Measurable Residual Disease Testing During Treatment with Bispecific Antibodies for Lymphoma
Simple Summary
Abstract
1. Introduction
2. Bispecific Antibodies
3. Better Response Assessment During T-Cell Redirecting Therapy
4. MRD Testing Methodologies
5. MRD Assessments After BsAb Monotherapy for LBCL
Trial | Trial Number | BsAb Regimen | Disease Indication | MRD Assessment Method | Definition of MRD Negativity | Key Findings | Reference |
---|---|---|---|---|---|---|---|
BsAb Monotherapy for LBCL | |||||||
EPCORE NHL-1 | NCT03625037 | Epcoritamab | R/R LBCL | clonoSEQ (ctDNA), AVENIO (ctDNA) | Undetectable ctDNA (clonoSEQ), <1 mutant molecule/cc (AVENIO) | 45.4% achieved MRD negativity; MRD negativity at cycle 3 day 1 linked to PFS/OS; 82.3% remained MRD-negative at 6 months; pseudoprogression noted with early MRD negativity in 5/6 patients. | [24,26,56] |
Glofitamab Phase II | NCT03075696 | Glofitamab | R/R LBCL | AVENIO/CAPP-seq (ctDNA) | Undetectable ctDNA | MRD negativity correlated with PFS; sustained MRD negativity in CR patients until EOT; LymphGen molecular subtype MCD linked to poor PFS. | [57,58,59,60] |
ELM-2 | NCT03888105 | Odronextamab | R/R LBCL | Modified AVENIO (ctDNA) | Undetectable ctDNA | MRD negativity at cycle 5 day 1 correlated with longer PFS; 4 patients not in CR at C5D1 later converted to CR. | [62] |
AZD0486 Phase I | NCT05056727 | AZD0486 | R/R LBCL | PhasED-seq (ctDNA) | Undetectable ctDNA | 92% of CR patients had undetectable ctDNA. | [63] |
EPCORE DLBCL-3 | NCT04628494 | Epcoritamab | Newly diagnosed LBCL, elderly patients ineligible for anthracyclines | AVENIO (ctDNA) | Not specified | ORR 74%, CR 64%; 93% MRD-negative in responders. | [64] |
MRD in BsAb Combination Therapy Trials | |||||||
EPCORE NHL-2 Arm 1 | NCT04663347 | Epcoritamab + R-CHOP | Newly diagnosed DLBCL, IPI 3-5, double-hit/triple-hit | AVENIO (ctDNA) | <1 mutant molecule/cc | 91% MRD negativity; 83% achieved response by cycle 3 day 1. | [65] |
EPCORE-NHL2 Arm 8 | NCT04663347 | Epcoritamab + R-mini-CHOP | Newly diagnosed DLBCL ineligible for R-CHOP due to age or comorbidities | AVENIO (ctDNA) | <1 mutant molecule/mL | MRD negativity of 95% in evaluable patients | [66] |
EPCORE NHL-5 Arm 3 | NCT04973137 | Epcoritamab + Pola-R-CHP | Newly diagnosed LBCL | AVENIO (ctDNA) | <1 mutant molecule/cc | 81% MRD-negative after 2 cycles; nearly all CR patients were MRD-negative at EOT. | [67] |
EPCORE NHL-5 Arm 1 | NCT04973137 | Epcoritamab + Lenalidomide | R/R LBCL | AVENIO (ctDNA) | <1 mutant molecule/cc | 74% of CR patients at cycle 2 were MRD-negative. | [68] |
COALITION | NCT04851119 | Glofitamab + R-CHOP or Glofitaamab + Pola-R-CHP | High-burden, high-risk LBCL | CAPP-seq (ctDNA) | Undetectable ctDNA (LOD 10−4) | 88% MRD-negative at end of induction; MRD negativity increased after consolidation. | [69] |
NP40126 | NCT03467373 | Glofitamab + R-CHOP | Untreated DLBCL | AVENIO (ctDNA) | Undetectable ctDNA | 4/5 MRD-positive patients experienced a PFS event at 12 mos compared with 1/32 MRD-negative patients | [70] |
NP39488 | NCT03533283 | Glofitamab + Pola | R/R LBCL | AVENIO (ctDNA) | Undetectable ctDNA | CR rate 62%, with mean duration of CR 31.8 months; all patients in CR had decreases in ctDNA | [71] |
BP41072 | NCT04077723 | Englumafusp alfa + glofitamab | R/R B-NHL | AVENIO (ctDNA) | Undetectable ctDNA | Baseline ctDNA associated with pretreatment risk factors; used for baseline genotyping; molecular response correlated with radiographic response; better effector memory T-cell expansion associated with improved ctDNA response | [72,73] |
MRD in BsAb Therapy for FL and Other Lymphomas | |||||||
ELM-2 | NCT03888105 | Odronextamab | R/R FL | AVENIO (ctDNA) | Undetectable ctDNA | MRD negativity at cycle 4 day 15 significantly correlated with PFS. | [30] |
EPCORE NHL-1 | NCT03625037 | Epcoritamab | R/R FL | clonoSEQ (PBMC and ctDNA) | <1 cell per million nucleated cells or undetectable ctDNA | 71% achieved MRD negativity; improved PFS in MRD-negative patients. ctDNA possibly more sensitive | [25] |
AZD0486 Phase I | NCT04594642 | AZD0486 | R/R FL | PhasED-Seq (ctDNA) | Undetectable ctDNA | 92% of CR patients had undetectable ctDNA within 12 weeks, 96% at any point | [74] |
NP30179 | NCT03075696 | Glofitamab | R/R MCL | clonoSEQ (PBMCs or ctDNA) | Negative ctDNA | 93% of evaluable patients had undetectable MRD | [75] |
EPCORE CLL-1 | NCT04623541 | Epcoritamab | R/R CLL | clonoSEQ (PBMCs) | Undetectable at thresholds of 10−4 and 10−6 | 35% and 39% of patients achieved MRD negativity at 10−4 and 10−6, respectively | [76] |
Mosunetuzumab + Pola | NCT05410418 | Mosunetuzumab + pola | Untreated high tumor burden FL | PhasED-seq (ctDNA) | Undetectable ctDNA (10−6) | 7/8 (88%) of patients with CR after cycle 2 had undetectable MRD | [77] |
EPCORE NHL-2 Arm 2 | NCT04663347 | Epcoritamab + lenalidomide/rituximab | R/R FL + Lenalidomide/Rituximab | clonoSEQ (PBMC) | <1 cell per million nucleated cells | MRD negativity in 88% of evaluable patients associated with prolonged PFS. | [78] |
6. MRD Assessments After BsAb Combination Therapy for LBCL
7. MRD Testing After BsAb Treatment for FL or Other Lymphomas
8. Barriers and Future Directions
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Coiffier, B.; Lepage, E.; Brière, J.; Herbrecht, R.; Tilly, H.; Bouabdallah, R.; Morel, P.; Van Den Neste, E.; Salles, G.; Gaulard, P.; et al. CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma. N. Engl. J. Med. 2002, 346, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, Ö.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.; Landsburg, D.; et al. Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. N. Engl. J. Med. 2017, 377, 2545–2554. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Fowler, N.H.; Dickinson, M.; Dreyling, M.; Martinez-Lopez, J.; Kolstad, A.; Butler, J.; Ghosh, M.; Popplewell, L.; Chavez, J.C.; Bachy, E.; et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: The phase 2 ELARA trial. Nat. Med. 2021, 28, 325–332. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.-A.; Kersten, M.-J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef]
- Bishop, M.R.; Dickinson, M.; Purtill, D.; Barba, P.; Santoro, A.; Hamad, N.; Kato, K.; Sureda, A.; Greil, R.; Thieblemont, C.; et al. Second-Line Tisagenlecleucel or Standard Care in Aggressive B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 629–639. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Jacobson, C.A.; Ghobadi, A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Five-year follow-up of ZUMA-1 supports the curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood 2023, 141, 2307–2315. [Google Scholar]
- Schuster, S.J.; Tam, C.S.; Borchmann, P.; Worel, N.; McGuirk, J.P.; Holte, H.; Waller, E.K.; Jaglowski, S.; Bishop, M.R.; Damon, L.E.; et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or re-fractory aggressive B-cell lymphomas (JULIET): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 1403–1415. [Google Scholar]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.; Wang, M.L.; Arnason, J.E.; Purev, E.; Maloney, D.G.; Andreadis, C.B.; Sehgal, A.; et al. Two-year follow-up of lisocabtagene maraleucel in relapsed or refractory large B-cell lymphoma in TRANSCEND NHL 001. Blood 2024, 143, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Han, G.; Puebla-Osorio, N.; Ma, M.C.J.; Strati, P.; Chasen, B.; Dai, E.; Dang, M.; Jain, N.; Yang, H.; et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 2020, 26, 1878–1887. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.J.; Hossain, N.M.; Bukhari, A.; Dean, E.; Spiegel, J.Y.; Claire, G.K.; Kirsch, I.; Jacob, A.P.; Mullins, C.D.; Lee, L.W.; et al. Monitoring of Circulating Tumor DNA Improves Early Relapse Detection After Axicabtagene Ciloleucel Infusion in Large B-Cell Lymphoma: Results of a Prospective Multi-Institutional Trial. J. Clin. Oncol. 2021, 39, 3034–3043. [Google Scholar] [CrossRef] [PubMed]
- Sworder, B.J.; Kurtz, D.M.; Alig, S.K.; Frank, M.J.; Shukla, N.; Garofalo, A.; Macaulay, C.W.; Esfahani, M.S.; Olsen, M.N.; Hamilton, J.; et al. Determinants of resistance to engineered T cell therapies targeting CD19 in large B cell lymphomas. Cancer Cell 2022, 41, 210–225.e5. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Chavez, J.C.; Sehgal, A.R.; Epperla, N.; Ulrickson, M.; Bachy, E.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. Three-year follow-up analysis of axicabtagene ciloleucel in relapsed/refractory indolent non-Hodgkin lymphoma (ZUMA-5). Blood 2024, 143, 496–506. [Google Scholar] [CrossRef]
- Dreyling, M.; Fowler, N.H.; Dickinson, M.; Martinez-Lopez, J.; Kolstad, A.; Butler, J.; Ghosh, M.; Popplewell, L.; Chavez, J.C.; Bachy, E.; et al. Durable response after tisagenlecleucel in adults with relapsed/refractory follicular lymphoma: ELARA trial update. Blood 2024, 143, 1713–1725. [Google Scholar] [CrossRef]
- Major, A.; Kamdar, M. Selection of bispecific antibody therapies or CAR-T cell therapy in relapsed lymphomas. Hematology 2023, 2023, 370–381. [Google Scholar] [CrossRef]
- Jain, M.D.; Spiegel, J.Y.; Nastoupil, L.J.; Tamaresis, J.; Ghobadi, A.; Lin, Y.; Lekakis, L.; Reagan, P.; Oluwole, O.; McGuirk, J.; et al. Five-Year Follow-Up of Standard-of-Care Axicabtagene Ciloleucel for Large B-Cell Lymphoma: Results From the US Lymphoma CAR T Consortium. J. Clin. Oncol. 2024, 42, 3581–3592. [Google Scholar] [CrossRef]
- Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Klappers, P.; Stelljes, M.; Neumann, S.; Viardot, A.; Marks, R.; Diedrich, H.; Faul, C.; et al. Phase II Trial of the Anti-CD19 Bispecific T Cell–Engager Blinatumomab Shows Hematologic and Molecular Remissions in Patients with Relapsed or Refractory B-Precursor Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2014, 32, 4134–4140. [Google Scholar] [CrossRef]
- Falchi, L.; Vardhana, S.A.; Salles, G.A. Bispecific antibodies for the treatment of B-cell lympho-ma: Promises, unknowns, and opportunities. Blood 2023, 141, 467–480. [Google Scholar] [CrossRef]
- Budde, L.E.; Assouline, S.; Sehn, L.H.; Schuster, S.J.; Yoon, S.-S.; Yoon, D.H.; Matasar, M.J.; Bosch, F.; Kim, W.S.; Nastoupil, L.J.; et al. Single-Agent Mosunetuzumab Shows Durable Complete Responses in Patients with Relapsed or Refractory B-Cell Lymphomas: Phase I Dose-Escalation Study. J. Clin. Oncol. 2022, 40, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Budde, L.E.; Sehnb, L.H.; Matasar, M.; Schuster, S.J.; Assouline, S.; Giri, P.; Kuruvilla, J.; Canales, M.; Dietrich, S.; Fay, K.; et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with re-lapsed or refractory follicular lymphoma: A single-arm, multicentre, phase 2 study. Lancet Oncol. 2022, 23, 1055–1065. [Google Scholar]
- Hutchings, M.; Mous, R.; Clausen, M.R.; Johnson, P.; Linton, K.M.; Chamuleau, M.E.D.; Lewis, D.J.; Balari, A.S.; Cunningham, D.; Oliveri, R.S.; et al. Dose escalation of subcutaneous epcoritamab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: An open-label, phase 1/2 study. Lancet 2021, 398, 1157–1169. [Google Scholar] [CrossRef]
- Thieblemont, C.; Phillips, T.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Do, Y.R.; Feldman, T.; Gasiorowski, R.; Jurczak, W.; et al. Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell–Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J. Clin. Oncol. 2023, 41, 2238–2247. [Google Scholar] [CrossRef] [PubMed]
- Linton, K.M.; Vitolo, U.; Jurczak, W.; Lugtenburg, P.J.; Gyan, E.; Sureda, A.; Christensen, J.H.; Hess, B.; Tilly, H.; Cordoba, R.; et al. Epcoritamab monotherapy in patients with relapsed or refractory follicular lymphoma (EPCORE NHL-1): A phase 2 cohort of a single-arm, multicentre study. Lancet Haematol. 2024, 11, e593–e605. [Google Scholar] [CrossRef]
- Thieblemont, C.; Karimi, Y.H.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Jurczak, W.; Do, Y.R.; Gasiorowski, R.; Lewis, D.J.; et al. Epcoritamab in relapsed/refractory large B-cell lymphoma: 2-year follow-up from the pivotal EPCORE NHL-1 trial. Leukemia 2024, 38, 2653–2662. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.; Morschhauser, F.; Iacoboni, G.; Carlo-Stella, C.; Offner, F.C.; Sureda, A.; Salles, G.; Martínez-Lopez, J.; Crump, M.; Thomas, D.N.; et al. Glofitamab, a Novel, Bivalent CD20-Targeting T-Cell–Engaging Bispecific Antibody, Induces Durable Complete Remissions in Relapsed or Refractory B-Cell Lymphoma: A Phase I Trial. J. Clin. Oncol. 2021, 39, 1959–1970. [Google Scholar] [CrossRef]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Corradini, P.; Iacoboni, G.; Khan, C.; Wróbel, T.; Offner, F.; Trněný, M.; et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 387, 2220–2231. [Google Scholar] [CrossRef]
- Bannerji, R.; Arnason, J.E.; Advani, R.H.; Brown, J.R.; Allan, J.N.; Ansell, S.M.; Barnes, J.A.; O’Brien, S.M.; Chávez, J.C.; Duell, J.; et al. Odronextamab, a human CD20:D3 bispecific antibody in patients with CD20-positive B-cell malignancies (ELM-1): Results from the relapsed or refractory non-Hodgkin lymphoma cohort in a single-arm, multicentre, phase 1 trial. Lancet Haematol. 2022, 9, e327–e339. [Google Scholar] [CrossRef]
- Kim, T.M.; Taszner, M.; Novelli, S.; Cho, S.-G.; Villasboas, J.C.; Merli, M.; Jiménez-Ubieto, A.; Tessoulin, B.; Poon, L.M.; Tucker, D.; et al. Safety and efficacy of odronextamab in patients with relapsed or refractory follicular lymphoma☆. Ann. Oncol. 2024, 35, 1039–1047. [Google Scholar] [CrossRef]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for initial evaluation, stag-ing, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef] [PubMed]
- Dean, E.A.; Kimmel, G.J.; Frank, M.J.; Bukhari, A.; Hossain, N.M.; Jain, M.D.; Dahiya, S.; Miklos, D.B.; Altrock, P.M.; Locke, F.L. Circulating tumor DNA adds specificity to PET after axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2023, 7, 4608–4618. [Google Scholar] [CrossRef] [PubMed]
- Russler-Germain, D.A.; Ghobadi, A. T-cell redirecting therapies for B-cell non-Hodgkin lymphoma: Recent progress and future directions. Front. Oncol. 2023, 13, 1168622. [Google Scholar] [CrossRef]
- Braun, A.; Gouni, S.; Pulles, A.; Strati, P.; Minnema, M.C.; Budde, L.E. Bispecific Antibody Use in Patients With Lymphoma and Multiple Myeloma. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e433516. [Google Scholar] [CrossRef] [PubMed]
- Cuzzo, B.; Lipsky, A.; Cherng, H.-J.J. Measurable Residual Disease Monitoring in Lymphoma. Curr. Hematol. Malign. Rep. 2023, 18, 292–304. [Google Scholar] [CrossRef]
- Benintende, G.; Pozzo, F.; Innocenti, I.; Autore, F.; Fresa, A.; D’arena, G.; Gattei, V.; Laurenti, L. Measurable residual disease in chronic lymphocytic leukemia. Front. Oncol. 2023, 13, 1112616. [Google Scholar] [CrossRef]
- Merker, J.D.; Oxnard, G.R.; Compton, C.; Diehn, M.; Hurley, P.; Lazar, A.J.; Lindeman, N.; Lockwood, C.M.; Rai, A.J.; Schilsky, R.L.; et al. Circulating Tumor DNA Analysis in Patients with Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J. Clin. Oncol. 2018, 36, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Hohaus, S.; Giachelia, M.; Massini, G.; Mansueto, G.; Vannata, B.; Bozzoli, V.; Criscuolo, M.; D’Alò, F.; Martini, M.; Larocca, L.M.; et al. Cell-free circulating DNA in Hodgkin’s and non-Hodgkin’s lymphomas. Ann. Oncol. 2009, 20, 1408–1413. [Google Scholar] [CrossRef]
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Green, M.R.; Bratman, S.V.; Scherer, F.; Liu, C.L.; Kunder, C.A.; Takahashi, K.; Glover, C.; Keane, C.; Kihira, S.; et al. Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood 2015, 125, 3679–3687. [Google Scholar] [CrossRef]
- Scherer, F.; Kurtz, D.M.; Diehn, M.; Alizadeh, A.A. High-throughput sequencing for noninvasive disease detection in hematologic malignancies. Blood 2017, 130, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Laperriere, G.; Germain, H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Sci. Rep. 2017, 7, 2409. [Google Scholar] [CrossRef]
- Samorodnitsky, E.; Jewell, B.M.; Hagopian, R.; Miya, J.; Wing, M.R.; Lyon, E.; Damodaran, S.; Bhatt, D.; Reeser, J.W.; Datta, J.; et al. Evaluation of Hybridization Capture Versus Amplicon-Based Methods for Whole-Exome Sequencing. Hum. Mutat. 2015, 36, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Roschewski, M.; Dunleavy, K.; Pittaluga, S.; Moorhead, M.; Pepin, F.; Kong, K.; Shovlin, M.; Jaffe, E.S.; Staudt, L.M.; Lai, C.; et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: A correlative biomarker study. Lancet Oncol. 2015, 16, 541–549. [Google Scholar] [CrossRef]
- Ching, T.; Duncan, M.E.; Newman-Eerkes, T.; McWhorter, M.M.E.; Tracy, J.M.; Steen, M.S.; Brown, R.P.; Venkatasubbarao, S.; Akers, N.K.; Vignali, M.; et al. Analytical evaluation of the clonoSEQ Assay for establishing measurable (minimal) residual disease in acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. BMC Cancer 2020, 20, 612. [Google Scholar] [CrossRef]
- Scherer, F.; Kurtz, D.M.; Newman, A.M.; Stehr, H.; Craig, A.F.M.; Esfahani, M.S.; Lovejoy, A.F.; Chabon, J.J.; Klass, D.M.; Liu, C.L.; et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci. Transl. Med. 2016, 8, 364ra155. [Google Scholar] [CrossRef]
- Newman, A.M.; Bratman, S.V.; To, J.; Wynne, J.F.; Eclov, N.C.W.; Modlin, L.A.; Liu, C.L.; Neal, J.W.; Wakelee, H.A.; Merritt, R.E.; et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 2014, 20, 548–554. [Google Scholar] [CrossRef]
- Stokowski, R.P.; Tabari, E.; Bogard, P.; Hacker, C.; Kameneva, O.K.; Ji, T.; Teng, L.; Melnikova, V.; McCord, R.; A Punnoose, E.; et al. Detection of Early Molecular Response (EMR) and Minimal Residual Disease (MRD) in Patients with Diffuse Large B-Cell Lymphoma (DLBCL) Using a Validated Next Generation Sequencing (NGS) Assay for the Detection of Tumor Variants in Circulating Tumor (ct) DNA. Blood 2022, 140, 9257–9258. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Soo, J.; Keh, L.C.T.; Alig, S.; Chabon, J.J.; Sworder, B.J.; Schultz, A.; Jin, M.C.; Scherer, F.; Garofalo, A.; et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat. Biotechnol. 2021, 39, 1537–1547. [Google Scholar] [CrossRef]
- Zviran, A.; Schulman, R.C.; Shah, M.; Hill, S.T.K.; Deochand, S.; Khamnei, C.C.; Maloney, D.; Patel, K.; Liao, W.; Widman, A.J.; et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat. Med. 2020, 26, 1114–1124. [Google Scholar] [CrossRef]
- Adalsteinsson, V.A.; Ha, G.; Freeman, S.S.; Choudhury, A.D.; Stover, D.G.; Parsons, H.A.; Gydush, G.; Reed, S.C.; Rotem, D.; Rhoades, J.; et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 2017, 8, 1324. [Google Scholar] [CrossRef]
- Raman, L.; Van der Linden, M.; De Vriendt, C.; Broeck, B.V.D.; Muylle, K.; Deeren, D.; Dedeurwaerdere, F.; Verbeke, S.; Dendooven, A.; De Grove, K.; et al. Shallow-depth sequencing of cell-free DNA for Hodgkin and diffuse large B-cell lymphoma (differential) diagnosis: A standardized approach with underappreciated potential. Haematologica 2020, 107, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Cherng, H.-J.J.; Sun, R.; Sugg, B.; Irwin, R.; Yang, H.; Le, C.C.; Deng, Q.; Fayad, L.; Fowler, N.H.; Parmar, S.; et al. Risk assessment with low-pass whole-genome sequencing of cell-free DNA before CD19 CAR T-cell therapy for large B-cell lymphoma. Blood 2022, 140, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Narkhede, M.S.; Tomassetti, S.; Iqbal, M.; Tin, A.; Rivero-Hinojosa, S.; George, G.V.; Widden, H.; Benrud, R.; Rodriguez, A.; Liu, M.C. Role of Circulating Tumor DNA As a Prognostic Biomarker in Patients with Diffuse Large B-Cell Lymphoma. Blood 2023, 142, 4376. [Google Scholar] [CrossRef]
- Merryman, R.W.; Rhoades, J.; Xiong, K.; Antel, K.; An, H.H.; Redd, R.A.; McDonough, M.M.; Guerrero, L.; Crnjac, A.; Sridhar, S.; et al. A Personalized Whole Genome-Informed Assay Targeting Single Mutant in Circulating Tumor DNA Can Identify MRD and Predict Relapse in DLBCL. Blood 2023, 142, 527. [Google Scholar] [CrossRef]
- Soong, D.; Thieblemont, C.; Karavitis, J.; Hess, B.; Caimi, P.; Feldman, T.; Hutchings, M.; Sureda, A.; Szafer-Glusman, E.; Sacchi, M.; et al. Evaluation of ctDNA in a phase I/II trial in relapsed or refractory large B-cell lym-phoma of epcoritamab, a novel, subcutaneous CD3xCD20 bispecific T-cell–engaging antibody. Hematol. Oncol. 2023, 41, 326–328. [Google Scholar] [CrossRef]
- Piccione, E.; Belousov, A.; Hamidi, H.; Carlo-Stella, C.; Dickinson, M.; Morschhauser, F.; Lundberg, L.; Humphrey, K.; Tracy, S.; Hutchings, M. Immune Correlates of Response to Glofitamab: Biomarker Findings from a Pivotal Phase II Expansion Study in Patients with Relapsed or Refractory (R/R) Diffuse Large B-Cell Lymphoma (DLBCL). Hemasphere 2022, 6, 1096–1097. [Google Scholar] [CrossRef]
- Zucchinetti, C.; Signori, C.; Di Trani, M.; Pirosa, M.C.; Bruscaggin, A.; Korfi, K.; Bottos, A.; Calabretta, E.; Corrado, F.; Rossi, D.; et al. Early Assessment of Circulating Tumor (ct)DNA and Analysis of TP53 mutations in Patients with Relapsed/Refractory (R/R) Large B-Cell Lymphoma Treated with Glofitamab Monotherapy. Blood 2024, 144, 4356. [Google Scholar] [CrossRef]
- Wright, G.W.; Huang, D.W.; Phelan, J.D.; Coulibaly, Z.A.; Roulland, S.; Young, R.M.; Wang, J.Q.; Schmitz, R.; Morin, R.D.; Tang, J.; et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell 2020, 37, 551–568.e14. [Google Scholar] [CrossRef]
- Carlo-Stella, C.; Leung, W.; Dickinson, M.; Bachy, E.; Morschhauser, F.; Corradini, P.; Garcia-Calvo, G.I.I.; Trneny, M.; Wróbel, T.; Wu, S.J.; et al. Response in Molecular Subgroups and Circulating Tumor (ct)DNA Kinetics in Patients with Relapsed and/or Refractory (R/R) Large B-cell Lymphoma (LBCL) Treated with Glofitamab Monotherapy. In Proceedings of the European Hematology Association (EHA) Annual Meeting, Madrid, Spain, 14 June 2024. [Google Scholar]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Cartron, G.; Corradini, P.; Bartlett, N.L.; Iacoboni, G.; Khan, C.; Hertzberg, M.S.; et al. Fixed-Duration Glofitamab Monotherapy Continues to Demonstrate Durable Responses in Patients with Relapsed or Refractory Large B-Cell Lymphoma: 3-Year Follow-up from a Pivotal Phase II Study. Blood 2024, 144, 865. [Google Scholar] [CrossRef]
- Arnason, J.E.; Brouwer-Visser, J.; Luminari, S.; Tucker, D.; Kim, T.M.; Kim, W.S.; Magnano, L.; Sun, D.; Cai, J.; Cygan, K.; et al. Circulating Tumor DNA Analysis Associates with Progression-Free Survival (PFS) with Odronextamab Monotherapy in Relapsed/Refractory (R/R) Follicular Lymphoma (FL) and Diffuse Large B-Cell Lymphoma (DLBCL): Identification of Minimal Residual Disease Status and High-Risk Subgroups from the Phase 2 ELM-2 Study. Blood 2023, 142, 427. [Google Scholar] [CrossRef]
- Gaballa, S.; Hou, J.-Z.; Devata, S.; Cho, S.-G.; Nair, R.; Yoon, D.H.; Jacobs, R.; Izutsu, K.; Stevens, D.A.; Maruyama, D.; et al. Evaluation of AZD0486, a Novel CD19xCD3 T-Cell Engager, in Relapsed/Refractory Diffuse Large B-Cell Lymphoma in an Ongoing First-in-Human Phase 1 Study: High Complete Re-sponses Seen in CAR-T-Naive and CAR-T-Exposed Patients. Blood 2024, 144, 868. [Google Scholar] [CrossRef]
- Morschhauser, F.; Hou, J.-Z.; Devata, S.; Cho, S.-G.; Nair, R.; Yoon, D.H.; Jacobs, R.; Izutsu, K.; Stevens, D.A.; Maruyama, D.; et al. Epcore DLBCL-3 First Disclosure: Fixed-Duration Epcoritamab Monotherapy in Older (≥75 y), Anthracycline-Ineligible Patients with Previously Untreated Large B-Cell Lympho-ma. Blood 2024, 144, 867. [Google Scholar] [CrossRef]
- Falchi, L.; Offner, F.; de Vos, S.; Brody, J.; Cordoba, R.; Linton, K.; Snauwaert, S.; Clausen, M.R.; Oki, T.; Steele, A.J.; et al. Fixed-Duration Epcoritamab + R-CHOP Induces High Complete Response Rates in Patients with Previously Untreated Diffuse Large B-Cell Lymphoma Withhigh-Risk Features: Long-Term Results from the Epcore NHL-2 Trial. Blood 2024, 144, 581. [Google Scholar] [CrossRef]
- Leslie, L.A.; Cheah, C.Y.; Morschhauser, F.; Darrah, J.M.; Brody, J.; Belada, D.; Duras, J.; Vermaat, J.S.; Musuraca, G.; Osei-Bonsu, K.; et al. Fixed-Duration Epcoritamab + R-Mini-CHOP in Patients with Previously Untreated Diffuse Large B-Cell Lymphoma Ineligible for Full-Dose R-CHOP: Updated Results from Arm 8 of the Epcore NHL-2 Trial. Blood 2024, 144, 3106. [Google Scholar] [CrossRef]
- Dixit, N.; Wang, B.; Zhao, K.; Thieblemont, C.; Mazza, I.A.; Lavie, D.; Avigdor, A.; Garcia, C.G.; Steele, A.J.; Seliem, M.; et al. Immune Biomarkers of Mechanism of Action of Epcoritamab (Epcor) Plus Po-latuzumab Vedotin, Rituximab, Cyclophosphamide, Doxorubicin, and Prednisone (pola-R-CHP) in Frontline DLBCL. Blood 2024, 144, 1734. [Google Scholar] [CrossRef]
- Gurion, R.; Mazza, I.A.; Thieblemont, C.; Kim, W.S.; Masszi, A.; García-Sancho, A.M.; Nagy, Z.; Tessoulin, B.; Ubieto, A.J.; Ko, P.-S.; et al. Fixed-Duration Epcoritamab Plus Lenalidomide in Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma (DLBCL): Updated Results from Arm 1 of the Epcore NHL-5 Trial. Blood 2024, 144, 3110. [Google Scholar] [CrossRef]
- Minson, A.; Verner, E.; Giri, P.; Butler, J.; Janowski, W.; Cheah, C.Y.; Ratnasingam, S.; Wong, S.M.; Ku, M.; Hertzberg, M.S.; et al. A Randomized Phase 2, Investigator-Led Trial of Glofitamab-R-CHOP or Glofitamab-Polatuzumab Vedotin-R-CHP (COALITION) in Younger Patients with High Burden, High-Risk Large B-Cell Lymphoma Demonstrates Safety, Uncompromised Chemotherapy Intensity, a High Rate of Durable Remissions, and Unique FDG-PET Response Characteristics. Blood 2024, 144, 582. [Google Scholar] [CrossRef]
- Topp, M.S.; Tani, M.; Dickinson, M.; Ghosh, N.; Santoro, A.; Pinto, A.; Bosch, F.; Fox, C.P.; Lopez-Guillermo, A.; Gastinne, T.; et al. Glofitamab Plus R-CHOP Induces High Response Rates with a Manageable Safety Profile in Patients with Previously Untreated Diffuse Large B-Cell Lymphoma (DLBCL): A 12-Month Analysis from a Phase Ib Study. Blood 2023, 142, 3085. [Google Scholar] [CrossRef]
- Hutchings, M.; Balari, A.S.; Bosch, F.; Larsen, T.S.; Corradini, P.; Avigdor, A.; Terol, M.J.; Dominguez, A.R.; Pinto, A.; Skarbnik, A.P.; et al. Glofitamab in Combination with Polatuzumab Vedotin Maintains Durable Responses and a Manageable Safety Profile in Patients with Heavily Pre-Treated Relapsed/Refractory (R/R) Large B-Cell Lymphoma (LBCL) Including High-Grade B-Cell Lymphoma (HGBCL): Extended Follow-up of a Phase Ib/II Study. Blood 2024, 144, 988. [Google Scholar] [CrossRef]
- Korfi, K.; Christiansen, A.; Jiang, Z.; Wilson, S.; Tracy, S.; Blank, A.; Herter, S.; Dimier, N.; Gomes, B.; Umana, P.; et al. Englumafusp Alfa (CD19-4-1BBL) and Glofitamab Combination in Patients with Relapsed/Refractory Non-Hodgkin Lymphoma (R/R NHL): Biomarker Results from a Phase I Dose-Escalation Trial. Blood 2023, 142, 3017. [Google Scholar] [CrossRef]
- Hutchings, M.; Dickinson, M.J.; Gritti, G.; Carlo-Stella, C.; Townsend, W.; Bosch, F.; Bartlett, N.L.; Cartron, G.; Ghesquieres, H.; Houot, R.; et al. Englumafusp Alfa (CD19-4-1BBL) Combined with Glofitamab Is Safe and Efficacious in Patients with r/r B-NHL: Extended Follow up Analysis of the Dose-Escalation Part of Phase 1 Trial BP41072. Blood 2024, 144, 990. [Google Scholar] [CrossRef]
- Hou, J.-Z.; Nair, R.; Jacobs, R.; Kim, T.M.; Cho, S.-G.; Maruyama, D.; Devata, S.; Sawalha, Y.; Yoon, D.H.; Tam, C.S.; et al. Escalating Doses of AZD0486, a Novel CD19xCD3 T-Cell Engager, Result in High Complete Remissions with Rapid Clearance of Minimal Residual Disease in Patients with Re-lapsed/Refractory Follicular Lymphoma. Blood 2024, 144, 341. [Google Scholar]
- Phillips, T.J.; Trněný, M.; Carlo-Stella, C.; Zaucha, J.M.; Wrobel, T.; Offner, F.; Dickinson, M.J.; Tani, M.; Crump, M.; Bartlett, N.L.; et al. Glofitamab Induces High Response Rates and Durable Remissions in Patients (Pts) with Heavily Pretreated Relapsed/Refractory (R/R) Mantle Cell Lymphoma (MCL), Including Those with a Poor Prognosis: Subgroup Results from a Phase I/II Study. Blood 2024, 144, 1631. [Google Scholar] [CrossRef]
- Danilov, A.; Fakhri, B.; Awan, F.T.; Bentzen, H.H.; Eradat, H.A.; Niemann, C.U.; Offner, F.; Poulsen, C.B.; Hoeyer, T.; Bellido, M.; et al. Epcoritamab Monotherapy in Patients (Pts) with Relapsed or Refractory (R/R) Chronic Lymphocytic Leukemia (CLL): Results from CLL Expansion and Optimization Cohorts of Epcore CLL-1. Blood 2024, 144, 883. [Google Scholar] [CrossRef]
- Russler-Germain, D.A.; Wan, F.; King, E.R.; Moreno, C.; Becker-Hapak, M.; Pence, P.; Rueve, J.; Pureti, S.A.; Patel, D.A.; Kahl, B.S.; et al. Mosunetuzumab Plus Polatuzumab Vedotin Induces Early Complete Responses in Previously Untreated High Tumor Burden Follicular Lymphoma. Blood 2024, 144, 4414. [Google Scholar] [CrossRef]
- Falchi, L.; Balari, A.S.; Leppä, S.; Vermaat, J.S.; Nijland, M.; Christensen, J.H.; de Vos, S.; Holte, H.; Merryman, R.W.; Lugtenburg, P.; et al. Fixed-Duration Epcoritamab + R2 Drives Deep and Durable Responses in Patients with Relapsed or Refractory Follicular Lymphoma: 2-Year Follow-up from Arm 2 of the Epcore NHL-2 Trial. Blood 2024, 144, 342. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Scherer, F.; Jin, M.C.; Soo, J.; Craig, A.F.M.; Esfahani, M.S.; Chabon, J.J.; Stehr, H.; Liu, C.L.; Tibshirani, R.; et al. Circulating Tumor DNA Measurements as Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2018, 36, 2845–2853. [Google Scholar] [CrossRef]
- Falchi, L.; Jardin, F.; Haioun, C.; Wrobel, T.; Joergensen, J.M.; Bastos-Oreiro, M.; Mou, E.; Martinez-Lopez, J.; Budde, L.E.; Bartlett, N.L.; et al. Glofitamab (Glofit) Plus R-CHOP Has a Favorable Safety Profile and Induces High Response Rates in Patients with Previously Untreated (1L) Large B-Cell Lymphoma (LBCL) Defined As High Risk By Circulating Tumor DNA (ctDNA) Dynamics: Preliminary Safety and Efficacy Results. Blood 2023, 142, 858. [Google Scholar] [CrossRef]
- Vose, J.; Vitolo, U.; Lugtenburg, P.; Chamuleau, M.E.; Linton, K.M.; Thieblemont, C.; Sonnevi, K.; Jurczak, W.; Olszewski, A.J.; Awan, F.T.; et al. EPCORE NHL-1 follicular lymphoma (FL) cycle (C) 1 optimization (OPT) cohort: Expanding the clinical utility of epcoritamab in relapsed or refractory (R/R) FL. J. Clin. Oncol. 2024, 42, 7015. [Google Scholar] [CrossRef]
- Soong, D.; Altıntaş, I.; Karavitis, J.; Linton, K.M.; Jurczak, W.; Thieblemont, C.; Zhao, K.; Szafer-Glusman, E.; Hoehn, D.; Favaro, E.; et al. Minimal residual disease (MRD) status by peripheral blood mono-nuclear cells (PBMCs) and circulating tumor DNA (ctDNA) demonstrates rapid, deep, and sustained response in patients (Pts) with relapsed/refractory follicular lymphoma (R/R FL) treated with sub-cutaneous (SC) epcoritamab monotherapy in the pivotal phase 1/2 EPCORE™ NHL-1 trial. Cancer Res. 2024, 84, 5071. [Google Scholar]
- Sato, A.; Nakashima, C.; Abe, T.; Kato, J.; Hirai, M.; Nakamura, T.; Komiya, K.; Kimura, S.; Sueoka, E.; Sueoka-Aragane, N. Investigation of appropriate pre-analytical procedure for circulating free DNA from liquid biopsy. Oncotarget 2018, 9, 31904–31914. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Henry, N.L.; Paoletti, C.; Jiang, H.; Vats, P.; Chinnaiyan, A.M.; Hayes, D.F.; Merajver, S.D.; Rae, J.M.; Tewari, M. Comparative analysis of circulating tumor DNA stability In K3EDTA, Streck, and CellSave blood collection tubes. Clin. Biochem. 2016, 49, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: B-Cell Lymphomas. Version 2.2025; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA. Available online: https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf (accessed on 13 February 2025).
- Rossi, D.; Kurtz, D.M.; Roschewski, M.; Cavalli, F.; Zucca, E.; Wilson, W.H. The development of liquid biopsy for research and clinical practice in lymphomas: Report of the 15-ICML workshop on ctDNA. Hematol. Oncol. 2019, 38, 34–37. [Google Scholar] [CrossRef]
- Luminari, S.; Manni, M.; Galimberti, S.; Versari, A.; Tucci, A.; Boccomini, C.; Farina, L.; Olivieri, J.; Marcheselli, L.; Guerra, L.; et al. Response-Adapted Postinduction Strategy in Patients With Advanced-Stage Follicular Lymphoma: The FOLL12 Study. J. Clin. Oncol. 2022, 40, 729–739. [Google Scholar] [CrossRef]
Assay Type | Assay Name(s) | Methodology | Unique Advantages |
---|---|---|---|
Allele-specific oligonucleotide PCR | qRT-PCR with patient-specific primers | Ease of use, high sensitivity | |
ddPCR | Direct quantification of DNA after sample partitioning | Quantitative, high sensitivity, allows for multiplexing | |
Flow cytometry | Multiparametric cell analysis to detect abnormal immunophenotypes of cells in peripheral blood | Fast turnaround time, widely available in clinical laboratories, no baseline tumor sample required | |
Clonotype sequencing | clonoSEQ | Identification and tracking of unique VDJ rearrangement | Commercially available, for PMBCs and cfDNA |
Targeted hybrid capture | CAPP-seq, AVENIO NHL | Hybrid capture of lymphoma-specific panel for deep duplex sequencing | High sensitivity, liquid genotyping possible |
Phased variant hybrid capture | PhasED-seq | Hybrid capture of areas enriched mutations in close proximity (phased variants) for deep non-duplex sequencing | Ultra-high sensitivity |
Low-pass whole genome sequencing | Low coverage sequencing to detect copy number variants | Simple workflow, low cost | |
Tumor-informed whole genome sequencing | Identification of patient-specific mutations from baseline malignant tissue | Personalized MRD monitoring, improved sensitivity |
Trial | Trial Number | BsAb Agent | Indication | Use of MRD |
---|---|---|---|---|
NCT04980222 | Glofitamab | 1L LBCL | BsAb intensification for patients with unfavorable ctDNA response after C1 of R-CHOP | |
EpLCART | NCT06414148 | Epcoritamab +/− lenalidomide and rituximab | R/R LBCL | BsAb treatment if MRD-positive after anti-CD19 CAR-T |
GRAIL | NCT06050694 | Glofitamab | 1L LBCL | BsAb intensification for patients with unfavorable ctDNA response after C1 of Pola-R-CHP |
NCT06670105 | Glofitamab | 1L LBCL | BsAb consolidation if MRD-positive after standard 1L treatment | |
GOLD | NCT06828991 | Mosunetuzumab | 1L DLBCL | BsAb consolidation if MRD-positive after Pola-R-mini-CHP |
NCT06682130 | Glofitamab | R/R DLBCL | Possible glofitamab bridging before ASCT if MRD-positive after 2L salvage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jean-Louis, G.; Cherng, H.-J.J. Measurable Residual Disease Testing During Treatment with Bispecific Antibodies for Lymphoma. Cancers 2025, 17, 1153. https://doi.org/10.3390/cancers17071153
Jean-Louis G, Cherng H-JJ. Measurable Residual Disease Testing During Treatment with Bispecific Antibodies for Lymphoma. Cancers. 2025; 17(7):1153. https://doi.org/10.3390/cancers17071153
Chicago/Turabian StyleJean-Louis, Gaston, and Hua-Jay J. Cherng. 2025. "Measurable Residual Disease Testing During Treatment with Bispecific Antibodies for Lymphoma" Cancers 17, no. 7: 1153. https://doi.org/10.3390/cancers17071153
APA StyleJean-Louis, G., & Cherng, H.-J. J. (2025). Measurable Residual Disease Testing During Treatment with Bispecific Antibodies for Lymphoma. Cancers, 17(7), 1153. https://doi.org/10.3390/cancers17071153