Neurofilaments as Prognostic Biomarkers in the Assessment of the Risk of Advanced Taxane-Induced Neuropathy in Breast Cancer Patients—A Pilot Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Symptoms of Neuropathy During NAC Treatment
3.2. Dependence of Neurotoxicity and NF-L Concentrations on NAC Treatment Regimen: PCL vs. PCL Plus CARBO
3.3. Analysis of NF-L Concentrations During NAC, Regardless of CIPN Grade
3.4. Analysis of the Relationship Between NF-L Concentrations and the Stage of CIPN Advancement According to the NCI-CTCAE Scale in Patients Undergoing NAC
3.5. Assessment of the Diagnostic Value of NF-L Levels in Differentiating the Stage of Taxane-Induced CIPN
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abu Samaan, T.M.; Samec, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Paclitaxel’s Mechanistic and Clinical Effects on Breast Cancer. Biomolecules 2019, 9, 789. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brewer, J.R.; Morrison, G.; Dolan, M.E.; Fleming, G.F. Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecol. Oncol. 2016, 140, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Matsumoto, K.; Tanaka, M.; Yoshida, Y.; Satake, R.; Goto, F.; Shimada, K.; Mukai, R.; Hasegawa, S.; Suzuki, T.; et al. Analysis of chemotherapy-induced peripheral neuropathy using the Japanese Adverse Drug Event Report database. Sci. Rep. 2021, 11, 11324. [Google Scholar] [CrossRef]
- Burgess, J.; Ferdousi, M.; Gosal, D.; Boon, C.; Matsumoto, K.; Marshall, A.; Mak, T.; Marshall, A.; Frank, B.; Malik, R.A.; et al. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol. Ther. 2021, 9, 385–450. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schroyen, G.; Blommaert, J.; van Weehaeghe, D.; Sleurs, C.; Vandenbulcke, M.; Dedoncker, N.; Hatse, S.; Goris, A.; Koole, M.; Smeets, A.; et al. Neuroinflammation and Its Association with Cognition, Neuronal Markers and Peripheral Inflammation after Chemotherapy for Breast Cancer. Cancers 2021, 13, 4198, Erratum in Cancers 2023, 15, 3091. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Souza, R.S.; Alvarez, G.A.M.; Dombovy-Johnson, M.; Eller, J.; Abd-Elsayed, A. Evidence-Based Treatment of Pain in Chemotherapy-Induced Peripheral Neuropathy. Curr. Pain Headache Rep. 2023, 27, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Zhang, H.; Kosturakis, A.K.; Jawad, A.B.; Dougherty, P.M. Toll-like receptor 4 signaling contributes to Paclitaxel-induced peripheral neuropathy. J. Pain 2014, 15, 712–725. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Adamek, P.; Zhang, H.; Tatsui, C.E.; Rhines, L.D.; Mrozkova, P.; Li, Q.; Kosturakis, A.K.; Cassidy, R.M.; Harrison, D.S.; et al. The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4. J. Neurosci. 2015, 35, 13487–13500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Freites-Martinez, A.; Santana, N.; Arias-Santiago, S.; Viera, A. Using the Common Terminology Criteria for Adverse Events (CTCAE—Version 5.0) to Evaluate the Severity of Adverse Events of Anticancer Therapies. Actas Dermosifiliogr. 2021, 112, 90–92, (In English and Spanish). [Google Scholar] [CrossRef] [PubMed]
- Colvin, L.A. Chemotherapy-induced peripheral neuropathy: Where are we now? Pain 2019, 160 (Suppl. 1), S1–S10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef] [PubMed]
- Han, K.S.; Woo, D.H. Classification of advanced methods for evaluating neurotoxicity. Mol. Cell. Toxicol. 2021, 17, 377–383. [Google Scholar] [CrossRef]
- Prager, K.; Passig, K.; Micke, O.; Zomorodbakhsch, B.; Keinki, C.; Hübner, J. Chemotherapy-induced polyneuropathy in cancer care-the patient perspective. Support. Care Cancer 2023, 31, 235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burgess, B.L.; Cho, E.; Honigberg, L. Neurofilament light as a predictive biomarker of unresolved chemotherapy-induced peripheral neuropathy in subjects receiving paclitaxel and carboplatin. Sci. Rep. 2022, 12, 15593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huehnchen, P.; Schinke, C.; Bangemann, N.; Dordevic, A.D.; Kern, J.; Maierhof, S.K.; Hew, L.; Nolte, L.; Körtvelyessy, P.; Göpfert, J.C.; et al. Neurofilament proteins as a potential biomarker in chemotherapy-induced polyneuropathy. JCI Insight 2022, 7, e154395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Natori, A.; Ogata, T.; Sumitani, M.; Kogure, T.; Yamauchi, T.; Yamauchi, H. Potential role of pNF-H, a biomarker of axonal damage in the central nervous system, as a predictive marker of chemotherapy-induced cognitive impairment. Clin. Cancer Res. 2015, 21, 1348–1352. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Nixon, R.A. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front. Neurosci. 2021, 15, 689938. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gordon, B.A. Neurofilaments in disease: What do we know? Curr. Opin. Neurobiol. 2020, 61, 105–115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giacomucci, G.; Mazzeo, S.; Bagnoli, S.; Ingannato, A.; Leccese, D.; Berti, V.; Padiglioni, S.; Galdo, G.; Ferrari, C.; Sorbi, S.; et al. Plasma neurofilament light chain as a biomarker of Alzheimer’s disease in Subjective Cognitive Decline and Mild Cognitive Impairment. J. Neurol. 2022, 269, 4270–4280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Varhaug, K.N.; Torkildsen, Ø.; Myhr, K.M.; Vedeler, C.A. Neurofilament Light Chain as a Biomarker in Multiple Sclerosis. Front. Neurol. 2019, 10, 338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Vocht, J.; Blommaert, J.; Devrome, M.; Radwan, A.; Van Weehaeghe, D.; De Schaepdryver, M.; Ceccarini, J.; Rezaei, A.; Schramm, G.; van Aalst, J.; et al. Use of Multimodal Imaging and Clinical Biomarkers in Presymptomatic Carriers of C9orf72 Repeat Expansion. JAMA Neurol. 2020, 77, 1008–1017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khalil, M.; Pirpamer, L.; Hofer, E.; Voortman, M.M.; Barro, C.; Leppert, D.; Benkert, P.; Ropele, S.; Enzinger, C.; Fazekas, F.; et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat. Commun. 2020, 11, 812. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kruse, F.L.; Bille, M.B.; Lendorf, M.E.; Vaabengaard, S.; Birk, S. Coasting related to taxane-induced peripheral neuropathy in patients with breast cancer: A systematic review. Acta Oncol. 2025, 64, 78–86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pasquier, D.; Bidaut, L.; Oprea-Lager, D.E.; deSouza, N.M.; Krug, D.; Collette, L.; Kunz, W.; Belkacemi, Y.; Bau, M.G.; Caramella, C.; et al. Designing clinical trials based on modern imaging and metastasis-directed treatments in patients with oligometastatic breast cancer: A consensus recommendation from the EORTC Imaging and Breast Cancer Groups. Lancet Oncol. 2023, 24, e331–e343. [Google Scholar] [CrossRef] [PubMed]
- Molassiotis, A.; Cheng, H.L.; Lopez, V.; Au, J.S.K.; Chan, A.; Bandla, A.; Leung, K.T.; Li, Y.C.; Wong, K.H.; Suen, L.K.P.; et al. Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer 2019, 19, 132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brady, B.L.; Lucci, M.; Wilson, K.; Fox, K.M.; Wojtynek, J.; Cooper, C.; Varker, H.; Chebili, C.L.; Dokubo, I. Chemotherapy-induced peripheral neuropathy in metastatic breast cancer patients initiating intravenous paclitaxel/nab-paclitaxel. Am. J. Manag. Care 2021, 27, SP37–SP43. [Google Scholar] [CrossRef] [PubMed]
- Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; MacLeod, M.R.; Colvin, L.A.; Fallon, M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef] [PubMed]
- Gottiparthy, A.; Lam, K.; Kundu, S.; Yang, Z.; Tremont-Lukats, I.; Tummala, S. Neurofilament light chain in serum of cancer patients with acute neurological complications. CNS Oncol. 2024, 13, 2386233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Winther-Larsen, A.; Hviid, C.V.B.; Meldgaard, P.; Sorensen, B.S.; Sandfeld-Paulsen, B. Neurofilament light chain as a biomarker for brain metastases. Cancers 2020, 12, 2852. [Google Scholar] [CrossRef]
- Delaby, C.; Bousiges, O.; Bouvier, D.; Fillée, C.; Fourier, A.; Mondésert, E.; Nezry, N.; Omar, S.; Quadrio, I.; Rucheton, B.; et al. Neurofilaments contribution in clinic: State of the art. Front. Aging Neurosci. 2022, 14, 1034684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.-H.; Choi, M.K.; Park, N.Y.; Hyun, J.W.; Lee, M.Y.; Kim, H.J.; Jung, S.K.; Cha, Y. Serum neurofilament light chain levels as a biomarker of neuroaxonal injury and severity of oxaliplatin-induced peripheral neuropathy. Sci. Rep. 2020, 10, 7995. [Google Scholar] [CrossRef] [PubMed]
- Karteri, S.; Bruna, J.; Argyriou, A.A.; Mariotto, S.; Velasco, R.; Alemany, M.; Kalofonou, F.; Alberti, P.; Dinoto, A.; Velissaris, D.; et al. Prospectively assessing serum neurofilament light chain levels as a biomarker of paclitaxel-induced peripheral neurotoxicity in breast cancer patients. J. Peripher. Nerv. Syst. 2022, 27, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Park, S.B.; Cetinkaya-Fisgin, A.; Argyriou, A.A.; Höke, A.; Cavaletti, G.; Alberti, P. Axonal degeneration in chemotherapy-induced peripheral neurotoxicity: Clinical and experimental evidence. J. Neurol. Neurosurg. Psychiatry 2023, 94, 962–972. [Google Scholar] [CrossRef] [PubMed]
- Velasco, R.; Marco, C.; Domingo-Domenech, E.; Stradella, A.; Santos, C.; Laquente, B.; Ferrer, G.; Argyriou, A.A.; Bruna, J. Plasma neurofilament light chain levels in chemotherapy-induced peripheral neurotoxicity according to type of anticancer drug. Eur. J. Neurol. 2024, 31, e16369. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.-H.; Kim, K.H.; Hyun, J.-W.; Kim, J.H.; Seo, S.S.; Kim, H.J.; Park, S.-Y.; Lim, M.C. Blood neurofilament light chain as a biomarker for monitoring and predicting paclitaxel-induced peripheral neuropathy in patients with gynecological cancers. Front. Oncol. 2022, 12, 942960. [Google Scholar] [CrossRef]
- Gornstein, E.; Schwarz, T.L. The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology 2014, 76 Pt A, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Basal, C.; Seluzicki, C.; Li, S.Q.; Seidman, A.D.; Mao, J.J. Long-term chemotherapy-induced peripheral neuropathy among breast cancer survivors: Prevalence, risk factors, and fall risk. Breast Cancer Res. Treat. 2016, 159, 327–333. [Google Scholar] [CrossRef]
- Mortensen, C.; Steffensen, K.D.; Simonsen, E.; Herskind, K.; Madsen, J.S.; Olsen, D.A.; Iversen, D.B.; Bergmann, T.K.; Pottegård, A.; Stage, T.B. Neurofilament light chain as a biomarker of axonal damage in sensory neurons and paclitaxel-induced peripheral neuropathy in patients with ovarian cancer. Pain 2023, 164, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Pabst, L.; Velten, M.; Fischbach, C.; Kalish, M.; Pflumio, C.; Pivot, X.; Petit, T. Persistent taxane-induced neuropathy in elderly patients treated for localized breast cancer. Breast J. 2020, 26, 2376–2382. [Google Scholar] [CrossRef] [PubMed]
Parameters | Number of Patients (%) |
---|---|
Age (years) median 50; range 27–77 | |
Receptor status | |
ER+ | 54 (57) |
ER− | 40 (43) |
PR+ | 48 (51) |
PR− | 46 (49) |
HER2+ | 39 (41) |
HER2− | 55 (59) |
Proliferation index (Ki-67) | |
Ki-67 ≤ 20 | 31 (33) |
Ki-67 > 20 | 62 (64) |
Ki-67 unknown | 1 (3) |
Tumor size (T) | |
T1 | 16 (17) |
T2 | 48 (51) |
T3 | 23 (25) |
T4 | 7 (7) |
Lymph node status (N) | |
N0 | 47 (50) |
N1 | 35 (37) |
N2 + N3 | 10 + 2 (13) |
Distance metastasis status (M) | |
M0 | 94 (100) |
Histological grade (G) | |
G1 | 10 (11) |
G2 | 45 (48) |
G3 | 34 (36) |
G unknown | 5 (5) |
Histopathological type | |
NOS (not otherwise specified) | 83 (88) |
ILC (infiltrating lobular carcinoma) | 6 (6) |
other | 5 (6) |
Treatment | |
4 × ddAC + 12 × PCL | 51 (54) |
4 × ddAC + 12 × PCL + Carbo + Pembrolizumab | 14 (15) |
4 × ddAC + 12 × PCL + Carbo | 13 (14) |
4 × AC + 12 × PCL | 7 (8) |
4 × AC + 12 × PCL + Carbo | 1 (1) |
12 × PCL + Carbo + 4 × ddAC + Pembrolizumab | 4 (4) |
12 × PCL | 1 (1) |
12 × PCL + Trastuzumab | 2 (2) |
12 × PCL + Carbo + 4 × ddAC | 1 (1) |
Biological subtype | |
Luminal A | 16 |
Luminal B | 12 |
Luminal B HER2 enriched | 27 |
Non Luminal HER2 positive | 1 |
TNBC/triple negative/ | 38 |
Chemotherapy Scheme | Medians (Ranges) of NF-Ls (pg/mL) After 3 Cycles of Therapy | Percentage of Patients with CIPN | Medians (Ranges) of NF-Ls (pg/mL) After 6 Cycles of Therapy | Percentage of Patients with CIPN | Medians (Ranges) of NF-Ls (pg/mL) 3–6 Months After the End of Therapy | Percentage of Patients with CIPN | p |
---|---|---|---|---|---|---|---|
PCL (+/− AC, trastuzumab) | 128 (37.6–568) | 35% | 268 (14.3–1430) | 49% | 26.1 (11.4–230) | 53% | 0.055 |
PCL+carboplatin (+/− AC, pembrolizumab) | 127 (30.9–499) | 37% | 176 (38.1–881) | 58% | 22.6 (5.2–85.5) | 53% |
Time of Collection of Serum Samples | CIPN Grade | |||||||
---|---|---|---|---|---|---|---|---|
G0 | G1 | G2 | G3 | |||||
N | NF-L pg/mL Medians (Ranges) | N | NF-L pg/mL Medians (Ranges) | N | NF-L pg/mL Medians (Ranges) | N | NF-L pg/mL Medians (Ranges) | |
before starting therapy | 87 | 43.9 (2.8–179) | 7 | 63.1 (36–107) | - | - | - | - |
after 3 cycles of therapy | 43 | 131 (30.9–568) | 15 | 99.6 (2.1–268) | 7 | 148 (67.2–475) | 1 | 76 * |
after 6 cycles of therapy | 29 | 206 (14.3–567) | 15 | 293 (38.1–1430) | 12 | 246 (43.1–497) | 5 | 662 (367–851) |
3–6 months after the end of therapy | 19 | 20.6 (5.2–87.1) | 11 | 35.5 (11.4–230) | 6 | 45.3 (12.7–108) | 7 | 31.4 (17.0–62.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makówka, A.; Fuksiewicz, M.; Bałata, A.; Borowiec, A.; Pogoda, K.; Nowecki, Z.; Jagiello-Gruszfeld, A.; Janas, B.; Kotowicz, B. Neurofilaments as Prognostic Biomarkers in the Assessment of the Risk of Advanced Taxane-Induced Neuropathy in Breast Cancer Patients—A Pilot Study. Cancers 2025, 17, 988. https://doi.org/10.3390/cancers17060988
Makówka A, Fuksiewicz M, Bałata A, Borowiec A, Pogoda K, Nowecki Z, Jagiello-Gruszfeld A, Janas B, Kotowicz B. Neurofilaments as Prognostic Biomarkers in the Assessment of the Risk of Advanced Taxane-Induced Neuropathy in Breast Cancer Patients—A Pilot Study. Cancers. 2025; 17(6):988. https://doi.org/10.3390/cancers17060988
Chicago/Turabian StyleMakówka, Agata, Malgorzata Fuksiewicz, Anna Bałata, Anna Borowiec, Katarzyna Pogoda, Zbigniew Nowecki, Agnieszka Jagiello-Gruszfeld, Beata Janas, and Beata Kotowicz. 2025. "Neurofilaments as Prognostic Biomarkers in the Assessment of the Risk of Advanced Taxane-Induced Neuropathy in Breast Cancer Patients—A Pilot Study" Cancers 17, no. 6: 988. https://doi.org/10.3390/cancers17060988
APA StyleMakówka, A., Fuksiewicz, M., Bałata, A., Borowiec, A., Pogoda, K., Nowecki, Z., Jagiello-Gruszfeld, A., Janas, B., & Kotowicz, B. (2025). Neurofilaments as Prognostic Biomarkers in the Assessment of the Risk of Advanced Taxane-Induced Neuropathy in Breast Cancer Patients—A Pilot Study. Cancers, 17(6), 988. https://doi.org/10.3390/cancers17060988