FDG-PET/CT and Multimodal Machine Learning Model Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer
Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Design
2.2. Histopathological Features and Gene Expression Profiling
2.3. FDG-PET/CT Image Acquisition
2.4. Imaging Processing and Radiomic Features
2.5. Neoadjuvant Chemotherapy Regimen
2.6. Pathology Assessment, Follow-Up, and Event-Free Survival
2.7. Multimodal Data Aggregation
2.8. Machine Learning Model Development
3. Results
3.1. Patient Characteristics and Database Construction for Machine Learning
3.2. Association Between Main Features and pCR (Univariate Analysis)
3.3. Prediction of pCR with ML Algorithm
3.4. Event-Free Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCCN Clinical Practice Guidelines in Oncology. Breast Cancer. Version 3. 2025. Available online: https://www.NCCN.Org/Professionals/Physician_gls/Pdf/Breast.Pdf (accessed on 3 April 2025).
- Gralow, J.R.; Burstein, H.J.; Wood, W.; Hortobagyi, G.N.; Gianni, L.; von Minckwitz, G.; Buzdar, A.U.; Smith, I.E.; Symmans, W.F.; Singh, B.; et al. Preoperative Therapy in Invasive Breast Cancer: Pathologic Assessment and Systemic Therapy Issues in Operable Disease. J. Clin. Oncol. 2008, 26, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The Triple Negative Paradox: Primary Tumor Chemosensitivity of Breast Cancer Subtypes. Clin. Cancer Res. 2007, 13, 2329–2334. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological Complete Response and Long-Term Clinical Benefit in Breast Cancer: The CTNeoBC Pooled Analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Coudert, B.; Pierga, J.-Y.; Mouret-Reynier, M.-A.; Kerrou, K.; Ferrero, J.-M.; Petit, T.; Kerbrat, P.; Dupré, P.-F.; Bachelot, T.; Gabelle, P.; et al. Use of [(18)F]-FDG PET to Predict Response to Neoadjuvant Trastuzumab and Docetaxel in Patients with HER2-Positive Breast Cancer, and Addition of Bevacizumab to Neoadjuvant Trastuzumab and Docetaxel in [(18)F]-FDG PET-Predicted Non-Responders (AVATAXHER): An Open-Label, Randomised Phase 2 Trial. Lancet Oncol. 2014, 15, 1493–1502. [Google Scholar] [CrossRef]
- Koolen, B.B.; Pengel, K.E.; Wesseling, J.; Vogel, W.V.; Vrancken Peeters, M.-J.T.F.D.; Vincent, A.D.; Gilhuijs, K.G.A.; Rodenhuis, S.; Rutgers, E.J.T.; Valdés Olmos, R.A. Sequential (18)F-FDG PET/CT for Early Prediction of Complete Pathological Response in Breast and Axilla during Neoadjuvant Chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Groheux, D.; Hindié, E.; Giacchetti, S.; Hamy, A.-S.; Berger, F.; Merlet, P.; de Roquancourt, A.; de Cremoux, P.; Marty, M.; Hatt, M.; et al. Early Assessment with 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Can Help Predict the Outcome of Neoadjuvant Chemotherapy in Triple Negative Breast Cancer. Eur. J. Cancer 2014, 50, 1864–1871. [Google Scholar] [CrossRef] [PubMed]
- Humbert, O.; Riedinger, J.-M.; Charon-Barra, C.; Berriolo-Riedinger, A.; Desmoulins, I.; Lorgis, V.; Kanoun, S.; Coutant, C.; Fumoleau, P.; Cochet, A.; et al. Identification of Biomarkers Including 18FDG-PET/CT for Early Prediction of Response to Neoadjuvant Chemotherapy in Triple Negative Breast Cancer. Clin. Cancer Res. 2015, 21, 5460–5468. [Google Scholar] [CrossRef]
- Groheux, D.; Biard, L.; Giacchetti, S.; Teixeira, L.; Hindié, E.; Cuvier, C.; Vercellino, L.; Merlet, P.; de Roquancourt, A.; de Cremoux, P.; et al. 18F-FDG PET/CT for the Early Evaluation of Response to Neoadjuvant Treatment in Triple-Negative Breast Cancer: Influence of the Chemotherapy Regimen. J. Nucl. Med. 2016, 57, 536–543. [Google Scholar] [CrossRef]
- Humbert, O.; Berriolo-Riedinger, A.; Riedinger, J.M.; Coudert, B.; Arnould, L.; Cochet, A.; Loustalot, C.; Fumoleau, P.; Brunotte, F. Changes in 18F-FDG Tumor Metabolism after a First Course of Neoadjuvant Chemotherapy in Breast Cancer: Influence of Tumor Subtypes. Ann. Oncol. 2012, 23, 2572–2577. [Google Scholar] [CrossRef]
- Rousseau, C.; Devillers, A.; Sagan, C.; Ferrer, L.; Bridji, B.; Campion, L.; Ricaud, M.; Bourbouloux, E.; Doutriaux, I.; Clouet, M.; et al. Monitoring of Early Response to Neoadjuvant Chemotherapy in Stage II and III Breast Cancer by [18F]Fluorodeoxyglucose Positron Emission Tomography. J. Clin. Oncol. 2006, 24, 5366–5372. [Google Scholar] [CrossRef]
- Berriolo-Riedinger, A.; Touzery, C.; Riedinger, J.-M.; Toubeau, M.; Coudert, B.; Arnould, L.; Boichot, C.; Cochet, A.; Fumoleau, P.; Brunotte, F. [18F]FDG-PET Predicts Complete Pathological Response of Breast Cancer to Neoadjuvant Chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1915–1924. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; André, F.; Bachelot, T.; Barrios, C.H.; Bergh, J.; Burstein, H.J.; Cardoso, M.J.; Carey, L.A.; Dawood, S.; Del Mastro, L.; et al. Early Breast Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2024, 35, 159–182. [Google Scholar] [CrossRef]
- Bertucci, F.; Finetti, P.; Roche, H.; Le Doussal, J.M.; Marisa, L.; Martin, A.L.; Lacroix-Triki, M.; Blanc-Fournier, C.; Jacquemier, J.; Peyro-Saint-Paul, H.; et al. Comparison of the Prognostic Value of Genomic Grade Index, Ki67 Expression and Mitotic Activity Index in Early Node-Positive Breast Cancer Patients. Ann. Oncol. 2013, 24, 625–632. [Google Scholar] [CrossRef]
- Groheux, D.; Biard, L.; Lehmann-Che, J.; Teixeira, L.; Bouhidel, F.A.; Poirot, B.; Bertheau, P.; Merlet, P.; Espié, M.; Resche-Rigon, M.; et al. Tumor Metabolism Assessed by FDG-PET/CT and Tumor Proliferation Assessed by Genomic Grade Index to Predict Response to Neoadjuvant Chemotherapy in Triple Negative Breast Cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1279–1288. [Google Scholar] [CrossRef]
- Li, P.; Wang, X.; Xu, C.; Liu, C.; Zheng, C.; Fulham, M.J.; Feng, D.; Wang, L.; Song, S.; Huang, G. 18F-FDG PET/CT Radiomic Predictors of Pathologic Complete Response (pCR) to Neoadjuvant Chemotherapy in Breast Cancer Patients. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Agazzi, G.M.; Rotili, A.; Ferrari, F.; Cardillo, A.; Penco, S.; Dominelli, V.; D’Ecclesiis, O.; Vignati, S.; Raimondi, S.; et al. Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients With MRI-Radiomics: A Systematic Review and Meta-Analysis. Curr. Probl. Cancer 2022, 46, 100883. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Lee, J.H.; Lee, J.E.; Na, Y.M.; Park, M.H.; Lee, J.S.; Lim, H.S. Prediction of Early Clinical Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer: Incorporating Radiomics through Breast MRI. Sci. Rep. 2024, 14, 21691. [Google Scholar] [CrossRef]
- Balkenende, L.; Teuwen, J.; Mann, R.M. Application of Deep Learning in Breast Cancer Imaging. Semin. Nucl. Med. 2022, 52, 584–596. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, H.-A.; Kim, W.; Lim, I.; Lee, I.; Byun, B.H.; Noh, W.C.; Seong, M.-K.; Lee, S.-S.; Kim, B.I.; et al. Early Prediction of Neoadjuvant Chemotherapy Response for Advanced Breast Cancer Using PET/MRI Image Deep Learning. Sci. Rep. 2020, 10, 21149. [Google Scholar] [CrossRef]
- Umutlu, L.; Kirchner, J.; Bruckmann, N.-M.; Morawitz, J.; Antoch, G.; Ting, S.; Bittner, A.-K.; Hoffmann, O.; Häberle, L.; Ruckhäberle, E.; et al. Multiparametric 18F-FDG PET/MRI-Based Radiomics for Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers 2022, 14, 1727. [Google Scholar] [CrossRef]
- Nielsen, T.O.; Leung, S.C.Y.; Rimm, D.L.; Dodson, A.; Acs, B.; Badve, S.; Denkert, C.; Ellis, M.J.; Fineberg, S.; Flowers, M.; et al. Assessment of Ki67 in Breast Cancer: Updated Recommendations From the International Ki67 in Breast Cancer Working Group. J. Natl. Cancer Inst. 2021, 113, 808–819. [Google Scholar] [CrossRef]
- Dumay, A.; Feugeas, J.-P.; Wittmer, E.; Lehmann-Che, J.; Bertheau, P.; Espié, M.; Plassa, L.-F.; Cottu, P.; Marty, M.; André, F.; et al. Distinct Tumor Protein P53 Mutants in Breast Cancer Subgroups. Int. J. Cancer 2013, 132, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, J.; Sieuwerts, A.M.; Haibe-Kains, B.; Desmedt, C.; Rouas, G.; Harris, A.L.; Larsimont, D.; Piccart, M.; Foekens, J.A.; Durbecq, V.; et al. Improvement of the Clinical Applicability of the Genomic Grade Index through a qRT-PCR Test Performed on Frozen and Formalin-Fixed Paraffin-Embedded Tissues. BMC Genom. 2009, 10, 424. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jenkins, D.F.; Manimaran, S.; Johnson, W.E. Alternative Empirical Bayes Models for Adjusting for Batch Effects in Genomic Studies. BMC Bioinform. 2018, 19, 262. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine Learning Algorithm Validation with a Limited Sample Size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef]
- Bulut, G.; Atilgan, H.I.; Çınarer, G.; Kılıç, K.; Yıkar, D.; Parlar, T. Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer by Using a Deep Learning Model with 18F-FDG PET/CT. PLoS ONE 2023, 18, e0290543. [Google Scholar] [CrossRef]
- Elsayed, B.; Alksas, A.; Shehata, M.; Mahmoud, A.; Zaky, M.; Alghandour, R.; Abdelwahab, K.; Abdelkhalek, M.; Ghazal, M.; Contractor, S.; et al. Exploring Neoadjuvant Chemotherapy, Predictive Models, Radiomic, and Pathological Markers in Breast Cancer: A Comprehensive Review. Cancers 2023, 15, 5288. [Google Scholar] [CrossRef]
- García-Castro, A.; Zonca, M.; Florindo-Pinheiro, D.; Carvalho-Pinto, C.E.; Cordero, A.; Gutiérrez del Fernando, B.; García-Grande, A.; Mañes, S.; Hahne, M.; González-Suárez, E.; et al. APRIL Promotes Breast Tumor Growth and Metastasis and Is Associated with Aggressive Basal Breast Cancer. Carcinogenesis 2015, 36, 574–584. [Google Scholar] [CrossRef]
- Groheux, D.; Martineau, A.; Teixeira, L.; Espié, M.; de Cremoux, P.; Bertheau, P.; Merlet, P.; Lemarignier, C. 18FDG-PET/CT for Predicting the Outcome in ER+/HER2- Breast Cancer Patients: Comparison of Clinicopathological Parameters and PET Image-Derived Indices Including Tumor Texture Analysis. Breast Cancer Res. 2017, 19, 3. [Google Scholar] [CrossRef] [PubMed]
- Molina-García, D.; García-Vicente, A.M.; Pérez-Beteta, J.; Amo-Salas, M.; Martínez-González, A.; Tello-Galán, M.J.; Soriano-Castrejón, Á.; Pérez-García, V.M. Intratumoral Heterogeneity in 18F-FDG PET/CT by Textural Analysis in Breast Cancer as a Predictive and Prognostic Subrogate. Ann. Nucl. Med. 2018, 32, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.-J.; Kim, Y.; Chung, J.; Kim, B.S. Predicting Neo-Adjuvant Chemotherapy Response and Progression-Free Survival of Locally Advanced Breast Cancer Using Textural Features of Intratumoral Heterogeneity on F-18 FDG PET/CT and Diffusion-Weighted MR Imaging. Breast J. 2019, 25, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Antunovic, L.; De Sanctis, R.; Cozzi, L.; Kirienko, M.; Sagona, A.; Torrisi, R.; Tinterri, C.; Santoro, A.; Chiti, A.; Zelic, R.; et al. PET/CT Radiomics in Breast Cancer: Promising Tool for Prediction of Pathological Response to Neoadjuvant Chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1468–1477. [Google Scholar] [CrossRef]
- Pérez-García, J.M.; Cortés, J.; Ruiz-Borrego, M.; Colleoni, M.; Stradella, A.; Bermejo, B.; Dalenc, F.; Escrivá-de-Romaní, S.; Calvo Martínez, L.; Ribelles, N.; et al. 3-Year Invasive Disease-Free Survival with Chemotherapy de-Escalation Using an 18F-FDG-PET-Based, Pathological Complete Response-Adapted Strategy in HER2-Positive Early Breast Cancer (PHERGain): A Randomised, Open-Label, Phase 2 Trial. Lancet 2024, 403, 1649–1659. [Google Scholar] [CrossRef]
- Hamy, A.S.; Bieche, I.; Lehmann-Che, J.; Scott, V.; Bertheau, P.; Guinebretière, J.M.; Matthieu, M.C.; Sigal-Zafrani, B.; Tembo, O.; Marty, M.; et al. BIRC5 (Survivin): A Pejorative Prognostic Marker in Stage II/III Breast Cancer with No Response to Neoadjuvant Chemotherapy. Breast Cancer Res. Treat. 2016, 159, 499–511. [Google Scholar] [CrossRef]
- de Cremoux, P.; Biard, L.; Poirot, B.; Bertheau, P.; Teixeira, L.; Lehmann-Che, J.; Bouhidel, F.A.; Merlet, P.; Espié, M.; Resche-Rigon, M.; et al. 18FDG-PET/CT and Molecular Markers to Predict Response to Neoadjuvant Chemotherapy and Outcome in HER2-Negative Advanced Luminal Breast Cancers Patients. Oncotarget 2018, 9, 16343–16353. [Google Scholar] [CrossRef]
Patient Characteristics (N = 57) | Summary * |
---|---|
Age in years | 54.0 (45.0, 64.0) |
Family history of breast cancer | |
No | 46 (80.7) |
Yes | 10 (17.5) |
Missing | 1 (1.8) |
Clinical T-stage ** | |
T1–T2 | 27 (47.4) |
T3–T4 | 30 (52.6) |
Clinical N-stage ** | |
N0 | 24 (42.1) |
N+ | 33 (57.9) |
Histological type | |
Non-specific | 52 (91.2) |
Metaplastic | 5 (8.8) |
Histological grade | |
Grade 1–2 | 5 (8.8) |
Grade 3 | 52 (91.2) |
P53 mutation | |
Wild type | 5 (8.8) |
Mutated | 52 (91.2) |
Ki-67 mRNA expression (×1000) | 533.1 (245.0, 781.6) |
Missing | 13 |
GGIr † (×1000) | 391.1 (172.2, 598.4) |
Tumor SUVmax | 10.0 (7.2, 14.8) |
Metabolic tumor volume (cm3) | 7.9 (3.8, 18.9) |
Chemotherapy regimen | |
EC-D | 8 (14.0) |
SIM | 49 (86.0) |
Surgery | |
Breast-conserving surgery | 28 (49.1) |
Mastectomy | 28 (49.1) |
No surgery | 1 (1.8) |
Pathological findings | |
pCR | 21 (36.8) |
non-pCR | 36 (63.2) |
Modality | Feature * | Non-pCR (N = 36, 63.2%) | pCR (N = 21, 36.8%) | p-Value |
---|---|---|---|---|
Clinical | Age in years (Q1, Q3) | 54.0 (42.3, 63.0) | 54.0 (49.0, 64.0) | 0.73 |
Family history of breast cancer | 0.08 | |||
No | 27 (75.0) | 19 (95.0) | ||
Yes | 9 (25.0) | 1 (5.0) | ||
Missing | 0 | 1 | ||
Contraception | 0.17 | |||
No | 14 (38.9) | 12 (60) | ||
Yes | 22 (61.1) | 8 (40) | ||
Missing | 0 | 1 | ||
Clinical T-stage * | 0.03 | |||
T1–T2 | 13 (36.1) | 14 (66.7) | ||
T3–T4 | 23 (63.9) | 7 (33.3) | ||
Clinical N-stage * | 0.78 | |||
N0 | 16 (44.4) | 8 (38.1) | ||
N+ | 20 (55.6) | 13 (61.9) | ||
Chemotherapy regimen | 1.00 | |||
EC-D | 5 (13.9) | 3 (14.2) | ||
SIM | 31 (86.1) | 18 (85.8) | ||
Surgery | 0.27 | |||
Breast-conserving surgery | 15 (42.9) | 13 (61.9) | ||
Mastectomy | 20 (57.1) | 8 (38.1) | ||
No surgery | 1 | 0 | ||
Histopathological | Histological type | 0.64 | ||
Non-specific | 32 (88.9) | 20 (95.2) | ||
Metaplastic | 4 (11.1) | 1 (4.8) | ||
Histological grade | 0.15 | |||
Grade 1–2 | 5 (13.9) | 0 (0.0) | ||
Grade 3 | 31 (86.1) | 21 (100.0) | ||
Mitosis count | 20 (3, 30) | 13.5 (3.7, 26.2) | 0.83 | |
Ki67 score (automated) | 35 (9, 64.5) | 42 (31.2, 59.5) | 0.35 | |
Gene expression profiling | Ki-67 mRNA expression Missing | 482.1 (280.8, 631.2) | 579.0 (179.1, 862.6) | 0.38 |
P53 mutation | 0.35 | |||
Wild type | 2 (5.6) | 3 (14.3) | ||
Mutated | 34 (94.4) | 18 (85.7) | ||
CDC2 (×1000) | 93.5 (53.4, 164.9) | 202.5 (127.6, 289.1) | 0.02 | |
CDC20 (×1000) | 486.8 (214.4, 828.6) | 1042.5 (505.2, 1353.5) | 0.04 | |
KPNA2 (×1000) | 251.8 (158.6, 339.9) | 426.6 (272.9, 761.9) | 0.01 | |
MYBL2 (×1000) | 251.4 (129.0, 483.6) | 421.9 (318.5, 636.9) | 0.01 | |
GGIr ** (×1000) | 322.5 (154.5, 440.5) | 588.0 (376.6, 757.8) | 0.01 | |
PET non-radiomic features | Tumor SUVmax | 9.2 (7.0, 12.5) | 13.2 (8.5, 20.1) | 0.07 |
Lymph nodes SUVmax | 1.4 (0, 9.6) | 2.2 (0, 5.8) | 0.95 | |
Metabolic tumor volume (cm3) | 9.3 (4.9, 17.2) | 6.6 (3.0, 23.6) | 0.70 | |
Radiomics | Morphological sphericity (×1000) | 945.5 (911.5, 959.3) | 935.0 (859.0, 959.0) | 0.65 |
Intensity skewness (×1000) | 473.5 (321.3, 664.8) | 610.0 (329.0, 816.0) | 0.56 | |
Discretized intensity uniformity (×1000) | 1.2 (0.9, 1.8) | 1.9 (1.3, 2.4) | 0.05 | |
GLCM contrast | 31.0 (12.4, 46.6) | 50.0 (18.0, 68.8) | 0.12 | |
GLDZM large distance low gray-level emphasis (×1000) | 2.2 (1.6, 4.5) | 1.5 (1.1, 3.4) | 0.14 | |
NGLDM low dependence low gray-level emphasis (×10,000) | 0.8 (0.5, 1.1) | 0.5 (0.4, 1.0) | 0.14 |
Data Modalities | Model | AUC | Accuracy | Se | Sp | PPV | NPV | |
---|---|---|---|---|---|---|---|---|
1 | Clinical, histopathological, and PET non-radiomic features | SVM | 0.63 | 0.53 | 0.57 | 0.48 | 0.60 | 0.40 |
Decision tree | 0.45 | 0.45 | 0.63 | 0.27 | 0.59 | 0.29 | ||
Random forest | 0.56 | 0.48 | 0.67 | 0.30 | 0.62 | 0.35 | ||
Logit | 0.49 | 0.44 | 0.15 | 0.73 | 0.50 | 0.34 | ||
2 | 1 + genomic data | SVM | 0.70 | 0.61 | 0.58 | 0.63 | 0.73 | 0.47 |
Decision tree | 0.70 | 0.67 | 0.72 | 0.62 | 0.77 | 0.56 | ||
Random forest | 0.65 | 0.64 | 0.76 | 0.53 | 0.73 | 0.56 | ||
Logit | 0.65 | 0.61 | 0.61 | 0.60 | 0.72 | 0.47 | ||
3 | 2 + whole set of radiomic features | SVM | 0.82 | 0.71 | 0.71 | 0.70 | 0.80 | 0.59 |
Decision tree | 0.67 | 0.65 | 0.74 | 0.56 | 0.74 | 0.55 | ||
Random forest | 0.65 | 0.54 | 0.74 | 0.35 | 0.66 | 0.44 | ||
Logit | 0.64 | 0.60 | 0.60 | 0.61 | 0.72 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groheux, D.; Ferrer, L.; Vargas, J.; Martineau, A.; Borgel, A.; Teixeira, L.; Menu, P.; Bertheau, P.; Gallinato, O.; Colin, T.; et al. FDG-PET/CT and Multimodal Machine Learning Model Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancers 2025, 17, 1249. https://doi.org/10.3390/cancers17071249
Groheux D, Ferrer L, Vargas J, Martineau A, Borgel A, Teixeira L, Menu P, Bertheau P, Gallinato O, Colin T, et al. FDG-PET/CT and Multimodal Machine Learning Model Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancers. 2025; 17(7):1249. https://doi.org/10.3390/cancers17071249
Chicago/Turabian StyleGroheux, David, Loïc Ferrer, Jennifer Vargas, Antoine Martineau, Adrien Borgel, Luis Teixeira, Philippe Menu, Philippe Bertheau, Olivier Gallinato, Thierry Colin, and et al. 2025. "FDG-PET/CT and Multimodal Machine Learning Model Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer" Cancers 17, no. 7: 1249. https://doi.org/10.3390/cancers17071249
APA StyleGroheux, D., Ferrer, L., Vargas, J., Martineau, A., Borgel, A., Teixeira, L., Menu, P., Bertheau, P., Gallinato, O., Colin, T., & Lehmann-Che, J. (2025). FDG-PET/CT and Multimodal Machine Learning Model Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancers, 17(7), 1249. https://doi.org/10.3390/cancers17071249