Treatment Sequencing in Metastatic HR+/HER2− Breast Cancer: A Delphi Consensus
Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
4. Discussions
4.1. NGS Is the Preferred Testing Method for Accurate Molecular Characterization
4.2. Treatment Choice
4.2.1. ESR1 Mutation
Study name/phase | MAINTAIN/II [42] | PACE/II [43] | postMonarch/III [44] | EMERALD/III [38,39] |
NCT02632045 | NCT03147287 | NCT05169567 | NCT03778931 | |
Study population | Ribo + ET vs. pbo + ET | F + pbo vs. fulvestrant + palbo ± avelumab | F + pbo vs. F + abema | Elacestrant vs. AI or F |
Number of patients | 119 | 220 | 368 | 477 |
Prior lines of therapy in a metastatic setting | ≤1 ChT | ≤1 ChT | ET + CDK4/6i | ≤1 ChT |
Prior exposure to CDK4/6i in mBC | 86.5% to palbo 11.7% to ribo | 100% | 100% 59% palbo, 33% ribo | 100% |
mPFS | 5.3 vs. 2.8 months; HR = 0.56; 95% CI 0.39–0.85; p = 0.006 | F: 4.8 months; F+ palbo: 4.6 months (HR, 1.11 [90% CI, 0.79 to 1.55]; p = 0.62). F + palbo + avelumab: 8.1 months (HR vs. F, 0.75 [90% CI, 0.50 to 1.12]; p = 0.23) | Interim analysis: HR = 0.66; 95% CI 0.48–0.91; p = 0.01 Final analysis: HR = 0.73; 95% CI 0.57–0.95 | ESR1m: 3.8 months vs. 1.9 months; HR = 0.55 (95% CI 0.39–0.77; p = 0.0005) ≥12 months prior exposure to CDK4/6i: 8.6 months vs. 1.9 months (HR = 0.410; 95% CI 0.262–0.634) |
mOS | NR | NR | OS data are immature | ESR1m: HR = 0.59 (95% CI, 0.36–0.96; p = 0.03, nonsignificant) |
Other relevant results | F was the ET backbone in 83.2% of participants; Neutropenia rates were higher in the ribo arm | The most common AEs: GI events, fatigability, and arthralgia | ||
Study name/phase | SOLAR-1/III [45,46] | BYLieve/II [47] | CAPITello-291/III [48,49] | OlympiAD/III [50,51,52] |
NCT02437318 | NCT03056755 | NCT04305496 | NCT02000622 | |
Study population | Alpe + F vs. pbo + F | Alpe + F or Let | Capi + F vs. pbo + F | Olaparib vs. ChT |
Number of patients | 572 | 127 | 708 | 302, gBRCA1/2m |
Prior lines of therapy in a metastatic setting | ≤3 | ≤2 ChT | ||
Prior exposure to CDK4/6i in mBC | ~5% | 100% in 2 cohorts | 69% | No |
mPFS | PIK3CAm: 11.0 months vs. 5.7 months, HR = 0.65; 95% CI 0.50–0.85, p < 0.001 | Pre-treated with CDK4/6i + AI: 8.0 (5.6 to 8.6) months CDK4/6i + F: 5.6 (3.7 to 7.1) months | PI3K/AKT/PTEN: 7.3 vs. 3.1 months (HR = 0.50, 95% CI 0.38–0.65; p < 0.001) | 7.0 vs. 4.2 months (HR = 0.58; 95% CI 0.43–0.80, p < 0.001) |
mOS | PIK3CAm: 39.3 vs. 31.4 months, HR = 0.86 (95% CI, 0.64–1.15; p = 0.15) | Pre-treated with CDK4/6i + AI: 27.3 (21.3–32.7) months CDK4/6i + F: 29.0 (24.5–34.8) months | NR | At 64% data maturity: 19.3 vs. 17.1 months (HR 0.90, 95% CI 0.66–1.23; p = 0.513) At 76.8% data maturity: 19.3 vs. 17.1 months (HR = 0.89, 95% CI 0.67–1.18) |
Other relevant results | The most common AEs of grade 3 or 4: hyperglycemia (36.6% vs. 0.7%) and rash (9.9% vs. 0.3%) | The most common AEs: GI events, hyperglycemia, rash, fatigability. Hyperglycemia was the most common grade ≥ 3 AE. | The most common AEs of grade 3: rash (12.1% vs. 0.3%) and diarrhea (9.3% vs. 0.3%). Capi + F delayed time to deterioration of GHS/QOL and maintained other dimensions of HRQOL (except symptoms of diarrhea), similarly to F | Anemia, nausea, vomiting, fatigue, headache, and cough occurred more frequently in the olaparib group than in the standard-therapy group; AEs events during olaparib treatment were generally low grade and manageable by supportive treatment or dose modification. Long-term exposure to olaparib was generally well tolerated, with no evidence of cumulative toxicity and no new safety signals |
Study name/phase | EMBRACA/III [53,54] | DESTINY-Breast04/III [55,56] | DESTINY-Breast 06 [32] | TROPICS-02/III [57,58] |
NCT01945775 | NCT03734029 | NCT04494425 | NCT03901339 | |
Study population | Talazoparib vs. ChT | T-Dxd vs. ChT | T-DXd vs. ChT | SG vs. ChT |
Number of patients | 431, gBRCA1/2m | 494, HR+/HER2-low | 866 (713 with HER2-low) | 543, HR+/HER2-low |
Prior lines of therapy in a metastatic setting | Median 3 (range 1–9) | ET, no chemotherapy | Median 7 (range 3–17) | |
Prior exposure to CDK4/6i in mBC | No | 71% | 88.6% in the T-DXd group 89.3% in the ChT group | ~100% |
mPFS | 8.6 vs. 5.6 months (HR = 0.54; 95% CI 0.41–0.71, p < 0.001) | 10.1 vs. 5.4 months (HR = 0.51, 95% CI 0.40–0.64; p < 0.001) | 13.2 months vs. 8.1 months; HR = 0.62; 95% CI 0.52–0.75; p < 0.001 | 5.5 vs. 4.0 months (HR = 0.66, 95% CI 0.53–0.83, p = 0.0003) |
mOS | At 57% data maturity: HR = 0.76; 95% CI 0.55–1.06; p = 0.11 Final mOS: 19.3 vs. 19.5 months (HR = 0.848; 95% CI 0.670–1.073; p = 0.17) | 23.9 vs. 17.6 months (HR = 0.69, 95% CI 0.55–0.87) | OS data are immature | 14.4 vs. 11.2 months (HR = 0.79, 95% CI 0.65–0.96, p = 0.02) |
Other relevant results | The most common AEs were hematological; PROs favored talazoparib, with significant overall improvement and delays in time to clinically meaningful deterioration. | The most common TEAEs were GI and hematological; ILD/pneumonitis: 12% vs. 1%; LV dysfunction: 13% vs. 6% | Similar incidence of AEs with T-DXd (98.8%) and ChT (95.2%). The most common drug-related AEs: nausea, fatigue, and alopecia (T-DXd), and fatigue, palmar–plantar erythrodysesthesia syndrome, and neutropenia (ChT) | The most vs. 54%common TEAEs were GI and hematological; nausea: 55% vs. 31%; neutropenia: 70% |
4.2.2. PIK3CA/AKT/PTEN Alteration
4.2.3. Germline BRCA1/2 Mutation
4.2.4. Concomitant Mutations
4.2.5. HR+/HER2− mBC and No Actionable Mutations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. European Cancer Information System. Survival Estimates. Available online: https://ecis.jrc.ec.europa.eu/en (accessed on 24 February 2025).
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49, Erratum in CA Cancer J. Clin. 2024, 74, 203. https://doi.org/10.3322/caac.21830. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, P.; Viale, G.; Press, M.F.; Hu, X.; Penault-Llorca, F.; Bardia, A.; Batistatou, A.; Burstein, H.J.; Carey, L.A.; Cortes, J.; et al. ESMO expert consensus statements (ECS) on the definition, diagnosis, and management of HER2-low breast cancer. Ann. Oncol. 2023, 34, 645–659. [Google Scholar] [CrossRef]
- American Cancer Society. Breast Cancer Facts & Figures 2022–2024. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/2022-2024-breast-cancer-fact-figures-acs.pdf (accessed on 24 February 2025).
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat. Med. 2025, 31, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- US Preventive Services Task Force; Nicholson, W.K.; Silverstein, M.; Wong, J.B.; Barry, M.J.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Jaén, C.R.; Krousel-Wood, M.; et al. Screening for breast cancer: US preventive services task force recommendation statement. JAMA 2024, 331, 1918–1930. [Google Scholar] [CrossRef]
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- ESMO Metastatic Breast Cancer Living Guidelines, v1.1 May 2023. Available online: https://www.esmo.org/living-guidelines/esmo-metastatic-breast-cancer-living-guideline (accessed on 15 March 2025).
- Makhlin, I.; Fallowfield, L.; Henry, N.L.; Burstein, H.J.; Somerfield, M.R.; DeMichele, A. Targeted therapies, sequencing strategies, and beyond in metastatic hormone receptor-positive breast cancer: ASCO guideline clinical insights. JCO Oncol. Pract. 2024, 21, 140–144. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN)® Guidelines. Breast Cancer. Version 3. 2025. Available online: https://www.nccn.org/ (accessed on 8 April 2025).
- Cristofanilli, M.; Turner, N.C.; Bondarenko, I.; Ro, J.; Im, S.A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): Final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016, 17, 425–439. [Google Scholar] [CrossRef]
- Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A.; Yap, Y.S.; Sonke, G.S.; Paluch-Shimon, S.; Campone, M.; Blackwell, K.L.; André, F.; Winer, E.P.; et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N. Engl. J. Med. 2016, 375, 1738–1748. [Google Scholar] [CrossRef]
- Tripathy, D.; Im, S.A.; Colleoni, M.; Franke, F.; Bardia, A.; Harbeck, N.; Hurvitz, S.A.; Chow, L.; Sohn, J.; Lee, K.S.; et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): A randomised phase 3 trial. Lancet Oncol. 2018, 19, 904–915. [Google Scholar] [CrossRef]
- Sledge, G.W., Jr.; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; et al. MONARCH 2: Abemaciclib in combination with fulvestrant in women with HR+/HER2− advanced breast cancer who had progressed while receiving endocrine therapy. J. Clin. Oncol. 2017, 35, 2875–2884. [Google Scholar] [CrossRef]
- Lu, Y.S.; Mahidin, E.I.B.M.; Azim, H.; Eralp, Y.; Yap, Y.S.; Im, S.A.; Rihani, J.; Gokmen, E.; El Bastawisy, A.; Karadurmus, N.; et al. Final Results of RIGHT Choice: Ribociclib plus endocrine therapy versus combination chemotherapy in premenopausal women with clinically aggressive hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer. J. Clin. Oncol. 2024, 42, 2812–2821. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Thill, M.; Rey, J.; Rautenberg, B.; Bjelic-Radisic, V.; Decker, T.; Rom, J.; Köge, M.; Lübbe, K.; Nacke, A.; et al. Primary results of the randomised phase IV trial comparing first-line ET plus palbociclib vs standard mono-chemotherapy in women with high risk HER2-/HR+ metastatic breast cancer and indication for chemotherapy—PADMA study. LB1-003. In Proceedings of the 2024 San Antonio Breast Conference, San Antonio, TX, USA, 10–13 December 2024. [Google Scholar]
- Colomer, R.; González-Farré, B.; Ballesteros, A.I.; Peg, V.; Bermejo, B.; Pérez-Mies, B.; de la Cruz, S.; Rojo, F.; Pernas, S.; Palacios, J. Biomarkers in breast cancer 2024: An updated consensus statement by the Spanish Society of Medical Oncology and the Spanish Society of Pathology. Clin. Transl. Oncol. 2024, 26, 2935–2951. [Google Scholar] [CrossRef]
- Jhaveri, K.; Marmé, F. Current and emerging treatment approaches for hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. Cancer Treat. Rev. 2024, 123, 102670. [Google Scholar] [CrossRef] [PubMed]
- Lambert, V.; Kane, S.; Howidi, B.; Nguyen, B.N.; Chandiwana, D.; Wu, Y.; Edwards, M.; Samjoo, I.A. Systematic literature review of real-world evidence for treatments in HR+/HER2- second-line LABC/mBC after first-line treatment with CDK4/6i. BMC Cancer 2024, 24, 631. [Google Scholar] [CrossRef] [PubMed]
- Shearsmith, L.; Kennedy, F.; Lindner, O.C.; Velikova, G. Delphi survey to inform patient-reported symptom monitoring after ovarian cancer treatment. J. Patient Rep. Outcomes 2020, 4, 71. [Google Scholar] [CrossRef]
- Pérez-Hernández, C.; Cánovas, M.L.; Carmona-Bayonas, A.; Escobar, Y.; Margarit, C.; Mulero Cervantes, J.F.; Quintanar, T.; Serrano Alfonso, A.; Virizuela, J. A Delphi Study on the Management of Neuropathic Cancer Pain in Spain: The DOLNEO Study. J. Pain. Res. 2022, 15, 2181–2196. [Google Scholar] [CrossRef]
- Geisler, J.; Karihtala, P.; Tuxen, M.; Valachis, A.; Delphi Panellist Group; Holm, B. Current treatment landscape of HR+/HER2- advanced breast cancer in the Nordics: A modified Delphi study. Acta Oncol. 2023, 62, 1680–1688. [Google Scholar] [CrossRef]
- Wong, H.C.Y.; Wallen, M.P.; Chan, A.W.; Dick, N.; Bonomo, P.; Bareham, M.; Wolf, J.R.; van den Hurk, C.; Fitch, M.; Chow, E.; et al. Expert Panel and the Oncodermatology and Survivorship Study Groups. Multinational Association of Supportive Care in Cancer (MASCC) clinical practice guidance for the prevention of breast cancer-related arm lymphoedema (BCRAL): International Delphi consensus-based recommendations. eClinicalMedicine 2024, 68, 102441. [Google Scholar] [CrossRef]
- Borstnar, S.; Bozovic-Spasojevic, I.; Cvetanovic, A.; Plavetic, N.D.; Konsoulova, A.; Matos, E.; Popovic, L.; Popovska, S.; Tomic, S.; Vrdoljak, E. Advancing HER2-low breast cancer management: Enhancing diagnosis and treatment strategies. Radiol. Oncol. 2024, 58, 258–267. [Google Scholar] [CrossRef]
- Zhang, M.; He, X.; Wu, J.; Xie, F. Differences between physician and patient preferences for cancer treatments: A systematic review. BMC Cancer 2023, 23, 1126. [Google Scholar] [CrossRef]
- Brandstetter, L.S.; Jírů-Hillmann, S.; Störk, S.; Heuschmann, P.U.; Wöckel, A.; Reese, J.P. Differences in Preferences for Drug Therapy Between Patients with Metastatic Versus Early-Stage Breast Cancer: A Systematic Literature Review. Patient 2024, 17, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Sablin, M.P.; Gestraud, P.; Jonas, S.F.; Lamy, C.; Lacroix-Triki, M.; Bachelot, T.; Filleron, T.; Lacroix, L.; Tran-Dien, A.; Jézéquel, P.; et al. Copy number alterations in metastatic and early breast tumours: Prognostic and acquired biomarkers of resistance to CDK4/6 inhibitors. Br. J. Cancer 2024, 131, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Li, M.; Lv, H.; Zhou, S.; Xu, X.; Shui, R.; Yang, W. HER2-low breast cancer: Evolution of HER2 expression from primary tumor to distant metastases. BMC Cancer 2023, 23, 656. [Google Scholar] [CrossRef]
- Almstedt, K.; Krauthauser, L.; Kappenberg, F.; Wagner, D.C.; Heimes, A.S.; Battista, M.J.; Anic, K.; Krajnak, S.; Lebrecht, A.; Schwab, R.; et al. Discordance of HER2-Low between Primary Tumors and Matched Distant Metastases in Breast Cancer. Cancers 2023, 15, 1413. [Google Scholar] [CrossRef]
- Hacking, S.M.; Yakirevich, E.; Wang, Y. From immunohistochemistry to new digital ecosystems: A state-of-the-art biomarker review for precision breast cancer medicine. Cancers 2022, 14, 3469. [Google Scholar] [CrossRef] [PubMed]
- Mosele, M.F.; Westphalen, C.B.; Stenzinger, A.; Barlesi, F.; Bayle, A.; Bièche, I.; Bonastre, J.; Castro, E.; Dienstmann, R.; Krämer, A.; et al. Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2024, 35, 588–606. [Google Scholar] [CrossRef]
- Bardia, A.; Hu, X.; Dent, R.; Yonemori, K.; Barrios, C.H.; O’Shaughnessy, J.A.; Wildiers, H.; Pierga, J.Y.; Zhang, Q.; Saura, C.; et al. Trastuzumab Deruxtecan after Endocrine Therapy in Metastatic Breast Cancer. N. Engl. J. Med. 2024, 391, 2110–2122. [Google Scholar] [CrossRef]
- Brett, J.O.; Spring, L.M.; Bardia, A.; Wander, S.A. ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Res. 2021, 23, 85. [Google Scholar] [CrossRef]
- Bardia, A.; Cortés, J.; Bidard, F.C.; Neven, P.; Garcia-Sáenz, J.; Aftimos, P.; O’Shaughnessy, J.; Lu, J.; Tonini, G.; Scartoni, S.; et al. Elacestrant in ER+, HER2- metastatic breast cancer with ESR1-mutated tumors: Subgroup analyses from the phase III EMERALD trial by prior duration of endocrine therapy plus CDK4/6 inhibitor and in clinical subgroups. Clin. Cancer Res. 2024, 30, 4299–4309. [Google Scholar] [CrossRef]
- Bidard, F.C.; Hardy-Bessard, A.C.; Dalenc, F.; Bachelot, T.; Pierga, J.Y.; de la Motte Rouge, T.; Sabatier, R.; Dubot, C.; Frenel, J.S.; Ferrero, J.M.; et al. Switch to fulvestrant and palbociclib versus no switch in advanced breast cancer with rising ESR1 mutation during aromatase inhibitor and palbociclib therapy (PADA-1): A randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2022, 23, 1367–1377. [Google Scholar] [CrossRef]
- Turner, N.; Huang-Bartlett, C.; Kalinsky, K.; Cristofanilli, M.; Bianchini, G.; Chia, S.; Iwata, H.; Janni, W.; Ma, C.X.; Mayer, E.L.; et al. Design of SERENA-6, a phase III switching trial of camizestrant in ESR1-mutant breast cancer during first-line treatment. Future Oncol. 2023, 19, 559–573. [Google Scholar] [CrossRef] [PubMed]
- Guerini-Rocco, E.; Venetis, K.; Cursano, G.; Mane, E.; Frascarelli, C.; Pepe, F.; Negrelli, M.; Olmeda, E.; Vacirca, D.; Ranghiero, A.; et al. Standardized molecular pathology workflow for ctDNA-based ESR1 testing in HR+/HER2- metastatic breast cancer. Crit. Rev. Oncol. Hematol. 2024, 201, 104427. [Google Scholar] [CrossRef] [PubMed]
- Bidard, F.C.; Kaklamani, V.G.; Neven, P.; Streich, G.; Montero, A.J.; Forget, F.; Mouret-Reynier, M.A.; Sohn, J.H.; Taylor, D.; Harnden, K.K.; et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: Results from the randomized phase III EMERALD trial. J. Clin. Oncol. 2022, 40, 3246–3256. [Google Scholar] [CrossRef]
- Bardia, A.; Bidard, F.C.; Neven, P.; Streich, G.; Montero, A.J.; Forget, F.; Mouret-Reyner, M.A.; Sohn, J.H.; Taylor, D.; Hamden, K.K.; et al. EMERALD phase 3 trial of elacestrant versus standard of care endocrine therapy in patients with ER+/HER2- metastatic breast cancer: Updated results by duration of prior CDK4/6i in metastatic setting. Cancer Res. 2023, 83, GS3-01. [Google Scholar] [CrossRef]
- Gheysen, M.; Punie, K.; Wildiers, H.; Neven, P. Oral SERDs changing the scenery in hormone receptor positive breast cancer, a comprehensive review. Cancer Treat Rev. 2024, 130, 102825. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.; O’Shaughnessy, J.; Cortés, J.; Bardia, A.; Hamilton, E.; Hurvitz, S.; Kakla, V.; Mchayleh, W.; Munoz Romero, P.; Piza Vallespir, B.; et al. Elacestrant combinations in patients (pts) with estrogen receptor-positive (ER+), HER2-negative (HER2-) locally advanced or metastatic breast cancer (mBC): Preliminary data from ELEVATE, a phase Ib/II, open-label, umbrella study. Ann. Oncol. 2024, 35, S372–S373. [Google Scholar] [CrossRef]
- Kalinsky, K.; Accordino, M.K.; Chiuzan, C.; Mundi, P.S.; Sakach, E.; Sathe, C.; Ahn, H.; Trivedi, M.S.; Novik, Y.; Tiersten, A.; et al. Randomized Phase II Trial of Endocrine Therapy With or Without Ribociclib After Progression on Cyclin-Dependent Kinase 4/6 Inhibition in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer: MAINTAIN Trial. J. Clin. Oncol. 2023, 41, 4004–4013. [Google Scholar] [CrossRef]
- Mayer, E.L.; Ren, Y.; Wagle, N.; Mahtani, R.; Ma, C.; DeMichele, A.; Cristofanilli, M.; Meisel, J.; Miller, K.D.; Abdou, Y.; et al. PACE: A Randomized Phase II Study of Fulvestrant, Palbociclib, and Avelumab After Progression on Cyclin-Dependent Kinase 4/6 Inhibitor and Aromatase Inhibitor for Hormone Receptor–Positive/Human Epidermal Growth Factor Receptor–Negative Metastatic Breast Cancer. J. Clin. Oncol. 2024, 42, 2050–2060. [Google Scholar] [CrossRef]
- Kalinsky, K.; Bianchini, G.; Hamilton, E.P.; Graff, S.L.; Hwa Park, K.; Jeselsohn, R.; Demirci, U.; Martin, M.; Layman, R.M.; Hurvitz, S.A.; et al. Abemaciclib plus fulvestrant vs fulvestrant alone for HR+, HER2- advanced breast cancer following progression on a prior CDK4/6 inhibitor plus endocrine therapy: Primary outcome of the phase 3 postMONARCH trial. J. Clin. Oncol. 2024, 42, LBA1001. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Final overall survival results from SOLAR-1. Ann. Oncol. 2021, 32, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.; Neven, P.; Ciruleos, E.M.; Lerebours, F.; Ruiz Borrego, M.; Drullinsky, P.; Prat, A.; Hee Park, Y.; Juric, D.; Turner, N.C.; et al. Alpelisib + endocrine therapy in patients with PIK3CA-mutated, hormone receptor–positive, human epidermal growth factor receptor 2–negative, advanced breast cancer: Analysis of all 3 cohorts of the BYLieve study. J. Clin. Oncol. 2023, 41, 1078. [Google Scholar] [CrossRef]
- Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortes, J.; Gomez Moreno, H.L.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Capivasertib in Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2023, 388, 2058–2070. [Google Scholar] [CrossRef]
- Oliveira, M.; Rugo, H.S.; Howell, S.J.; Dalenc, F.; Cortes, J.; Gomez, H.L.; Hu, X.; Toi, M.; Jhaveri, K.; Krivorotko, P.; et al. Capivasertib and fulvestrant for patients with hormone receptor-positive, HER2-negative advanced breast cancer (CAPItello-291): Patient-reported outcomes from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2024, 25, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef]
- Robson, M.E.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Tung, N.; Armstrong, A.; Dymond, M.; et al. OlympiAD extended follow-up for overall survival and safety: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Eur. J. Cancer 2023, 184, 9–47. [Google Scholar] [CrossRef]
- Robson, M.E.; Tung, N.; Conte, P.; Im, S.A.; Senkus, E.; Xu, B.; Masuda, N.; Delaloge, S.; Li, W.; Armstrong, A.; et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann. Oncol. 2019, 30, 558–566. [Google Scholar] [CrossRef]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef]
- Litton, J.K.; Hurvitz, S.A.; Mina, L.A.; Rugo, H.S.; Lee, K.H.; Gonçalves, A.; Diab, S.; Woodward, N.; Goodwin, A.; Yerushalmi, R.; et al. Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: Final overall survival results from the EMBRACA trial. Ann. Oncol. 2020, 31, 1526–1535. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Iwata, H.; Park, Y.H.; Vidal Losada, M.J.; Li, W.; Tsurutani, J.; Zaman, K.; Ueno, N.T.; Prat, A.; et al. Trastuzumab deruxtecan (T-DXd) versus treatment of physician’s choice (TPC) in patients (pts) with HER2-low unresectable and/or metastatic breast cancer (mBC): Updated survival results of the randomized, phase III DESTINY-Breast04 study. Ann. Oncol. 2023, 34, S334–S335. [Google Scholar] [CrossRef]
- Rugo, H.S.; Bardia, A.; Marmé, F.; Cortes, J.; Schmid, P.; Loirat, D.; Trédan, O.; Ciruelos, E.; Dalenc, F.; Pardo, P.G.; et al. Sacituzumab Govitecan in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer. J. Clin. Oncol. 2022, 40, 3365–3376. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Bardia, A.; Marmé, F.; Cortés, J.; Schmid, P.; Loirat, D.; Trédan, O.; Ciruelos, E.; Dalenc, F.; Gómez Pardo, P.; et al. Overall survival with sacituzumab govitecan in hormone receptor-positive and human epidermal growth factor receptor 2-negative metastatic breast cancer (TROPiCS-02): A randomised, open-label, multicentre, phase 3 trial. Lancet 2023, 402, 1423–1433. [Google Scholar] [CrossRef] [PubMed]
- Martorana, F.; Motta, G.; Pavone, G.; Motta, L.; Stella, S.; Vitale, S.R.; Manzella, L.; Vigneri, P. AKT inhibitors: New weapons in the fight against breast cancer? Front. Pharmacol. 2021, 12, 662232. [Google Scholar] [CrossRef]
- Bhave, M.A.; Quintanilha, J.C.F.; Tukachinsky, H.; Li, G.; Scott, T.; Ross, J.S.; Pasquina, L.; Huang, R.S.P.; McArthur, H.; Levy, M.A.; et al. Comprehensive genomic profiling of ESR1, PIK3CA, AKT1, and PTEN in HR(+)HER2(-) metastatic breast cancer: Prevalence along treatment course and predictive value for endocrine therapy resistance in real-world practice. Breast Cancer Res. Treat. 2024, 207, 599–609. [Google Scholar] [CrossRef]
- Ramić, S.; Perić Balja, M.; Hadžisejić, I.; Marušić, Z.; Blažičević, V.; Tomić, S. Results of multicenter testing of PIK3CA somatic mutations in hormone-receptor positive HER2-negative advanced breast cancer. Lib. Oncol. 2023, 51, 1–8. [Google Scholar] [CrossRef]
- Gencheva, R.; Petrova, M.; Kraleva, P.; Hadjidekova, S.; Radanova, M.; Conev, N.; Stoyanov, D.; Arabadjiev, J.; Tazimova, E.; Bachurska, S.; et al. Prevalence and prognosis of PIK3CA mutations in Bulgarian patients with metastatic breast cancer receiving endocrine therapy in first-line setting. Cancer Rep. 2023, 7, e1966. [Google Scholar] [CrossRef]
- Pavlinović, D.Č.; Dedić Plavetić, N.; Belac Lovasić, I.; Šeparović, R.; Flam, J.; Pancirov, M.; Bajić, Ž.; Tomić, S.; Vrdoljak, E. Associations between PIK3CA mutations and disease free survival in patients with HR+, HER2− tumors treated with adjuvant hormonal therapy: A real-world study in Croatia. Breast J. 2024, 2024, 5648845. [Google Scholar] [CrossRef]
- Toloso Ortega, P.; Cejavlo, J.M.; Moragon Terencio, S.; Carril-Ajurio, L.; Bermejo, B.; Ruiz, A.; Hernando Meli, C.; Sanchez-Torre, A.; Martinez, M.T.; Herrera, M.; et al. Benefit of CDK4/6 inhibitors beyond PIK3CA mutations in metastatic breast cancer patients. Ann. Oncol. 2020, 31, S35. [Google Scholar] [CrossRef]
- Llombart-Cussac, A.; Pérez-Garcia, J.M.; Ruiz Borrego, M.; Tolosa, P.; Blanch, S.; Fernández-Ortega, A.; Urruticoechea, A.; Blancas, I.; Saura, C.; Rojas, B.; et al. Preventing alpelisib-related hyperglycaemia in HR+/HER2-/PIK3CA-mutated advanced breast cancer using metformin (METALLICA): A multicentre, open-label, single-arm, phase 2 trial. eClinicalMedicine 2024, 71, 102520. [Google Scholar] [CrossRef]
- Tankova, T.; Senkus, E.; Beloyartseva, M.; Borštnar, S.; Catrinoiu, D.; Frolova, M.; Hegmane, A.; Janež, A.; Krnić, M.; Lengyel, Z.; et al. Management Strategies for Hyperglycemia Associated with the α-Selective PI3K Inhibitor Alpelisib for the Treatment of Breast Cancer. Cancers 2022, 14, 1598. [Google Scholar] [CrossRef]
- Borrego Ruiz, M.; Tolosa, P.; Blanch, S.; Fernandez, A.; Urriticoechea, A.; Blancas, J.; Saura, C.; Rojas, B.; Bermejo, B.; Ponce, J.; et al. Metformin (MET) for the prevention of Alpelisib (ALP)-related Hyperglycemia (HG) in PIK3CA-mutated, Hormone Receptor-Positive (HR[+]) HER2-Negative (HER2[−]) Advanced Breast Cancer (ABC): The METALLICA study. Cancer Res. 2023, 83, PD8-02. [Google Scholar] [CrossRef]
- Jhaveri, K.L.; Im, S.A.; Saura, C.; Juric, D.; Loibl, S.; Kalinsky, K.; Schmid, P.; Loi, S.; Thanopoulou, E.; Shankar, N.; et al. Phase III study of inavolisib or placebo in combination with palbociclib and fulvestrant in patients with PIK3CA-mutant, hormone receptor-positive, HER2-negative locally advanced or metastatic breast cancer: INAVO120 primary analysis. Cancer Res. 2024, 84, GS03-13. [Google Scholar] [CrossRef]
- Juric, D.; Kalinsky, K.; Turner, N.C.; Jhaveri, K.L.; Schmid, P.; Loi, S.; Saura, C.; Im, S.A.; Sunpaweravong, P.; Li, H.; et al. First-line inavolisib/placebo + palbociclib + fulvestrant (Inavo/Pbo+Palbo+Fulv) in patients with PIK3CA-mutated, hormone receptor-positive, HER2-negative locally advanced/metastatic breast cancer who relapsed during/within 12 months of adjuvant endocrine therapy completion: INAVO120 Phase III randomized trial additional analyses. J. Clin. Oncol. 2024, 42, 1003. [Google Scholar] [CrossRef]
- Tung, N.M.; Robson, M.E.; Nanda, R.; Li, T.; Vinayak, S.; Deepak Shah, P.; Khoury, K.; Kimmick, G.G.; Santa-Maria, C.A.; Brufsky, A.; et al. TBCRC 048 (olaparib expanded) expansion cohorts: Phase 2 study of olaparib monotherapy in patients (pts) with metastatic breast cancer (MBC) with germline (g) mutations in PALB2 or somatic (s) mutations in BRCA1 or BRCA2. J. Clin. Oncol. 2024, 42, 1021. [Google Scholar] [CrossRef]
- Vidula, M.; Damodaran, S.; Bhave, M.A.; Blouch, E.; Ogbenna, O.; Flaum, L.E.; Shah, A.N.; Abramson, V.G.; Cristofanilli, M.; Sparano, J.A.; et al. Phase II study of a PARP inhibitor, talazoparib, in HER2- metastatic breast cancer (MBC) with a somatic BRCA1/2mutation identified in a cell-free DNA or tumor tissue genotyping assay. J. Clin. Oncol. 2024, 42, TPS1143. [Google Scholar] [CrossRef]
- Ashai, N.; Swain, S.M. Post-CDK 4/6 Inhibitor Therapy: Current Agents and Novel Targets. Cancers 2023, 15, 1855. [Google Scholar] [CrossRef]
- Zielonke, N.; Gini, A.; Jansen, E.E.L.; Anttila, A.; Segnan, N.; Ponti, A.; Veerus, P.; de Koning, H.J.; van Ravesteyn, N.T.; Heijnsdijk, E.A.M.; et al. Evidence for reducing cancer-specific mortality due to screening for breast cancer in Europe: A systematic review. Eur. J. Cancer 2020, 127, 191–206. [Google Scholar] [CrossRef]
- Bhave, M.A.; Quintanilha, J.; Ross, J.S.; Graf, R.P.; Levy, M.A.; Kalinsky, K. Genomic alterations (GA) in ESR1, PIK3CA, AKT1, and PTEN in HR(+)HER2(-) patients (pts) with metastatic breast cancer (MBC): Co-occurrence and prevalence along treatment course. J. Clin. Oncol. 2024, 42, 1060. [Google Scholar] [CrossRef]
- Caballero, C.; Irrthum, A.; Goulioti, T.; Cameron, D.; Norton, L.; Piccart, M. International research to address the challenges of metastatic breast cancer: The AURORA Program (BIG 14-01). NPJ Breast Cancer 2023, 9, 42. [Google Scholar] [CrossRef]
- Park, L.; Thompson, S.L.; Roose, J.; Lu, Y.; Chaki, M.; Lam, C.; Iorgulescu, B. Testing patterns and prevalence of PIK3CA, AKT1, and PTEN alterations among patients (pts) with HR+/HER2- metastatic breast cancer (mBC) in the US. J. Clin. Oncol. 2024, 42, 1041. [Google Scholar] [CrossRef]
- Cortes, J.; Rugo, H.S.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Gomez, H.L.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Prevalence of PIK3CA/AKT1/PTEN and other genomic alterations in primary and recurrent tumor tissue: Exploratory analysis from the Phase III CAPItello-291 clinical trial. Poster number: P2-03-16. In Proceedings of the of 2024 San Antonio Breast Conference, San Antonio, TX, USA, 10–13 December 2024. [Google Scholar]
- Llombart-Cussac, A.; Harper-Wynne, C.; Perello, A.; Hennequin, A.; Fernandez, A.; Colleoni, M.; Caranana, V.; Quiroga, V.; Medioni, J.; Iranzo, V.; et al. Second-line endocrine therapy (ET) with or without palbociclib (P) maintenance in patients (pts) with hormone receptor-positive (HR[+])/human epidermal growth factor receptor 2-negative (HER2[−]) advanced breast cancer (ABC): PALMIRA trial. J. Clin. Oncol. 2023, 41, 1001. [Google Scholar] [CrossRef]
- Ferro, A.; Campora, M.; Caldara, A.; De Lisi, D.; Lorenzi, M.; Monteverdi, S.; Mihai, R.; Bisio, A.; Dipasquale, M.; Caffo, O.; et al. Novel Treatment Strategies for Hormone Receptor (HR)-Positive, HER2-Negative Metastatic Breast Cancer. J. Clin. Med. 2024, 13, 3611. [Google Scholar] [CrossRef] [PubMed]
- Vrdoljak, E.; Gligorov, J.; Wierinck, L.; Conte, P.; De Grève, J.; Meunier, F.; Palmieri, C.; Travado, L.; Walker, A.; Wiseman, T.; et al. Addressing disparities and challenges in underserved patient populations with metastatic breast cancer in Europe. Breast 2021, 55, 79–90. [Google Scholar] [CrossRef]
- Ignatiadis, M.; Poulakaki, F.; Spanic, T.; Brain, E.; Lacombe, D.; Sonke, G.S.; Vincent-Salomon, A.; Van Duijnhoven, F.; Meattini, I.; Kaidar-Person, O.; et al. EBCC-14 manifesto: Addressing disparities in access to innovation for patients with metastatic breast cancer across Europe. Eur. J. Cancer 2024, 207, 114156. [Google Scholar] [CrossRef]
- Michaeli, J.C.; Michaeli, T.; Trapani, D.; Albers, S.; Dannehl, D.; Würstlein, R.; Michaeli, D.T. Breast cancer drugs: FDA approval, development time, efficacy, clinical benefits, innovation, trials, endpoints, quality of life, value, and price. Breast Cancer 2024, 31, 1144–1155. [Google Scholar] [CrossRef]
- Pilehvari, A.; You, W.; Kimmick, G.; Bonilla, G.; Anderson, R. Disparities in treatment delays among metastatic breast cancer patients: Insights from nationwide electronic health records, 2011–2022. Breast Cancer Res. Treat. 2025, 210, 575–582. [Google Scholar] [CrossRef]
R1 Statement | Level of Agreement Before KO Meeting | Summary of Suggestions and Comments | R2 Statement | Level of Agreement After KO Meeting |
---|---|---|---|---|
Biomarker testing | ||||
1. The NGS should be considered to guide 2L therapy selection for patients with HR+ HER2− mBC. | 30% SA 30% A 20% D 10% N |
| 1. (If available) NGS technique should be considered for biomarker testing. | 100% |
2. Biomarkers should be known before the selection of 2L treatment. | 100% | |||
2. BRCA1/2 mutation testing should be performed at the initial diagnosis of metastatic disease to assess the potential benefit of PARP inhibitors and other targeted therapies in the 2L and subsequent treatment settings. | 90% SA 10% A |
| 3. Germline BRCA1/2 mutation testing should be performed at the latest of the initial diagnosis or at metastatic disease, if not carried out before. | 100% |
3. PIK3CA, AKT mutation, and PTEN loss testing should be performed at the time of initial diagnosis of metastatic disease to determine eligibility for therapy in both 1L and 2L treatment settings. | 90% SA 10% A | 4. PIK3CA, AKT mutation, and PTEN loss testing should be performed at the time of initial diagnosis of metastatic disease to determine eligibility for therapy in both 1L and 2L treatment settings. | 100% | |
4. NGS is recommended due to its comprehensive coverage and high sensitivity for the detection of AKT, PIK3CA, PTEN, and BRCA1/2 mutations in HR+ HER2− mBC. | 60% SA 40% A |
| 5. NGS is recommended due to its comprehensive coverage and high sensitivity for the detection of targeted mutations in HR+ HER2− mBC. | 100% |
5. Testing for ESR1 mutations should be performed at the time of disease progression on 1L ET to guide the selection of 2L therapeutic options. | 50% SA 30% A 20% D |
| 6. Testing for ESR1 mutations should be performed at the time of disease progression on ET to guide the selection of further lines of therapeutic options. | 100% |
6. PCR is recommended for cost-effective testing of specific known mutations in biomarkers such as PIK3CA, where the target mutations are well characterized. | 30% SA 70% A | 7. PCR is recommended for cost-effective testing of specific known mutations in biomarkers such as PIK3CA, where the target mutations are well characterized. | 100% | |
7. Biomarker testing and related consultations should be available and reimbursed to encourage both patients and health care providers (HCPs) to utilize these essential services. | 70% SA 30% A | 8. Biomarker testing and related consultations should be available and reimbursed to encourage both patients and HCPs to utilize these essential services. | 100% | |
8. The primary barriers to the widespread adoption of genetic testing for HR+ mBC include technological challenges such as the complexity of testing procedures, lengthy turnaround times, and financial obstacles such as high costs and inconsistent insurance coverage. | 40% SA 50% A 10% N |
| 9. The primary barriers to the widespread adoption of genetic testing for HR+ mBC include technological challenges such as the complexity of testing procedures and lengthy turnaround times, financial obstacles such as high costs and inconsistent insurance coverage. | 90% |
10. Genetic testing with predictive value for HR+ mBC should be carried out in a certified laboratory with external and internal quality control. | 100% | |||
Selection of 2L treatment at PD on 1L ET + CDK4/6i, at ≥6 months after initiation of ET for HR+/HER2− mBC whilst on ET (secondary endocrine resistance) | ||||
9. If confirmed PIK3CA mutations, capivasertib in combination with fulvestrant should be considered as a preferred 2L treatment option. | 30% SA 40% A 10% D 20% N | 11. If PIK3CA mutations are confirmed, capivasertib in combination with fulvestrant should be considered as a preferred 2L treatment option. | 70% | |
10. If confirmed PIK3CA mutations, alpelisib in combination with fulvestrant should be considered as a preferred 2L treatment option. | 50% A 20% D 20% SD 10% N |
| 12. In cases of confirmed PIK3CA mutation, capivasertib or alpelisib in combination with fulvestrant would be considered in the 2L treatment. | 100% |
13. The use of capivasertib is the preferred 2L treatment over alpelisib due to the toxicity profile. | 100% | |||
11. If at risk for or have pre-existing diabetes, capivasertib should be preferred over alpelisib for 2L therapy due to the significant risk of hyperglycemia associated with alpelisib. | 40% SA 40% A 20% N | 14. If at risk for or have pre-existing diabetes, capivasertib should be preferred over alpelisib for 2L therapy due to the significant risk of hyperglycemia associated with alpelisib. | 100% | |
12. If both ESR1 mutation and PIK3CA mutation, alpelisib should be considered as preferred 2L treatment option. | 40% A 10% D 20% SD 30% N |
| 15. If both ESR1 mutation and PIK3CA mutation, elacestrant should be considered as preferred 2L treatment option. | 30% SA + A 40% D 30% N |
13. If both ESR1 mutation and PIK3CA mutation, capivasertib should be considered as preferred 2L treatment option. | 20% SA 30% A 20% D 30% N | 16. If both ESR1 mutation and PIK3CA mutation, capivasertib should be considered as preferred 2L treatment option. | 70% | |
14. If both ESR1 mutation and PIK3CA mutation, elacestrant should be considered as preferred 2L treatment option. | 20% SA 20% A 10% D 30% SD 20% N | 17. If both ESR1 mutation and PIK3CA mutation, alpelisib should be considered as preferred 2L treatment option. | 70% | |
15. If without PIK3CA and with alterations in the AKT1 or PTEN pathway, capivasertib should be considered as a 2L treatment option. | 60% SA 20% A 20% N | 18. If without PIK3CA and with alterations in the AKT1 or PTEN pathway, capivasertib should be considered as a 2L treatment option. | 80% | |
16. If with ESR1 mutation, the use of elacestrant should be considered as the preferred 2L treatment option. | 40% SA 30% A 10% D 20% N |
| 19. If with ESR1 mutation and without PIK3CA mutation, the use of elacestrant should be considered as the preferred 2L treatment option. | 70% |
17. If gBRCA1/2 mutations, the use of olaparib or talazoparib should be considered as preferred 2L treatment. | 50% SA 30% A 20% N | 20. If gBRCA1/2 mutations, the use of olaparib or talazoparib should be considered as preferred 2L treatment. | 80% | |
18. If both gBRCA mutations and PIK3CA pathway alterations, olaparib or talazoparib should be considered as the preferred 2L treatment option. | 30% SA 50% A 20% N | 21. If both gBRCA mutations and PIK3CA pathway alterations, olaparib or talazoparib should be considered as the preferred 2L treatment option. | 80% | |
19. If no actionable biomarkers are positive, everolimus combined with exemestane could be considered as a 2L option. | 20% SA 50% A 30% N | 22. If no actionable biomarkers are positive, everolimus combined with exemestane could be considered as a 2L option. | 70% | |
20. In patients with no actionable biomarkers, treatment rechallenge with an alternative CDK4/6i and change of endocrine partner should be considered after disease progression during 1L CDK4/6i + ET. | 10% SA 70% A 20% N |
| 23. In patients with no actionable biomarkers, treatment with an alternative CDK4/6i and change of endocrine partner could be considered after disease progression during 1L CDK4/6i + ET. | 80% |
21. In patients with actionable biomarkers, treatment rechallenge with an alternative CDK4/6i and change of endocrine partner should be considered after disease progression during 1L CDK4/6i + ET. | 10% SA 20% A 40% D 10% SD 20% N |
| 24. In patients with actionable biomarkers and clear progression on CDK4/6i + ET, treatment with alternative CDK4/6i and change of endocrine partner should be considered. * Only for this statement consensus was reached by disagreement. | 100% * |
22. Fulvestrant monotherapy should be considered as a 2L treatment option, particularly in elderly and frail patients. This approach is suitable for those who may not tolerate more aggressive treatments or combination therapies due to their overall health status and comorbidities. | 10% SA 40% A 20% SD 30% N |
| 25. Fulvestrant monotherapy is appropriate only in those patients who cannot tolerate more aggressive treatment or combination therapy due to their health status and comorbidities (particularly elderly and frail patients). | 100% |
23. When considering the choice between alpelisib and capivasertib for 2L therapy in HR+ HER2− metastatic breast cancer, the toxicity profile and patient comorbidities should be carefully evaluated to optimize treatment tolerance and adherence. | 50% SA 30% A 20% N | 26. When considering the choice between alpelisib and capivasertib for 2L therapy in HR+ HER2− mBC, the toxicity profile and patient comorbidities should be carefully evaluated to optimize treatment tolerance and adherence. | 80% | |
24. Routine monitoring for hyperglycemia for patients on alpelisib and capivasertib is essential to identify elevated glucose levels early and initiate appropriate management to prevent complications such as CV events, infections, and impaired wound healing. | 70% SA 10% A 20% N | 27. Routine monitoring for hyperglycemia for patients on alpelisib and capivasertib is essential to identify elevated glucose levels early and initiate appropriate management to prevent complications such as CV events, infections, and impaired wound healing. | 80% | |
25. Non-sedating oral antihistamines should be considered for patients on alpelisib and capivasertib prophylactically. | 40% SA 30% A 30% N | 28. Non-sedating oral antihistamines should be considered for patients on alpelisib and capivasertib prophylactically. | 70% | |
26. Proactive management of diarrhea is crucial in patients on alpelisib and capivasertib, involving the early administration of anti-diarrheal agents, dietary modifications, and adequate hydration to prevent dehydration and electrolyte imbalances. | 50% SA 20% A 30% N | 29. Proactive management of diarrhea is crucial in patients on alpelisib and capivasertib, involving the early administration of anti-diarrheal agents, dietary modifications, and adequate hydration to prevent dehydration and electrolyte imbalances. | 70% | |
Selection of 2L treatment at PD on 1L ET + CDK4/6i, at <6 months after initiation of ET for HR+/HER2− mBC, whilst on ET (primary resistance in metastatic setting) | ||||
27. Fast progression within 6 months of 1L therapy indicates a more aggressive disease biology, necessitating a swift shift to more aggressive or alternative treatment options, such as chemotherapy. | 40% SA 20% A 20% D 20% N |
| 30. Fast progression within 6 months of 1L therapy indicates a more aggressive disease biology, necessitating a swift shift to an alternate systemic treatment. | 80% |
28. In cases of rapid progression on 1L CDK4/6i, BRCA testing should be carried out before 2L treatment decision. | 40% SA 40% A 20% N |
| 31. In cases of rapid progression on 1L CDK4/6i, gBRCA testing should be done before 2L treatment decision. | 80% |
29. If no actionable biomarkers are positive, chemotherapy should be considered as a 2L option. | 20% SA 60% A 20% N |
| 32. If no actionable biomarkers are positive, chemotherapy could be considered as a 2L option. | 80% |
30. Single-agent taxanes should be considered in patients with significant tumor burden due to their proven efficacy and ability to provide rapid disease control. | 20% SA 30% A 10% D 40% N |
| ||
31. Single-agent taxane should be considered in patients who can tolerate intravenous administration and its associated side effects. | 20% SA 30% A 10% D 40% N | |||
32. Capecitabine should be considered in patients with slower disease progression and low tumor burden where immediate, aggressive treatment is not critical. | 30% SA 40% A 30% N | |||
33. Capecitabine should be considered in patients who prefer oral therapy and have previously been treated with anthracyclines and taxanes. | 50% SA 30% A 20% N | |||
34. Fast progressors on CDK4/6i should be considered for clinical trials, investigating novel therapies and combinations to provide access to potentially more effective treatments. | 40% SA 40% A 20% N |
| 33. Fast progressors on CDK4/6i should be considered for clinical trials, investigating novel therapies and combinations to provide access to potentially more effective treatments. | 80% |
Selection of post-2L treatment options (PD after minimum 2 lines of therapy for aBC) | ||||
35. If HER2-low and no positive actionable biomarkers, trastuzumab deruxtecan (T-DXd) should be considered after one line of chemotherapy. | 70% SA 10% A 20% SA |
| 34. If HER2 expression is low and no positive actionable biomarkers, trastuzumab deruxtecan (T-DXd) should be considered after one line of chemotherapy. | 100% |
36. If HER2-zero and no positive actionable biomarkers, sacituzumab govitecan (SG) should be considered after two lines of chemotherapy. | 40% SA 30% A 20% SD 10% N | 35. If HER2-zero and no positive actionable biomarkers, sacituzumab govitecan (SG) should be considered after two lines of chemotherapy. | 70% | |
37. In patients initially diagnosed with HR+ HER2− (IHC = 0) breast cancer, re-biopsy of metastasis, if possible, or re-testing of HER2 expression from the primary tumor should be considered at the time of progression. | 70% SA 30% A |
| 36. In patients initially diagnosed with HR+ HER2− (IHC = 0) breast cancer, re-biopsy of metastasis, if possible, or re-testing/re-assessing of HER2 expression should be considered at the time of progression. | 100% |
38. Changes in HER2 status can occur and may influence subsequent treatment decisions. | 70% SA 30% A | 37. Changes in HER2 status can occur and may influence subsequent treatment decisions. | 100% | |
39. T-DXd is effective in the treatment of HER2-low mBC, regardless of breast tumor sample type, used to determine HER2 status (primary tumor or metastasis). | 50% SA 30% A 20% SD | 38. T-DXd is effective in the treatment of HER2-low mBC, regardless of breast tumor sample type, used to determine HER2 status (primary tumor or metastasis). | 80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popović, L.; Borštnar, S.; Božović-Spasojević, I.; Cvetanović, A.; Dedić Plavetić, N.; Kaneva, R.; Konsoulova, A.; Matos, E.; Tomić, S.; Vrdoljak, E. Treatment Sequencing in Metastatic HR+/HER2− Breast Cancer: A Delphi Consensus. Cancers 2025, 17, 1412. https://doi.org/10.3390/cancers17091412
Popović L, Borštnar S, Božović-Spasojević I, Cvetanović A, Dedić Plavetić N, Kaneva R, Konsoulova A, Matos E, Tomić S, Vrdoljak E. Treatment Sequencing in Metastatic HR+/HER2− Breast Cancer: A Delphi Consensus. Cancers. 2025; 17(9):1412. https://doi.org/10.3390/cancers17091412
Chicago/Turabian StylePopović, Lazar, Simona Borštnar, Ivana Božović-Spasojević, Ana Cvetanović, Natalija Dedić Plavetić, Radka Kaneva, Assia Konsoulova, Erika Matos, Snježana Tomić, and Eduard Vrdoljak. 2025. "Treatment Sequencing in Metastatic HR+/HER2− Breast Cancer: A Delphi Consensus" Cancers 17, no. 9: 1412. https://doi.org/10.3390/cancers17091412
APA StylePopović, L., Borštnar, S., Božović-Spasojević, I., Cvetanović, A., Dedić Plavetić, N., Kaneva, R., Konsoulova, A., Matos, E., Tomić, S., & Vrdoljak, E. (2025). Treatment Sequencing in Metastatic HR+/HER2− Breast Cancer: A Delphi Consensus. Cancers, 17(9), 1412. https://doi.org/10.3390/cancers17091412