]
- Ludwig, H.; Terpos, E.; van de Donk, N.; Mateos, M.-V.; Moreau, P.; Dimopoulos, M.-A.; Delforge, M.; Rodriguez-Otero, P.; San-Miguel, J.; Yong, K.; et al. Prevention and management of adverse events during treatment with bispecific antibodies and CAR T cells in multiple myeloma: A consensus report of the European Myeloma Network. Lancet Oncol. 2023, 24, e255–e269. [Google Scholar] [CrossRef]
- Lin, Y.; Qiu, L.; Usmani, S.; Joo, C.W.; Costa, L.; Derman, B.; Du, J.; Einsele, H.; de Larrea, C.F.; Hajek, R.; et al. Consensus guidelines and recommendations for the management and response assessment of chimeric antigen receptor T-cell therapy in clinical practice for relapsed and refractory multiple myeloma: A report from the International Myeloma Working Group Immunotherapy Committee. Lancet Oncol. 2024, 25, e374–e387, Erratum in: Lancet Oncol. 2024, 25, e336. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Otero, P.; Usmani, S.; Cohen, A.D.; van de Donk, N.W.C.J.; Leleu, X.; Pérez-Larraya, J.G.; Manier, S.; Nooka, A.K.; Mateos, M.V.; Einsele, H.; et al. International Myeloma Working Group immunotherapy committee consensus guidelines and recommendations for optimal use of T-cell-engaging bispecific antibodies in multiple myeloma. Lancet Oncol. 2024, 25, e205–e216. [Google Scholar] [CrossRef] [PubMed]
- Qiang, W.; Lu, J.; Jia, Y.; Liu, J.; Liu, J.; He, H.; Wang, X.; Fan, X.; Jin, L.; Ruan, Q.; et al. B-Cell Maturation Antigen/CD19 Dual-Targeting Immunotherapy in Newly Diagnosed Multiple Myeloma. JAMA Oncol. 2024, 10, 1259–1263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vij, R.; Kumar, S.K.; D’Souza, A.; Mckay, J.T.; Voorhees, P.M.; Chung, A.; Tuchman, S.A.; Korde, N.; Weisel, K.; Teipel, R.; et al. Updated Safety and Efficacy Results of Abbv-383, a BCMA x CD3 Bispecific T-Cell Redirecting Antibody, in a First-in-Human Phase 1 Study in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 3378. [Google Scholar] [CrossRef]
- Rejeski, K.; Subklewe, M.; Aljurf, M.; Bachy, E.; Balduzzi, A.C.; Barba, P.; Bruno, B.; Benjamin, R.; Carrabba, M.G.; Chabannon, C.; et al. Immune effector cell–associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood 2023, 142, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Tacchetti, P.; Talarico, M.; Barbato, S.; Pantani, L.; Mancuso, K.; Rizzello, I.; Zamagni, E.; Cavo, M. Antibody-drug conjugates, bispecific antibodies and CAR-T cells therapy in multiple myeloma. Expert Rev. Anticancer. Ther. 2024, 24, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Rejeski, K.; Wang, Y.; Hansen, D.K.; Iacoboni, G.; Bachy, E.; Bansal, R.; Penack, O.; Müller, F.; Bethge, W.; Munoz, J.; et al. Applying the EHA/EBMT grading for ICAHT after CAR-T: Comparative incidence and association with infections and mortality. Blood Adv. 2024, 8, 1857–1868. [Google Scholar] [CrossRef] [PubMed]
- Cordas dos Santos, D.M.; Tix, T.; Shouval, R.; Gafter-Gvili, A.; Alberge, J.B.; Cliff, E.R.S.; Theurich, S.; von Bergwelt-Baildon, M.; Ghobrial, I.M.; Subklewe, M.; et al. A systematic review and meta-analysis of nonrelapse mortality after CAR T cell therapy. Nat. Med. 2024, 30, 2667–2678. [Google Scholar] [CrossRef]
- Li, H.; Zhao, L.; Sun, Z.; Yao, Y.; Li, L.; Wang, J.; Hua, T.; Ji, S.; Wang, S.; Cheng, H.; et al. Prolonged hematological toxicity in patients receiving BCMA/CD19 CAR-T-cell therapy for relapsed or refractory multiple myeloma. Front. Immunol. 2022, 13, 1019548. [Google Scholar] [CrossRef] [PubMed]
- Nath, K.; Shekarkhand, T.; Nemirovsky, D.; Derkach, A.; Costa, B.A.; Nishimura, N.; Farzana, T.; Rueda, C.; Chung, D.J.; Landau, H.J.; et al. Comparison of infectious complications with BCMA-directed therapies in multiple myeloma. Blood Cancer J. 2024, 14, 88. [Google Scholar] [CrossRef]
- Baz, R.; Otero, P.R.; Ailawadhi, S.; Arnulf, B.; Patel, K.K.; Nooka, A.K.; Costa, L.; Raje, N.S.; Abrahamsen, I.W.; Delforge, M.; et al. Idecabtagene Vicleucel (ide-cel) Versus Standard (std) Regimens in Patients (pts) with Triple-Class-Exposed (TCE) Relapsed and Refractory Multiple Myeloma (RRMM): Analysis of Cytopenias and Infections in Pts from KarMMa-3. Blood 2023, 142 (Suppl. S1), 4879. [Google Scholar] [CrossRef]
- Sanoyan, D.A.; Seipel, K.; Bacher, U.; Kronig, M.-N.; Porret, N.; Wiedemann, G.; Daskalakis, M.; Pabst, T. Real-life experiences with CAR T-cell therapy with idecabtagene vicleucel (ide-cel) for triple-class exposed relapsed/refractory multiple myeloma patients. BMC Cancer 2023, 23, 345. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.K.; Sidana, S.; Peres, L.C.; Leitzinger, C.C.; Shune, L.; Shrewsbury, A.; Gonzalez, R.; Sborov, D.W.; Wagner, C.; Dima, D.; et al. Idecabtagene Vicleucel for Relapsed/Refractory Multiple Myeloma: Real-World Experience From the Myeloma CAR T Consortium. J. Clin. Oncol. 2023, 41, 2087–2097. [Google Scholar] [CrossRef]
- Ferment, B.; Lambert, J.; Caillot, D.; Lafon, I.; Karlin, L.; Lazareth, A.; Touzeau, C.; Leleu, X.; Moya, N.; Harel, S.; et al. French early nationwide idecabtagene vicleucel chimeric antigen receptor T-cell therapy experience in patients with relapsed/refractory multiple myeloma (FENIX): A real-world IFM study from the DESCAR-T registry. Br. J. Haematol. 2024, 205, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Kalariya, N.M.; Hildebrandt, M.A.T.; Hansen, D.K.; Sidana, S.; Khouri, J.; Ferreri, C.J.; Doyle, W.N.; Castaneda-Puglianini, O.; Freeman, C.L.; Hovanky, V.; et al. Clinical outcomes after idecabtagene vicleucel in older patients with multiple myeloma: A multicenter real-world experience. Blood Adv. 2024, 8, 4679–4688. [Google Scholar] [CrossRef] [PubMed]
- Logue, J.M.; Peres, L.C.; Hashmi, H.; Colin-Leitzinger, C.M.; Shrewsbury, A.M.; Hosoya, H.; Gonzalez, R.M.; Copponex, C.; Kottra, K.H.; Hovanky, V.; et al. Early cytopenias and infections after standard of care idecabtagene vicleucel in relapsed or refractory multiple myeloma. Blood Adv. 2022, 6, 6109–6119. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, K.; Barbato, S.; Talarico, M.; Tacchetti, P.; Zamagni, E.; Cavo, M. Idecabtagene vicleucel (ide-cel) for the treatment of triple-class exposed relapsed and refractory multiple myeloma. Expert Opin. Biol. Ther. 2025, 1, 27–46. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, an Anti–B-cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. J. Clin. Oncol. 2022, 41, 1265–1274. [Google Scholar] [CrossRef]
- Johnson & Johnson. Longer-Term Data from CARTITUDE-1 Study Demonstrate Continued Deep and Durable Responses to CARVYKTI™ (Ciltacabtagene Autoleucel) in Heavily Pretreated Patients with Relapsed or Refractory Multiple Myeloma. Available online: https://www.jnj.com/media-center/press-releases/longer-term-data-from-cartitude-1-study-demonstrate-continued-deep-and-durable-responses-to-carvykti-ciltacabtagene-autoleucel-in-heavily-pretreated-patients-with-relapsed-or-refractory-multiple-myeloma (accessed on 4 June 2022).
- Janssen Biotech, Inc. Carvykti-Ciltacabtagene Autoleucel. Available online: https://www.carvyktihcp.com/carvykti-safety/#AdverseReactions (accessed on 18 April 2025).
- Nooka, A.K.; Rodriguez, C.; Mateos, M.V.; Manier, S.; Chastain, K.; Banerjee, A.; Kobos, R.; Qi, K.; Verona, R.; Doyle, M.; et al. Incidence, timing, and management of infections in patients receiving teclistamab for the treatment of relapsed/refractory multiple myeloma in the MajesTEC-1 study. Cancer 2023, 130, 886–900. [Google Scholar] [CrossRef]
- Garfall, A.L.; Nooka, A.K.; van de Donk, N.W.C.J.; Moreau, P.; Bhutani, M.; Oriol, A.; Martin, T.G.; Rosiñol, L.; Mateos, M.V.; Bahlis, N.J. Long-term follow-up from the phase 1/2 MajesTEC-1 trial of teclistamab in patients with relapsed/refractory multiple myeloma. J. Clin. Oncol. 2024, 42 (Suppl. S16), 7540. [Google Scholar] [CrossRef]
- Schinke, C.D.; Touzeau, C.; Minnema, M.C.; van de Donk, N.W.; Rodríguez-Otero, P.; Mateos, M.V.; Rasche, L.; Ye, J.C.; Vishwamitra, D.; Ma, X.; et al. Pivotal phase 2 MonumenTAL-1 results of talquetamab (tal), a GPRC5DxCD3 bispecific. J. Clin. Oncol. 2023, 41 (Suppl. S16), 8036. [Google Scholar] [CrossRef]
- Rodríguez-Otero, P.; Schinke, C.D.; Chari, A.; Lipe, B.; Lavi, N.; Rasche, L.; Vishwamitra, D.; Skerget, S.; Verona, R.; Ma, X.; et al. Analysis of infections and parameters of humoral immunity in patients (pts) with relapsed/refractory multiple myeloma (RRMM) treated with talquetamab (tal) monotherapy in MonumenTAL-1. J. Clin. Oncol. 2023, 41, 8020. [Google Scholar] [CrossRef]
- Hansen, D.K.; Patel, K.K.; Peres, L.C.; Kocoglu, M.H.; Shune, L.; Simmons, G.; Ferreri, C.J.; Atrash, S.; Parrondo, R.D.; Chhabra, S.; et al. Safety and efficacy of standard of care (SOC) ciltacabtagene autoleucel (Cilta-cel) for relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2023, 41, 8012. [Google Scholar] [CrossRef]
- Sidana, S.; Patel, K.K.; Peres, L.C.; Bansal, R.; Kocoglu, M.H.; Shune, L.; Atrash, S.; Smith, K.; Midha, S.; Ferreri, C.; et al. Safety and efficacy of standard-of-care ciltacabtagene autoleucel for relapsed/refractory multiple myeloma. Blood 2024, 145, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Mailankody, S.; Devlin, S.M.; Landa, J.; Nath, K.; Diamonte, C.; Carstens, E.J.; Russo, D.; Auclair, R.; Fitzgerald, L.; Cadzin, B.; et al. GPRC5D-Targeted CAR T Cells for Myeloma. N. Engl. J. Med. 2022, 387, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wei, G.; Zhou, L.; Zhou, J.; Chen, S.; Zhang, W.; Wang, D.; Luo, X.; Cui, J.; Huang, S.; et al. GPRC5D CAR T cells (OriCAR-017) in patients with relapsed or refractory multiple myeloma (POLARIS): A first-in-human, single-centre, single-arm, phase 1 trial. Lancet Haematol. 2023, 10, e107–e116. [Google Scholar] [CrossRef] [PubMed]
- Bal, S.; Htut, M.; Nadeem, O.; Anderson, L.D.; Koçoğlu, H.; Gregory, T.; Rossi, A.C.; Martin, T.; Egan, D.N.; Costa, L.; et al. BMS-986393 (CC-95266), a G Protein-Coupled Receptor Class C Group 5 Member D (GPRC5D)-Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy for Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from a Phase 1 Study. Blood 2023, 142 (Suppl. S1), 219. [Google Scholar] [CrossRef]
- Xia, J.; Li, H.; Yan, Z.; Zhou, D.; Wang, Y.; Qi, Y.; Cao, J.; Li, D.; Cheng, H.; Sang, W.; et al. Anti–G Protein–Coupled Receptor, Class C Group 5 Member D Chimeric Antigen Receptor T Cells in Patients With Relapsed or Refractory Multiple Myeloma: A Single-Arm, Phase Ⅱ Trial. J. Clin. Oncol. 2023, 41, 2583–2593. [Google Scholar] [CrossRef] [PubMed]
- Riedhammer, C.; Bassermann, F.; Besemer, B.; Bewarder, M.; Brunner, F.; Carpinteiro, A.; Einsele, H.; Faltin, J.; Frenking, J.; Gezer, D.; et al. Real-world analysis of teclistamab in 123 RRMM patients from Germany. Leukemia 2024, 38, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Dima, D.; Davis, J.A.; Ahmed, N.; Sannareddy, A.; Shaikh, H.; Mahmoudjafari, Z.; Khouri, J.; Kaur, G.; Strouse, C.; Valent, J.; et al. Real-World Safety and Efficacy of Teclistamab for Patients with Heavily Pretreated Relapsed-Refractory Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 91. [Google Scholar] [CrossRef]
- Rejeski, K.; Perez, A.; Sesques, P.; Hoster, E.; Berger, C.; Jentzsch, L.; Mougiakakos, D.; Frölich, L.; Ackermann, J.; Bücklein, V.; et al. CAR-HEMATOTOX: A model for CAR T-cell–related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood 2021, 138, 2499–2513. [Google Scholar] [CrossRef]
- Jain, T.; Olson, T.S.; Locke, F.L. How I Treat Cytopenias after CAR T-cell Therapy. Blood 2023, 141, 2460–2469. [Google Scholar] [CrossRef]
- Rejeski, K.; Jain, M.D.; Shah, N.N.; Perales, M.A.; Subklewe, M. Immune effector cell-associated haematotoxicity after CAR T-cell therapy: From mechanism to management. Lancet Haematol. 2024, 11, e459–e470. [Google Scholar] [CrossRef] [PubMed]
- Brudno, J.N.; Natrakul, D.; Lam, N.; Dulau-Florea, A.; Yuan, C.M.; Kochenderfer, J.N. Acute and delayed cytopenias following CAR T-cell therapy: An investigation of risk factors and mechanisms. Leuk. Lymphoma 2022, 63, 1849–1860. [Google Scholar] [CrossRef]
- Zhou, X.; Wagner, V.; Scheller, L.; Stanojkovska, E.; Riedhammer, C.; Xiao, X.; Steinhardt, M.J.; Vogt, C.; Nerreter, S.; Eisele, F.; et al. Changes in T-cell subsets, preexisting cytopenias and hyperferritinaemia correlate with cytopenias after BCMA targeted CAR T-cell therapy in relapsed/refractory multiple myeloma: Results from a prospective comprehensive biomarker study. Br. J. Haematol. 2024, 205, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Berraquero, M.L.; Rodriguez-Marquez, P.; Calleja-Cervantes, M.E.; Berastegui, N.; Zabaleta, A.; Burgos, L.; Alignani, D.; San Martin-Uriz, P.; Vilas-Zornoza, A.; Rodriguez-Diaz, S.; et al. Molecular mechanisms promoting long-term cytopenia after BCMA CAR-T therapy in multiple myeloma. Blood Adv. 2024, 8, 5479–5492. [Google Scholar] [CrossRef]
- Panagiota, V.; Kerschbaum, J.F.; Penack, O.; Stein, C.M.; Arends, C.M.; Koenecke, C.; Strzelecka, P.M.; Kloos, A.; Wiegand, L.; Lasch, A.; et al. Clinical Implications and Dynamics of Clonal Hematopoiesis in Anti-CD19 CAR T-cell Treated Patients. HemaSphere 2023, 7, e957. [Google Scholar] [CrossRef]
- Hamilton, M.P.; Sworder, B.J.; Alig, S.K.; Good, Z.; Boegeholz, J.; Schroers-Martin, J.; Tamaresis, J.; Esfahani, M.S.; Lu, Y.; Olsen, M.; et al. CAR19 Therapy Drives Expansion of Clonal Hematopoiesis and Associated Cytopenias. Blood 2023, 142 (Suppl. S1), 360. [Google Scholar] [CrossRef]
- Gustine, J.; Branagan, A.; Cirstea, D.; Rexha, F.; Han, R.; Yee, A.; Frigault, M.; Raje, N. OA-06 Impact of Clonal Hematopoiesis on Clinical Outcomes to BCMA-Directed CAR T-Cell Therapy in Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2024, 24, S4–S5. [Google Scholar] [CrossRef]
- Juluri, K.R.; Wu, Q.V.; Voutsinas, J.M.; Hou, J.; Hirayama, A.V.; Mullane, E.; Miles, N.; Maloney, D.G.; Turtle, C.J.; Bar, M.; et al. Severe cytokine release syndrome is associated with hematologic toxicity following CD19 CAR T-cell therapy. Blood Adv. 2022, 6, 2055–2068. [Google Scholar] [CrossRef]
- Moots, R.J.; Sebba, A.; Rigby, W.; Ostor, A.; Porter-Brown, B.; Donaldson, F.; Dimonaco, S.; Rubbert-Roth, A.; van Vollenhoven, R.; Genovese, M.C. Effect of tocilizumab on neutrophils in adult patients with rheumatoid arthritis: Pooled analysis of data from phase 3 and 4 clinical trials. Rheumatology 2017, 56, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hong, R.; Zhou, L.; Wang, Y.; Lv, Y.; Ni, F.; Zhang, M.; Zhao, H.; Ding, S.; Chang, A.H.; et al. Cytokine profiles are associated with prolonged hematologic toxicities after B-cell maturation antigen targeted chimeric antigen receptor–T-cell therapy. Cytotherapy 2023, 25, 192–201. [Google Scholar] [CrossRef]
- Fischer, L.; Grieb, N.; Born, P.; Weiss, R.; Seiffert, S.; Boldt, A.; Fricke, S.; Franz, P.; Heyn, S.; Kubasch, A.S.; et al. Cellular dynamics following CAR T cell therapy are associated with response and toxicity in relapsed/refractory myeloma. Leukemia 2024, 38, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, A.; Ravi, S. Myelodysplastic Syndrome After Anti-CD19 Chimeric Antigen Receptor T-cell Therapy: A Case Series. Cureus 2023, 15, e44677. [Google Scholar] [CrossRef] [PubMed]
- Hines, M.R.; Knight, T.E.; McNerney, K.O.; Leick, M.B.; Jain, T.; Ahmed, S.; Frigault, M.J.; Hill, J.A.; Jain, M.D.; Johnson, W.T.; et al. Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Transpl. Cell Ther. 2023, 29, 438.e1–438.e16. [Google Scholar] [CrossRef]
- Wu, M.S.; Koirala, A. Thrombotic microangiopathy following chimeric antigen receptor T-cell therapy. Clin. Nephrol.–Case Stud. 2023, 11, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Rejeski, K.; Hansen, D.K.; Bansal, R.; Sesques, P.; Ailawadhi, S.; Logue, J.M.; Bräunlein, E.; Cordas dos Santos, D.M.; Freeman, C.L.; Alsina, M.; et al. The CAR-HEMATOTOX score as a prognostic model of toxicity and response in patients receiving BCMA-directed CAR-T for relapsed/refractory multiple myeloma. J. Hematol. Oncol. 2023, 16, 88. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Touzeau, C. T-cell–redirecting bispecific antibodies in multiple myeloma: A revolution? Blood 2022, 139, 3681–3687. [Google Scholar] [CrossRef]
- Tacchetti, P.; Barbato, S.; Mancuso, K.; Zamagni, E.; Cavo, M. Bispecific Antibodies for the Management of Relapsed/Refractory Multiple Myeloma. Cancers 2024, 16, 2337. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Dima, D.; Albayyadhi, M.; Moradi, A.; Raza, S.; Jaberi-Douraki, M. Pooled Analysis on Bispecific Antibody-Related Toxicities in Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 1953. [Google Scholar] [CrossRef]
- Giavridis, T.; van der Stegen, S.J.C.; Eyquem, J.; Hamieh, M.; Piersigilli, A.; Sadelain, M. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 2018, 24, 731–738. [Google Scholar] [CrossRef]
- Sterner, R.M.; Sakemura, R.; Cox, M.J.; Yang, N.; Khadka, R.H.; Forsman, C.L.; Hansen, M.J.; Jin, F.; Ayasoufi, K.; Hefazi, M.; et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 2019, 133, 697–709. [Google Scholar] [CrossRef]
- Galli, E.; Allain, V.; Di Blasi, R.; Bernard, S.; Vercellino, L.; Morin, F.; Moatti, H.; Caillat-Zucman, S.; Chevret, S.; Thieblemont, C. G-CSF does not worsen toxicities and efficacy of CAR-T cells in refractory/relapsed B-cell lymphoma. Bone Marrow Transplant. 2020, 55, 2347–2349. [Google Scholar] [CrossRef]
- Barreto, J.N.; Bansal, R.; Hathcock, M.A.; Doleski, C.J.; Hayne, J.R.; Truong, T.A.; Nedved, A.N.; Ansell, S.M.; Bennani, N.N.; Paludo, J.; et al. The impact of granulocyte colony stimulating factor on patients receiving chimeric antigen receptor T-cell therapy. Am. J. Hematol. 2021, 96, E399–E402. [Google Scholar] [CrossRef] [PubMed]
- Liévin, R.; Di Blasi, R.; Morin, F.; Galli, E.; Allain, V.; De Jorna, R.; Vercellino, L.; Parquet, N.; Mebarki, M.; Larghero, J.; et al. Effect of early granulocyte-colony-stimulating factor administration in the prevention of febrile neutropenia and impact on toxicity and efficacy of anti-CD19 CAR-T in patients with relapsed/refractory B-cell lymphoma. Bone Marrow Transplant. 2022, 57, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.C.; Johnson, P.C.; Abramson, J.S.; Soumerai, J.D.; Yee, A.J.; Branagan, A.R.; O’donnell, E.K.; Saucier, A.; Jacobson, C.A.; Frigault, M.J.; et al. Effect of granulocyte colony-stimulating factor on toxicities after CAR T cell therapy for lymphoma and myeloma. Blood Cancer J. 2022, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Li, H.; Zhou, D.; Zhang, X.; Shi, M.; Cao, J.; Qi, Y.; Xia, J.; Liu, Y.; Wang, X.; et al. Associations of granulocyte colony-stimulating factor with toxicities and efficacy of chimeric antigen receptor T-cell therapy in relapsed or refractory multiple myeloma. Cytotherapy 2023, 25, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Bindal, P.; Elavalakanar, P.; Trottier, C.A.; Dodge, L.E.; Logan, E.K.; Sermer, D.J.; Leukam, M.; Weinstock, M.J.; Joyce, R.M.; Liegel, J.; et al. G-CSF Administration Is Associated with Worse Treatment Response and Survival after CAR T-Cell Therapy. Blood 2022, 140 (Suppl. S1), 5238–5240. [Google Scholar] [CrossRef]
- Jain, T.; Knezevic, A.; Pennisi, M.; Chen, Y.; Ruiz, J.D.; Purdon, T.J.; Devlin, S.M.; Smith, M.; Shah, G.L.; Halton, E.; et al. Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv. 2020, 4, 3776–3787. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Liu, X.; Han, L.; Liu, L.; Fang, B.; Gao, Q.; Song, Y. Autologous hematopoietic stem cell infusion for sustained myelosuppression after BCMA–CAR-T therapy in patient with relapsed myeloma. Bone Marrow Transplant. 2020, 55, 1203–1205. [Google Scholar] [CrossRef]
- Mullanfiroze, K.; Lazareva, A.; Chu, J.; Williams, L.; Burridge, S.; Silva, J.M.F.; Chiesa, R.; Rao, K.; Lucchini, G.; Ghorashian, S.; et al. CD34+-selected stem cell boost can safely improve cytopenias following CAR T-cell therapy. Blood Adv. 2022, 6, 4715–4718. [Google Scholar] [CrossRef]
- Rejeski, K.; Burchert, A.; Iacoboni, G.; Sesques, P.; Fransecky, L.; Buecklein, V.; Trenker, C.; Hernani, R.; Naumann, R.; Schäfer, J.A.; et al. Safety and feasibility of stem cell boost as a salvage therapy for severe hematotoxicity after CD19 CAR T-cell therapy. Blood Adv. 2023, 6, 4719–4725. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Sborov, D.W.; Wesson, W.; Julian, K.; Abdallah, A.-O.; McGuirk, J.P.; Ahmed, N.; Hashmi, H. Efficacy and Safety of CD34+ Stem Cell Boost for Delayed Hematopoietic Recovery After BCMA Directed CAR T-cell Therapy. Biol. Blood Marrow Transplant. 2023, 29, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Gagelmann, N.; Wulf, G.G.; Duell, J.; Glass, B.; van Heteren, P.; von Tresckow, B.; Fischer, M.; Penack, O.; Ayuk, F.; Einsele, H.; et al. Hematopoietic stem cell boost for persistent neutropenia after CAR T-cell therapy: A GLA/DRST study. Blood Adv. 2023, 7, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Mohan, M.; Szabo, A.; Patwari, A.; Esselmann, J.; Patel, T.; Bachu, R.; Rein, L.E.; Janardan, A.; Bhatlapenumarthi, V.; Annyapu, E.; et al. Autologous stem cell boost improves persistent immune effector cell associated hematotoxicity following BCMA directed chimeric antigen receptor T (CAR T) cell therapy in multiple myeloma. Bone Marrow Transplant. 2024, 59, 647–652. [Google Scholar] [CrossRef]
- Baur, R.; Jitschin, R.; Kharboutli, S.; Stoll, A.; Völkl, S.; Büttner-Herold, M.; Schmidt, D.; Rösler, W.; Mackensen, A.; Mougiakakos, D. Thrombopoietin receptor agonists for acquired thrombocytopenia following anti-CD19 CAR-T-cell therapy: A case report. J. Immunother. Cancer 2021, 9, e002721. [Google Scholar] [CrossRef] [PubMed]
- Beyar-Katz, O.; Perry, C.; Bar On, Y.; Amit, O.; Gutwein, O.; Wolach, O.; Kedar, R.; Pikovsky, O.; Avivi, I.; Gold, R.; et al. Thrombopoietin receptor agonist for treating bone marrow aplasia following anti-CD19 CAR-T cells—Single-center experience. Ann. Hematol. 2022, 101, 1769–1776. [Google Scholar] [CrossRef]
- Drillet, G.; Lhomme, F.; De Guibert, S.; Manson, G.; Houot, R. Prolonged thrombocytopenia after CAR T-cell therapy: The role of thrombopoietin receptor agonists. Blood Adv. 2023, 7, 537–540. [Google Scholar] [CrossRef]
- Wesson, W.; Ahmed, N.; Rashid, A.; Tabak, C.; Logan, E.; Marchena-Burgos, J.; Nelson, M.; Davis, J.A.; McGann, M.; Shune, L.; et al. Safety and efficacy of eltrombopag in patients with post-CAR T cytopenias. Eur. J. Haematol. 2024, 112, 538–546. [Google Scholar] [CrossRef]
- Mohan, M.; Chakraborty, R.; Bal, S.; Nellore, A.; Baljevic, M.; D’Souza, A.; Pappas, P.G.; Berdeja, J.G.; Callander, N.; Costa, L.J. Recommendations on prevention of infections during chimeric antigen receptor T-cell and bispecific antibody therapy in multiple myeloma. Br. J. Haematol. 2023, 203, 736–746. [Google Scholar] [CrossRef]
- Shah, N.; Chari, A.; Scott, E.; Mezzi, K.; Usmani, S.Z. B-cell maturation antigen (BCMA) in multiple myeloma: Rationale for targeting and current therapeutic approaches. Leukemia 2020, 34, 985–1005. [Google Scholar] [CrossRef]
- Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X.; et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med. 2019, 11, 485. [Google Scholar] [CrossRef]
- Dhalla, F.; Misbah, S.A. Secondary antibody deficiencies. Curr. Opin. Allergy Clin. Immunol. 2015, 15, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Johnsrud, A.J.; Johnsrud, J.J.; Susanibar, S.A.; Kamimoto, J.J.; Kothari, A.; Burgess, M.; Van Rhee, F.; Rico, J.C. Infectious and immunological sequelae of daratumumab in multiple myeloma. Br. J. Haematol. 2019, 185, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Zhou, B.; Pak, A.; Yang, N.; Barmettler, S. Hypogammaglobulinemia and Risk of Infection Following Daratumumab in Patients with Multiple Myeloma. J. Allergy Clin. Immunol. 2024, 153, AB231. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Xia, J.; Li, P.; Cao, J.; Pan, B.; Tan, X.; Li, H.; Qi, K.; Wang, X.; et al. Humoral immune reconstitution after anti-BCMA CAR T-cell therapy in relapsed/refractory multiple myeloma. Blood Adv. 2021, 5, 5290–5299. [Google Scholar] [CrossRef] [PubMed]
- Longhitano, A.P.; Slavin, M.A.; Harrison, S.J.; Teh, B.W. Bispecific antibody therapy, its use and risks for infection: Bridging the knowledge gap. Blood Rev. 2021, 49, 100810. [Google Scholar] [CrossRef]
- Tarzi, M.D.; Grigoriadou, S.; Carr, S.B.; Kuitert, L.M.; Longhurst, H.J. Clinical Immunology Review Series: An approach to the management of pulmonary disease in primary antibody deficiency. Clin. Exp. Immunol. 2009, 155, 147–155. [Google Scholar] [CrossRef]
- Mathiesen, T.; Brattström, C.; Andersson, J.; Linde, A.; Ljungman, P.; Wahren, B. Immunoglobulin G subclasses and lymphocyte stimulatory responses to cytomegalovirus in transplant patients with primary cytomegalovirus infections. J. Med. Virol. 1992, 36, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Kambhampati, S.; Sheng, Y.; Huang, C.-Y.; Bylsma, S.A.; Lo, M.; Kennedy, V.; Natsuhara, K.; Martin, T.; Wolf, J.L.; Shah, N.; et al. Infectious complications in patients with relapsed refractory multiple myeloma after BCMA CAR T-cell therapy. Blood Adv. 2022, 6, 2045–2054. [Google Scholar] [CrossRef]
- Little, J.S.; Tandon, M.; Hong, J.S.; Nadeem, O.; Sperling, A.S.; Raje, N.; Munshi, N.; Frigault, M.; Barmettler, S.; Hammond, S.P. Respiratory infections predominate after day 100 following B-cell maturation antigen–directed CAR T-cell therapy. Blood Adv. 2023, 7, 5485–5495. [Google Scholar] [CrossRef]
- Hammons, L.R.; Szabo, A.; Janardan, A.; Dhakal, B.; Chhabra, S.; D’souza, A.; Mohan, M. Kinetics of Humoral Immunodeficiency With Bispecific Antibody Therapy in Relapsed Refractory Multiple Myeloma. JAMA Netw. Open 2022, 5, e2238961. [Google Scholar] [CrossRef]
- Lancman, G.; Parsa, K.; Kotlarz, K.; Avery, L.; Lurie, A.; Lieberman-Cribbin, A.; Cho, H.J.; Parekh, S.S.; Richard, S.; Richter, J.; et al. IVIg Use Associated with Ten-Fold Reduction of Serious Infections in Multiple Myeloma Patients Treated with Anti-BCMA Bispecific Antibodies. Blood Cancer Discov. 2023, 4, 440–451. [Google Scholar] [CrossRef]
- Barmettler, S.; Little, J.; Zhou, B.; Tandon, M.; Frigault, M.; Raje, N.; Munshi, N.; Walter, J.; Hammond, S.; Camargo, C. Hypogammaglobulinemia and Risk of Infectious Complications in Patients Receiving Idecabtagene vicleucel. J. Allergy Clin. Immunol. 2023, 151, AB224. [Google Scholar] [CrossRef]
- Raje, N.; Anderson, K.; Einsele, H.; Efebera, Y.; Gay, F.; Hammond, S.P.; Lesokhin, A.M.; Lonial, S.; Ludwig, H.; Moreau, P.; et al. Monitoring, prophylaxis, and treatment of infections in patients with MM receiving bispecific antibody therapy: Consensus recommendations from an expert panel. Blood Cancer J. 2023, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Frerichs, K.A.; Verkleij, C.P.M.; Mateos, M.V.; Martin, T.G.; Rodriguez, C.; Nooka, A.; Banerjee, A.; Chastain, K.; Perales-Puchalt, A.; Stephenson, T.; et al. Teclistamab impairs humoral immunity in patients with heavily pretreated myeloma: Importance of immunoglobulin supplementation. Blood Adv. 2024, 8, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Wudhikarn, K.; Palomba, M.L.; Pennisi, M.; Garcia-Recio, M.; Flynn, J.R.; Devlin, S.M.; Afuye, A.; Silverberg, M.L.; Maloy, M.A.; Shah, G.L.; et al. Infection during the first year in patients treated with CD19 CAR T cells for diffuse large B cell lymphoma. Blood Cancer J. 2020, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Kampouri, E.; Little, J.S.; Rejeski, K.; Manuel, O.; Hammond, S.P.; Hill, J.A. Infections after chimeric antigen receptor (CAR)-T-cell therapy for hematologic malignancies. Transpl. Infect. Dis. 2023, 25, e14157. [Google Scholar] [CrossRef]
- Josyula, S.; Pont, M.J.; Dasgupta, S.; Song, X.; Thomas, S.; Pepper, G.; Keane-Candib, J.; Stevens-Ayers, T.L.; Ochs, H.D.; Boeckh, M.J.; et al. Pathogen-Specific Humoral Immunity and Infections in B Cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy Recipients with Multiple Myeloma. Biol. Blood Marrow Transplant. 2022, 28, 304.e1–304.e9. [Google Scholar] [CrossRef]
- Ludwig, H.; Munshi, N.C.; Terpos, E.; Schweitzer, I.; Raje, N.; Moreau, P.; Nooka, A.K. Proposal for harmonizing the reporting of infections during treatment with bispecific antibodies in multiple myeloma. Blood Adv. 2024, 8, 4979–4982. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.; Thomas, S.K.; Krishnan, A.Y.; Laubach, J.P.; Cohen, A.D.; Trudel, S.; Costa, L.J.; Bahlis, N.J.; Forsberg, P.A.; Kaedbey, R.; et al. Cevostamab in Patients with Heavily Pretreated Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from an Ongoing Phase I Study Demonstrate Clinically Meaningful Activity and Manageable Safety and Inform the Doses and Regimen for Combination Studies. Blood 2024, 144, 1021. [Google Scholar] [CrossRef]
- Jourdes, A.; Cellerin, E.; Touzeau, C.; Harel, S.; Denis, B.; Escure, G.; Faure, E.; Jamard, S.; Danion, F.; Sonntag, C.; et al. Characteristics and incidence of infections in patients with multiple myeloma treated by bispecific antibodies: A national retrospective study. Clin. Microbiol. Infect. 2024, 30, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Mazahreh, F.; Mazahreh, L.; Schinke, C.; Thanendrarajan, S.; Zangari, M.; Shaughnessy, J.D., Jr.; Zhan, F.; Van Rhee, F.; Al Hadidi, S. Risk of infections associated with the use of bispecific antibodies in multiple myeloma: A pooled analysis. Blood Adv. 2023, 7, 3069–3074. [Google Scholar] [CrossRef]
- Reynolds, G.; Cliff, E.R.S.; Mohyuddin, G.R.; Popat, R.; Midha, S.; Liet Hing, M.N.; Harrison, S.J.; Kesselheim, A.S.; Teh, B.W. Infections following bispecific antibodies in myeloma: A systematic review and meta-analysis. Blood Adv. 2023, 7, 5898–5903. [Google Scholar] [CrossRef]
- Mikkilineni, L.; Yates, B.; Steinberg, S.M.; Shahani, S.A.; Molina, J.C.; Palmore, T.N.; Lee, D.W.; Kaplan, R.N.; Mackall, C.L.; Fry, T.J.; et al. Infectious complications of CAR T-cell therapy across novel antigen targets in the first 30 days. Blood Adv. 2021, 5, 5312–5322. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.A.; Li, D.; Hay, K.A.; Green, M.L.; Cherian, S.; Chen, X.; Riddell, S.R.; Maloney, D.G.; Boeckh, M.; Turtle, C.J. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood 2018, 131, 121–130. [Google Scholar] [CrossRef]
- Park, J.H.; Romero, F.A.; Taur, Y.; Sadelain, M.; Brentjens, R.J.; Hohl, T.M.; Seo, S.K. Cytokine Release Syndrome Grade as a Predictive Marker for Infections in Patients With Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia Treated With Chimeric Antigen Receptor T Cells. Clin. Infect. Dis. 2018, 67, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Wei, G.; Liu, Y.; Zhou, H.; Wu, W.; Yang, L.; Huang, H.; Hu, Y. Incidence and Risk Factors Associated with Infection after Chimeric Antigen Receptor T Cell Therapy for Relapsed/Refractory B-cell Malignancies. Cell Transplant. 2021, 30. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yu, T.; Lin, L.; Xing, L.; Cho, S.-F.; Wen, K.; Aardalen, K.; Oka, A.; Lam, J.; Daley, M.; et al. γ-secretase inhibitors augment efficacy of BCMA-targeting bispecific antibodies against multiple myeloma cells without impairing T-cell activation and differentiation. Blood Cancer J. 2022, 12, 118. [Google Scholar] [CrossRef]
- Philipp, N.; Kazerani, M.; Nicholls, A.; Vick, B.; Wulf, J.; Straub, T.; Scheurer, M.; Muth, A.; Hänel, G.; Nixdorf, D.; et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood 2022, 140, 1104–1118. [Google Scholar] [CrossRef]
- Vishwamitra, D.; Skerget, S.; Cortes, D.; Perova, T.; Lau, O.; Davis, C.; Guo, Y.; Miao, X.; Stephenson, T.; Hodin, C.; et al. Longitudinal Correlative Profiles of Responders, Nonresponders, and Those with Relapse on Treatment with Teclistamab in the Phase 1/2 MajesTEC-1 Study of Patients with Relapsed/Refractory Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 455. [Google Scholar] [CrossRef]
- Verkleij, C.P.; O’neill, C.A.; Broekmans, M.E.; Frerichs, K.A.; Bruins, W.S.; Duetz, C.; Kruyswijk, S.; Baglio, S.R.; Skerget, S.; de Oca, R.M.; et al. T-Cell Characteristics Impact Response and Resistance to T-Cell–Redirecting Bispecific Antibodies in Multiple Myeloma. Clin. Cancer Res. 2024, 30, 3006–3022. [Google Scholar] [CrossRef]
- Rejeski, K.; Blumenberg, V.; Iacoboni, G.; Lopez-Corral, L.; Kharboutli, S.; Hernani, R.; Petrera, A.; Müller, N.; Hildebrand, F.; Frölich, L. Identifying Early Infections in the Setting of CRS With Routine and Exploratory Serum Proteomics and the HT10 Score Following CD19 CAR-T for Relapsed/Refractory B-NHL. Hemasphere 2023, 7, e858. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Mao, X.; Que, Y.; Xu, M.; Cheng, Y.; Huang, L.; Wang, J.; Xiao, Y.; Wang, W.; Hu, G.; et al. Viral infection/reactivation during long-term follow-up in multiple myeloma patients with anti-BCMA CAR therapy. Blood Cancer J. 2021, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Heldman, M.R.; Ma, J.; Gauthier, J.; O’hara, R.A.; Cowan, A.J.; Yoke, L.M.; So, L.; Gulleen, E.; Duke, E.R.; Liu, C.; et al. CMV and HSV Pneumonia After Immunosuppressive Agents for Treatment of Cytokine Release Syndrome Due to Chimeric Antigen Receptor–modified T (CAR-T)-Cell Immunotherapy. J. Immunother. 2021, 44, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Cousin, E.; Belicard, F.; Michel, L.; Pronier, C.; Lassalle, N.; Lamy, T.; Houot, R.; Lhomme, F. Severe cytomegalovirus disease with encephalitis after CAR-T cell therapy: A rare but potentially fatal complication. J. Med. Virol. 2021, 93, 6398–6403. [Google Scholar] [CrossRef]
- Wei, J.; Zhu, X.; Mao, X.; Huang, L.; Meng, F.; Zhou, J. Severe early hepatitis B reactivation in a patient receiving anti-CD19 and anti-CD22 CAR T cells for the treatment of diffuse large B-cell lymphoma. J. Immunother. Cancer 2019, 7, 315. [Google Scholar] [CrossRef]
- Cao, W.; Wei, J.; Wang, N.; Xu, H.; Xiao, M.; Huang, L.; Cao, Y.; Li, C.; Xiao, Y.; Gu, C.; et al. Entecavir prophylaxis for hepatitis B virus reactivation in patients with CAR T-cell therapy. Blood 2020, 136, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Sim, B.Z.; Longhitano, A.; Er, J.; Harrison, S.J.; Slavin, M.A.; Teh, B.W. Infectious complications of bispecific antibody therapy in patients with multiple myeloma. Blood Cancer J. 2023, 13, 34. [Google Scholar] [CrossRef]
- Shahid, Z.; Jain, T.; Dioverti, V.; Pennisi, M.; Mikkilineni, L.; Thiruvengadam, S.K.; Shah, N.N.; Dadwal, S.; Papanicolaou, G.; Hamadani, M.; et al. Best Practice Considerations by The American Society of Transplant and Cellular Therapy: Infection Prevention and Management After Chimeric Antigen Receptor T Cell Therapy for Hematological Malignancies. Transplant. Cell. Ther. 2024, 30, 955–969. [Google Scholar] [CrossRef]
- Van Oekelen, O.; Gleason, C.R.; Agte, S.; Srivastava, K.; Beach, K.F.; Aleman, A.; Kappes, K.; Banu, R.; Bermúdez-González, M.C.; Chernet, R.L.; et al. Highly variable SARS-CoV-2 spike antibody responses to two doses of COVID-19 RNA vaccination in patients with multiple myeloma. Cancer Cell 2021, 39, 1028–1030. [Google Scholar] [CrossRef]
- Ludwig, H.; Boccadoro, M.; Moreau, P.; San-Miguel, J.; Cavo, M.; Pawlyn, C.; Zweegman, S.; Facon, T.; Driessen, C.; Hajek, R.; et al. Recommendations for vaccination in multiple myeloma: A consensus of the European Myeloma Network. Leukemia 2021, 35, 31–44. [Google Scholar] [CrossRef]
- Mancuso, K.; Zamagni, E.; Solli, V.; Gabrielli, L.; Leone, M.; Pantani, L.; Rocchi, S.; Rizzello, I.; Tacchetti, P.; Ghibellini, S.; et al. Long term follow-up of humoral and cellular response to mRNA-based vaccines for SARS-CoV-2 in patients with active multiple myeloma. Front. Oncol. 2023, 13, 1208741. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clutterbuck, E.A.; Lazarus, R.; Yu, L.-M.; Bowman, J.; Bateman, E.A.L.; Diggle, L.; Angus, B.; Peto, T.E.; Beverley, P.C.; Mant, D.; et al. Pneumococcal Conjugate and Plain Polysaccharide Vaccines Have Divergent Effects on Antigen-Specific B Cells. J. Infect. Dis. 2012, 205, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, G.; Hall, V.G.; Teh, B.W. Vaccine schedule recommendations and updates for patients with hematologic malignancy post-hematopoietic cell transplant or CAR T-cell therapy. Transpl. Infect. Dis. 2023, 25 (Suppl. S1), e14109. [Google Scholar] [CrossRef] [PubMed]
- Hayden, P.; Roddie, C.; Bader, P.; Basak, G.; Bonig, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 2022, 33, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Mohty, M.; Tomasson, M.H.; Arnulf, B.; Bahlis, N.J.; Rodríguez-Otero, P.; Martinez-Lopez, J.; Touzeau, C.; Quach, H.; Depaus, J.; Yokoyama, H.; et al. Elranatamab, a B-Cell Maturation Antigen (BCMA)-CD3 Bispecific Antibody, for Patients With Relapsed/Refractory Multiple Myeloma (RRMM): Extended Follow-Up and Biweekly Administration From the MagnetisMM-3 Study. Hemasphere 2023, 7 (Suppl. S3), e1309654. [Google Scholar] [CrossRef]
- Bhutani, M.; Garfall, A.; Uttervall, K.; Usmani, S.Z.; Karlin, L.; Benboubker, L.; Nahi, H.; Miguel, J.S.; Trancucci, D.; Qi, K.; et al. P881: Durability of responses with biweekly dosing of teclistamab in patients with relapsed/refractory multiple myeloma achieving a clinical response in the majesTEC-1 study. HemaSphere 2023, 7, e90600b0. [Google Scholar] [CrossRef]
- Teachey, D.T.; Rheingold, S.R.; Maude, S.L.; Zugmaier, G.; Barrett, D.M.; Seif, A.E.; Nichols, K.E.; Suppa, E.K.; Kalos, M.; Berg, R.A.; et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 2013, 121, 5154–5157. [Google Scholar] [CrossRef]
- Kennedy, V.E.; Wong, C.; Huang, C.-Y.; Kambhampati, S.; Wolf, J.L.; Martin, T.G.; Shah, N.; Wong, S.W. Macrophage activation syndrome-like (MAS-L) manifestations following BCMA-directed CAR T cells in multiple myeloma. Blood Adv. 2021, 5, 5344–5348. [Google Scholar] [CrossRef]
- Khurana, A.; Rosenthal, A.C.; Mohty, R.; Gaddam, M.; Bansal, R.; Hathcock, M.A.; Nedved, A.N.; Durani, U.; Iqbal, M.; Wang, Y.; et al. Chimeric antigen receptor T-cell therapy associated hemophagocytic lymphohistiocytosis syndrome: Clinical presentation, outcomes, and management. Blood Cancer J. 2024, 14, 136. [Google Scholar] [CrossRef] [PubMed]
- ABECMA (Idecabtagene Vicleucel) Package Insert. Available online: https://www.fda.gov/media/147055/download (accessed on 18 April 2025).
- CARVYKTI (Ciltacabtagene Autoleucel) Package Insert. Available online: https://www.fda.gov/media/156560/download (accessed on 18 April 2025).
- Bristol Myers Squibb’s Abecma (Idecabtagene Vicleucel) Becomes First CAR T Cell Therapy Approved in the European Union in Earlier Lines for Triple-Class Exposed Relapsed and Refractory Multiple Myeloma. News Release. Bristol Myers Squibb. 20 March 2024. Available online: https://news.bms.com/news/corporate-financial/2024/Bristol-Myers-Squibbs-Abecma-idecabtagene-vicleucel-Becomes-First-CAR-T-Cell-Therapy-Approved-in-the-European-Union-in-Earlier-Lines-for-Triple-Class-Exposed-Relapsed-and-Refractory-Multiple-Myeloma/default.aspx (accessed on 21 March 2024).
- J&J. CARVYKTI® Is the First and Only BCMA-Targeted Treatment Approved by the U.S. FDA for Patients with Relapsed or Refractory Multiple Myeloma Who Have Received at Least One Prior Line of Therapy. Available online: https://www.jnj.com/media-center/press-releases/carvykti-is-the-first-and-only-bcma-targeted-treatment-approved-by-the-u-s-fda-for-patients-with-relapsed-or-refractory-multiple-myeloma-who-have-received-at-least-one-prior-line-of-therapy (accessed on 1 April 2024).
- Mateos, M.-V.; Robak, P.; Hus, M.; Xia, Z.; Zherebtsova, V.; Ward, C.; Ho, P.J.; Hajek, R.; Kim, K.; Dimopoulos, M.A.; et al. Results from the randomized phase III DREAMM-7 study of belantamab mafodotin (belamaf) + bortezomib, and dexamethasone (BVd) vs daratumumab, bortezomib, and dexamethasone (DVd) in relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2024, 42, 439572. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Beksac, M.; Pour, L.; Delimpasi, S.; Vorobyev, V.; Quach, H.; Spicka, I.; Radocha, J.; Robak, P.; Kim, K.; et al. Belantamab Mafodotin, Pomalidomide, and Dexamethasone in Multiple Myeloma. N. Engl. J. Med. 2024, 391, 408–421. [Google Scholar] [CrossRef]
- Cohen, Y.C.; Magen, H.; Gatt, M.; Sebag, M.; Kim, K.; Min, C.-K.; Ocio, E.M.; Yoon, S.-S.; Chu, M.P.; Rodríguez-Otero, P.; et al. Talquetamab plus Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2025, 392, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Carretero-Iglesia, L.; Hall, O.J.; Berret, J.; Pais, D.; Estoppey, C.; Chimen, M.; Monney, T.; Loyau, J.; Dreyfus, C.; Macoin, J.; et al. ISB 2001 trispecific T cell engager shows strong tumor cytotoxicity and overcomes immune escape mechanisms of multiple myeloma cells. Nat. Cancer 2024, 5, 1494–1514. [Google Scholar] [CrossRef] [PubMed]
- Ghorashian, S.; Kramer, A.M.; Onuoha, S.; Wright, G.; Bartram, J.; Richardson, R.; Albon, S.J.; Casanovas-Company, J.; Castro, F.; Popova, B.; et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 2019, 25, 1408–1414. [Google Scholar] [CrossRef] [PubMed]
- Freeman, C.L.; Dhakal, B.; Kaur, G.; Maziarz, R.T.; Callander, N.; Sperling, A.S.; Schinke, C.; Jakubowiak, A.J.; Biran, N.; Sborov, D.W.; et al. Phase 2 Registrational Study of Anitocabtagene Autoleucel for the Treatment of Patients with Relapsed and/or Refractory Multiple Myeloma: Preliminary Results from the IMMagine-1 Trial. Blood 2024, 144, 1031. [Google Scholar] [CrossRef]
Grading | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Early ICAHT | ||||
ANC ≤ 500/μL | ≤7 days | 7–13 days | ≥14 days | Never > 500/μL |
ANC ≤ 100/μL | / | / | 7–13 days | ≥14 days |
Late ICAHT | ||||
ANC | ≤1500/μL | ≤1000/μL | ≤500/μL | ≤100/μL |
CAR-T-Cell Recipients | BsAbs Recipients |
---|---|
Anaemia | |
Transfusion of packed RBC concentrates as per institutional standards Erythropoiesis stimulating agents if long lasting/severe anemia as per institutional guidelines | Transfusion of packed RBC concentrates if G ≥ 3 or symptomatic patient Erythropoiesis stimulating agents |
Thrombocytopenia | |
Transfusion of PLT concentrates as per institutional standards Thrombopoiesis stimulating agents if long lasting/severe thrombocytopenia as per institutional guidelines | Transfusion of PLT concentrates if G4 without bleeding or G3 with bleeding Hold BsAb administration until PLT > 50,000 |
Neutropenia | |
Prophylactic G-CSF from day +2 if high risk of severe ICAHT (high HT score) Therapeutic G-CSF if ANC < 500/μL If G-CSF refractory: autologous or allogeneic HCB and TPO-RA If no response: allo-HCT | G-CSF if G ≥ 3 neutropenia (to be avoided when pts are at high risk for CRS) If G4 or febrile neutropenia: BsAb discontinuation until resolution |
Hypogammaglobulinemia | |
IgRT (400–500 mg/kg every 4 weeks) if serum IgG < 400 mg/dL or if severe and/or recurrent infections |
CAR-T-Cell Recipients | BsAbs Recipients |
---|---|
Herpes prophylaxis | |
Aciclovir or valaciclovir: all pts from LD until 1 yr after infusion and/or CD4+ count > 200/μL | Aciclovir or valaciclovir: all pts until 3 mos off-therapy and CD4+ count > 200/μL |
PJP prophylaxis | |
Co-trimoxazole: all pts from LD until 1 yr after infusion and/or CD4+ count > 200/μL | Co-trimoxazole: all pts throughout treatment period until CD4+ count > 200/μL |
Antibacterial prophylaxis | |
Specific drug based upon local bacterial epidemiology: high risk of severe ICAHT and ANC < 500/μL | Specific drug based upon local bacterial epidemiology: first months of therapy; ANC < 500/μL; prolonged neutropenia; high risk of bacterial infections |
Antifungal prophylaxis | |
Specific drug based upon individual risk: high risk of severe ICAHT and ANC < 500/μL; high risk of fungal infections (concomitant steroids, prior allo-HCT, prior invasive aspergillosis) | Specific drug based upon individual risk: high risk of fungal infections (prolonged and severe neutropenia, prolonged and/or high dose corticosteroids, prior fungal infection) |
CMV prophylaxis | |
Not recommended | Not recommended |
HBV prophylaxis | |
Entecavir or tenofovir: HBV carriers or previous HBV infection | Entecavir or tenofovir: HBV carriers or previous HBV infection |
Recommended vaccinations | |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancuso, K.; Talarico, M.; Manzato, E.; Barbato, S.; Tacchetti, P.; Zamagni, E.; Cavo, M. T-Cell Redirecting Therapies in Multiple Myeloma: Pathogenesis and Management of Toxicities Beyond CRS and ICANS. Cancers 2025, 17, 1514. https://doi.org/10.3390/cancers17091514
Mancuso K, Talarico M, Manzato E, Barbato S, Tacchetti P, Zamagni E, Cavo M. T-Cell Redirecting Therapies in Multiple Myeloma: Pathogenesis and Management of Toxicities Beyond CRS and ICANS. Cancers. 2025; 17(9):1514. https://doi.org/10.3390/cancers17091514
Chicago/Turabian StyleMancuso, Katia, Marco Talarico, Enrica Manzato, Simona Barbato, Paola Tacchetti, Elena Zamagni, and Michele Cavo. 2025. "T-Cell Redirecting Therapies in Multiple Myeloma: Pathogenesis and Management of Toxicities Beyond CRS and ICANS" Cancers 17, no. 9: 1514. https://doi.org/10.3390/cancers17091514
APA StyleMancuso, K., Talarico, M., Manzato, E., Barbato, S., Tacchetti, P., Zamagni, E., & Cavo, M. (2025). T-Cell Redirecting Therapies in Multiple Myeloma: Pathogenesis and Management of Toxicities Beyond CRS and ICANS. Cancers, 17(9), 1514. https://doi.org/10.3390/cancers17091514