Transcriptome-Based Survival Analysis Identifies MAP4K4 as a Prognostic Marker in Gastric Cancer with Microsatellite Instability
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohorts and Gene Expression Profiling
2.2. Statistical Analysis
2.3. Gastric Cancer Subtyping by GCclassifier
2.4. Gene Set Enrichment Analysis
2.5. Prediction of Immune Cell Infiltration
3. Results
3.1. MAP4K4 Expression Is a Robust, Independent Prognostic Marker in MSI-GC
3.2. MAP4K4 Is a Prognostic Biomarker Only in MSI-GC and Not in Other GC Molecular Subtypes, Identifying a Very Adverse Group in MSI with the CIN-like Phenotype
3.3. MAP4K4high MSI-GC Tumors Exhibit Increased Extracellular Matrix Remodeling Activity, Epithelial–Mesenchymal Transition (EMT), and a Distinct Microenvironment Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Lauren, P. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int. J. Mol. Sci. 2020, 21, 4012. [Google Scholar] [CrossRef]
- Liu, J.Y.; Peng, C.W.; Yang, X.J.; Huang, C.Q.; Li, Y. The prognosis role of AJCC/UICC 8th edition staging system in gastric cancer, a retrospective analysis. Am. J. Transl. Res. 2018, 10, 292–303. [Google Scholar]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Cristescu, R.; Lee, J.; Nebozhyn, M.; Kim, K.-M.; Ting, J.C.; Wong, S.S.; Liu, J.; Yue, Y.G.; Wang, J.; Yu, K.; et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 2015, 21, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Ajani, J.A.; Lee, J.; Sano, T.; Janjigian, Y.Y.; Fan, D.; Song, S. Gastric adenocarcinoma. Nat. Rev. Dis. Primers 2017, 1, 17036. [Google Scholar] [CrossRef]
- Sohn, B.H.; Hwang, J.-E.; Jang, H.-J.; Lee, H.-S.; Oh, S.C.; Shim, J.-J.; Lee, K.-W.; Kim, E.H.; Yim, S.Y.; Lee, S.H.; et al. Clinical Significance of Four Molecular Subtypes of Gastric Cancer Identified by The Cancer Genome Atlas Project. Clin. Cancer Res. 2017, 23, 4441–4449. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Miceli, R.; Raimondi, A.; Kim, Y.W.; Kang, W.K.; Langley, R.E.; Choi, Y.Y.; Kim, K.-M.; Nankivell, M.G.; Morano, F.; et al. Individual Patient Data Meta-Analysis of the Value of Microsatellite Instability as a Biomarker in Gastric Cancer. J. Clin. Oncol. 2019, 37, 3392–3400. [Google Scholar] [CrossRef]
- Guan, W.-L.; Ma, Y.; Cui, Y.-H.; Liu, T.-S.; Zhang, Y.-Q.; Zhou, Z.-W.; Xu, J.-Y.; Yang, L.-Q.; Li, J.-Y.; Sun, Y.-T.; et al. The Impact of Mismatch Repair Status on Prognosis of Patients with Gastric Cancer: A Multicenter Analysis. Front. Oncol. 2021, 11, 712760. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, L.; Wang, C.; Huang, J.; Zhu, J.; Huang, Y.; Chen, Y.; Jia, J.; Jiang, G. Microsatellite instability in Chinese gastric cancer and its correlation with clinical characteristics. J. Gastrointest. Oncol. 2021, 12, 2719–2727. [Google Scholar] [CrossRef]
- Ramos, M.F.K.P.; Pereira, M.A.; de Mello, E.S.; Cirqueira, C.d.S.; Zilberstein, B.; Alves, V.A.F.; Ribeiro-Junior, U.; Cecconello, I. Gastric cancer molecular classification based on immunohistochemistry and in situ hybridization: Analysis in western patients after curative-intent surgery. World J. Clin. Oncol. 2021, 12, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.; Fuchs, C.S.; Shitara, K.; Tabernero, J.; Muro, K.; Van Cutsem, E.; Wainberg, Z.A. Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncol. 2021, 7, 895–902. [Google Scholar] [CrossRef]
- Polom, K.; Marano, L.; Marrelli, D.; De Luca, R.; Roviello, G.; Savelli, V.; Tan, P.; Roviello, F. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br. J. Surg. 2018, 105, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.; Kaestner, V.; Mailankody, S. Cancer Drugs Approved Based on Biomarkers and Not Tumor Type-FDA Approval of Pembrolizumab for Mismatch Repair-Deficient Solid Cancers. JAMA Oncol. 2018, 4, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.S.; Badgwell, B.D. Current Treatment and Recent Progress in Gastric Cancer. CA Cancer J. Clin. 2021, 71, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Hu, J.; Ma, X.; Liang, L.; Guo, S. Immune-Related Gene Signature Predicts Overall Survival of Gastric Cancer Patients with Varying Microsatellite Instability Status. Aging 2020, 13, 2418–2435. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Z.; Bai, R.; Hu, W. Heterogeneity of MSI-H Gastric Cancer Identifies a Subtype with Worse Survival. J. Med. Genet. 2021, 58, 12–19. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, C.; Li, X.; Gu, Q.; Xu, Y.; Zhu, Z.; Xu, D.; Wei, S.; Chen, H.; Yang, Y.; et al. Five EMT-Related Genes Signature Predicts Overall Survival and Immune Environment in Microsatellite Instability-High Gastric Cancer. Cancer Med. 2023, 12, 2075–2088. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Shi, A.; Li, R.; Wang, Y.; Wang, X.; Zhao, J. Microarray Bioinformatics in Cancer: A Review. J. BUON 2017, 22, 838–843. [Google Scholar]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Youden, W.J. Index for Rating Diagnostic Tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Velásquez Sotomayor, M.B.; Campos Segura, A.V.; Asurza Montalva, R.J.; Marín-Sánchez, O.; Murillo Carrasco, A.G.; Ortiz Rojas, C.A. Establishment of a 7-Gene Expression Panel to Improve the Prognosis Classification of Gastric Cancer Patients. Front. Genet. 2023, 14, 1206609. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; He, L.; Zhang, X.; Li, X.; Wang, L.; Zhu, Z.; Song, K.; Wang, X. GCclassifier: An R package for the prediction of molecular subtypes of gastric cancer. Comput. Struct. Biotechnol. J. 2024, 23, 752–758. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015, 12, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Racle, J.; Gfeller, D. EPIC: A Tool to Estimate the Proportions of Different Cell Types from Bulk Gene Expression Data. In Bioinformatics for Cancer Immunotherapy: Methods in Molecular Biology; Humana: New York, NY, USA, 2020; Volume 2120, pp. 233–248. [Google Scholar]
- Aran, D.; Hu, Z.; Butte, A.J. xCell: Digitally Portraying the Tissue Cellular Heterogeneity Landscape. Genome Biol. 2017, 18, 220. [Google Scholar] [CrossRef] [PubMed]
- Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautes-Fridman, C.; Fridman, W.H.; et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016, 17, 218. [Google Scholar] [CrossRef]
- Finotello, F.; Mayer, C.; Plattner, C.; Laschober, G.; Rieder, D.; Hackl, H.; Krogsdam, A.; Loncova, Z.; Posch, W.; Wilflingseder, D.; et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 2019, 11, 34. [Google Scholar] [CrossRef]
- Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020, 48, W509–W514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cai, X.; Cui, W.; Wei, Z. Bioinformatics and Experimental Analyses Reveal MAP4K4 as a Potential Marker for Gastric Cancer. Genes 2022, 13, 1786. [Google Scholar] [CrossRef] [PubMed]
- Delpire, E. The Mammalian Family of Sterile 20p-Like Protein Kinases. Pflug. Arch.-Eur. J. Physiol. 2009, 458, 953–967. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, S.; Rodrigo-Faus, M.; Fonseca, N.; Manzano, S.; Győrffy, B.; Ocaña, A.; Bragado, P.; Porras, A.; Gutierrez-Uzquiza, A. HGK promotes metastatic dissemination in prostate cancer. Sci. Rep. 2021, 11, 12287. [Google Scholar] [CrossRef]
- Chen, H.; Kong, Y.; Yao, Q.; Zhang, X.; Fu, Y.; Li, J.; Liu, C.; Wang, Z. Three hypomethylated genes were associated with poor overall survival in pancreatic cancer patients. Aging 2019, 11, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; He, B.; Hui, L. Mitogen-Activated Protein Kinases in Hepatocellular Carcinoma Development. Semin. Cancer Biol. 2011, 21, 10–20. [Google Scholar] [CrossRef]
- Bai, Z.; Yao, Q.; Sun, Z.; Xu, F.; Zhou, J. Prognostic Value of mRNA Expression of MAP4K Family in Acute Myeloid Leukemia. Technol. Cancer Res. Treat. 2019, 18, 1533033819873927. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Chen, J.; Sui, H.; Si-Ma, X.; Li, G.; Liu, C.; Li, J.; Ding, Y.; Li, J. A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer. J. Pathol. 2009, 220, 475–489. [Google Scholar] [CrossRef]
- Liang, J.J.; Wang, H.; Rashid, A.; Tan, T.-H.; Hwang, R.F.; Hamilton, S.R.; Abbruzzese, J.L.; Evans, D.B.; Wang, H. Expression of MAP4K4 Is Associated with Worse Prognosis in Patients with Stage II Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2008, 14, 7043–7049. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.-H.; Qian, Y.-M.; Zhao, X.-L.; Wang, S.-M.; Feng, X.-J.; Chen, X.-F.; Zhang, S.-H. Expression and prognostic significance of MAP4K4 in lung adenocarcinoma. Pathol.-Res. Pr. 2012, 208, 541–548. [Google Scholar] [CrossRef]
- Tong, Z.; Guo-Xin, L.; Jian, Z.; De-Fang, Z. The Expression Level of Gene MAP4K4 and Its Clinical Effect in Cancerous Tissue of Gastric Carcinoma. Biomed. Res. 2017, 28, 2920–2925. [Google Scholar]
- Delsin, L.E.A.; Plutoni, C.; Clouvel, A.; Keil, S.; Marpeaux, L.; Elouassouli, L.; Khavari, A.; Ehrlicher, A.J.; Emery, G. MAP4K4 regulates forces at cell–cell and cell–matrix adhesions to promote collective cell migration. Life Sci. Alliance 2023, 6, e202302196. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, D.; Yan, S.; Baumgartner, M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front. Oncol. 2022, 12, 1059513. [Google Scholar] [CrossRef]
- Danai, L.V.; Guilherme, A.; Guntur, K.V.; Straubhaar, J.; Nicoloro, S.M.; Czech, M.P. Map4k4 suppresses Srebp-1 and adipocyte lipogenesis independent of JNK signaling. J. Lipid Res. 2013, 54, 2697–2707. [Google Scholar] [CrossRef] [PubMed]
- Larhammar, M.; Huntwork-Rodriguez, S.; Rudhard, Y.; Sengupta-Ghosh, A.; Lewcock, J.W. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons. J. Neurosci. 2017, 37, 11074–11084. [Google Scholar] [CrossRef]
- Huang, Y.-K.; Wang, M.; Sun, Y.; Di Costanzo, N.; Mitchell, C.; Achuthan, A.; Hamilton, J.A.; Busuttil, R.A.; Boussioutas, A. Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry. Nat. Commun. 2019, 10, 3928. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.; Michel, S.; Reuschenbach, M.; Nelius, N.; von Knebel Doeberitz, M.; Kloor, M. Dendritic Cell and Macrophage Infiltration in Microsatellite-Unstable and Microsatellite-Stable Colorectal Cancer. Fam. Cancer 2011, 10, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Olingy, C.E.; Dinh, H.Q.; Hedrick, C.C. Monocyte Heterogeneity and Functions in Cancer. J. Leukoc. Biol. 2019, 106, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Dallavalasa, S.; Beeraka, N.M.; Basavaraju, C.G.; Tulimilli, S.V.; Sadhu, S.P.; Rajesh, K.; Aliev, G.; Madhunapantula, S.V. The Role of Tumor Associated Macrophages (TAMs) in Cancer Progression, Chemoresistance, Angiogenesis and Metastasis—Current Status. Curr. Med. Chem. 2021, 28, 8203–8236. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Peng, G.; Xiao, Y.; Guo, J.; Wu, B.; Li, X.; Zhou, W.; Li, J.; Li, Z.; et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics 2022, 12, 620–638. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, D.; Li, C.; Liu, Y.; Zhou, Y.; Zhang, J. Development of Cancer-Associated Fibroblasts Subtype and Prognostic Model in Gastric Cancer and the Landscape of Tumor Microenvironment. Int. J. Biochem. Cell Biol. 2022, 152, 106309. [Google Scholar] [CrossRef]
- Lu, G.; Du, R.; Dong, J.; Sun, Y.; Zhou, F.; Feng, F.; Feng, B.; Han, Y.; Shang, Y. Cancer associated fibroblast derived SLIT2 drives gastric cancer cell metastasis by activating NEK9. Cell Death Dis. 2023, 14, 421. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Liu, Y.; Wang, Y.; Li, J.; Liang, S.; Zhang, W.; Ma, Z.; Liu, S.; Zou, X. DZIP1 expressed in fibroblasts and tumor cells may affect immunosuppression and metastatic potential in gastric cancer. Int. Immunopharmacol. 2023, 117, 109886. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Xie, W.; Zhuo, H.; Wei, X.; Wang, K.; Cheng, J.; Lin, L.; Hou, J.; Chen, X.; Cai, J. Crosstalk between Cancer Cells and Cancer-Associated Fibroblasts Mediated by TGF-β1–IGFBP7 Signaling Promotes the Progression of Infiltrative Gastric Cancer. Cancers 2023, 15, 3965. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Guo, S.; Lai, S.; Wang, T.; Du, Y.; Deng, J.; Zhang, S.; Gao, G.; Zhang, J. Integrated single-cell and bulk RNA sequencing analysis identifies a cancer-associated fibroblast-related gene signature for predicting survival and therapy in gastric cancer. BMC Cancer 2023, 23, 108. [Google Scholar] [CrossRef] [PubMed]
- Mak, T.K.; Li, X.; Huang, H.; Wu, K.; Huang, Z.; He, Y.; Zhang, C. The cancer-associated fibroblast-related signature predicts prognosis and indicates immune microenvironment infiltration in gastric cancer. Front. Immunol. 2022, 13, 951214. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, D.; Huang, X.; Zhang, M.; Zhu, W.; Xu, C. Significance of monocyte infiltration in patients with gastric cancer: A combined study based on single cell sequencing and TCGA. Front. Oncol. 2022, 12, 1001307. [Google Scholar] [CrossRef]
- Hanona, P.; Jairath, N.; Farha, M.; Yohanathan, L.; Ezekwudo, D.; Jaiyesimi, I.A. The effect of resting dendritic cells on overall survival in the hepatocellular carcinoma tumor microenvironment. J. Clin. Oncol. 2024, 42 (Suppl. S16), e14559. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, S.; Viswakarma, N.; Principe, D.R.; Das, S.; Sondarva, G.; Nair, R.S.; Srivastava, P.; Sinha, S.C.; Grippo, P.J.; et al. MAP4K4 promotes pancreatic tumorigenesis via phosphorylation and activation of mixed lineage kinase 3. Oncogene 2021, 40, 6153–6165. [Google Scholar] [CrossRef]
- Huang, H.; Han, Q.; Zheng, H.; Liu, M.; Shi, S.; Zhang, T.; Yang, X.; Li, Z.; Xu, Q.; Guo, H.; et al. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis. 2021, 13, 13. [Google Scholar] [CrossRef]
- Mei, J.; Wang, D.H.; Wang, L.L.; Chen, Q.; Pan, L.L.; Xia, L. MicroRNA-200c Suppressed Cervical Cancer Cell Metastasis and Growth via Targeting MAP4K4. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 623–631. [Google Scholar] [PubMed]
- Wang, F.; Zhao, L.; Zhang, J.; Meng, Z.; Zhou, C.; Wang, G.; Liu, Y.; Li, M.; Xi, J.; Niu, W.; et al. Chemotherapy-Induced miR-141/MAP4K4 Signaling Suppresses Progression of Colorectal Cancer. Biosci. Rep. 2018, 38, BSR20180978. [Google Scholar] [CrossRef]
- Dow, R.L.; Ammirati, M.; Bagley, S.W.; Bhattacharya, S.K.; Buckbinder, L.; Cortes, C.; El-Kattan, A.F.; Ford, K.; Freeman, G.B.; Guimarães, C.R.W.; et al. 2-Aminopyridine-Based Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Inhibitors: Assessment of Mechanism-Based Safety. J. Med. Chem. 2018, 61, 3114–3125. [Google Scholar] [CrossRef] [PubMed]
Level | Total | MAP4K4high | MAP4K4low | p-Value | |
---|---|---|---|---|---|
n | 68 | 43 | 25 | ||
Age, median [IQR] | 70.00 [64.00, 75.25] | 70.00 [64.00, 75.00] | 70.00 [65.00, 76.00] | 0.949 | |
Sex, n (%) | Female | 35 (51.5) | 25 (58.1) | 10 (40.0) | 0.209 |
Male | 33 (48.5) | 18 (41.9) | 15 (60.0) | ||
Mutation count, median [IQR] | 1090.00 [739.25, 1329.25] | 1158.00 [749.50, 1355.00] | 1043.00 [695.00, 1278.00] | 0.321 | |
Histologic grade, n (%) | G1 | 1 (1.5) | 0 (0.0) | 1 (4.0) | 0.323 |
G2 | 19 (27.9) | 12 (27.9) | 7 (28.0) | ||
G3 | 47 (69.1) | 31 (72.1) | 16 (64.0) | ||
GX | 1 (1.5) | 0 (0.0) | 1 (4.0) | ||
Tumor stage T, n (%) | T1/T2 | 19 (27.9) | 13 (30.2) | 6 (24.0) | 0.780 |
T3/T4 | 49 (72.1) | 30 (69.8) | 19 (76.0) | ||
Nodal status, n (%) | N0 | 30 (44.1) | 22 (51.2) | 8 (32.0) | 0.139 |
N1/N2/N3 | 38 (55.9) | 21 (48.8) | 17 (68.0) | ||
Metastasis, n (%) | M0 | 63 (92.6) | 41 (95.3) | 22 (88.0) | 0.609 |
M1 | 3 (4.4) | 1 (2.3) | 2 (8.0) | ||
Unknown | 2 (2.9) | 1 (2.3) | 1 (4.0) | ||
AJCC TNM staging, n (%) | IA | 1 (1.5) | 1 (2.3) | 0 (0.0) | 0.411 |
IB | 1 (1.5) | 1 (2.3) | 0 (0.0) | ||
II | 15 (22.1) | 12 (27.9) | 3 (12.0) | ||
IIIA | 36 (52.9) | 22 (51.2) | 14 (56.0) | ||
IIIB | 2 (2.9) | 1 (2.3) | 1 (4.0) | ||
IV | 13 (19.1) | 6 (14.0) | 7 (28.0) | ||
Primary tumor site, n (%) | Proximal | 30 (44.1) | 21 (48.8) | 9 (36.0) | 0.325 |
Distal | 38 (55.9) | 22 (51.2) | 16 (64.0) | ||
Lauren classification, n (%) | Intestinal | 27 (39.7) | 16 (37.2) | 11 (44.0) | 0.681 |
Diffuse | 14 (20.6) | 8 (18.6) | 6 (24.0) | ||
Unknown | 27 (39.7) | 19 (44.2) | 8 (32.0) |
Level | Total | Low | High | p-Value | |
---|---|---|---|---|---|
n | 68 | 46 | 22 | ||
Age, median [IQR] | 66.00 [60.00, 72.00] | 66.00 [60.25, 73.75] | 65.00 [60.25, 68.75] | 0.405 | |
Sex, n (%) | Female | 23 (33.8) | 16 (34.8) | 7 (31.8) | 1 |
Male | 45 (66.2) | 30 (65.2) | 15 (68.2) | ||
Tumor stage T, n (%) | T1/T2 | 47 (69.1) | 33 (71.7) | 14 (63.6) | 0.579 |
T3/T4 | 21 (30.9) | 13 (28.3) | 8 (36.4) | ||
Nodal status, n (%) | N0 | 16 (23.5) | 12 (26.1) | 4 (18.2) | 0.554 |
N1/N2/N3 | 52 (76.5) | 34 (73.9) | 18 (81.8) | ||
Metastasis, n (%) | M0 | 67 (98.5) | 46 (100.0) | 21 (95.5) | 0.324 |
M1 | 1 (1.5) | 0 (0.0) | 1 (4.5) | ||
AJCC TNM staging, n (%) | IB | 14 (20.6) | 11 (23.9) | 3 (12.0) | 0.056 |
II | 26 (38.2) | 19 (41.3) | 7 (32.0) | ||
IIIA | 10 (14.7) | 7 (15.2) | 3 (20.0) | ||
IIIB | 9 (13.2) | 7 (15.2) | 2 (8.0) | ||
IV | 9 (13.2) | 2 (4.3) | 7 (28.0) | ||
Primary tumor site, n (%) | Proximal | 17 (25.0) | 11 (23.9) | 6 (16.0) | 0.772 |
Distal | 51 (75.0) | 35 (76.1) | 16 (8.0) | ||
Lauren classification, n (%) | Intestinal | 42 (61.8) | 26 (56.5) | 16 (64.0) | 0.212 |
Diffuse | 20 (29.4) | 14 (30.4) | 6 (36.0) | ||
Mixed | 6 (8.8) | 6 (13.0) | 0 (0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huamani Ortiz, A.D.J.; Campos Segura, A.V.; Magaño Bocanegra, K.J.; Velásquez Sotomayor, M.B.; Barrón Pastor, H.J.; Llimpe Mitma de Barrón, Y.; Chacón Villanueva, R.D.; Murillo Carrasco, A.G.; Ortiz Rojas, C.A. Transcriptome-Based Survival Analysis Identifies MAP4K4 as a Prognostic Marker in Gastric Cancer with Microsatellite Instability. Cancers 2025, 17, 412. https://doi.org/10.3390/cancers17030412
Huamani Ortiz ADJ, Campos Segura AV, Magaño Bocanegra KJ, Velásquez Sotomayor MB, Barrón Pastor HJ, Llimpe Mitma de Barrón Y, Chacón Villanueva RD, Murillo Carrasco AG, Ortiz Rojas CA. Transcriptome-Based Survival Analysis Identifies MAP4K4 as a Prognostic Marker in Gastric Cancer with Microsatellite Instability. Cancers. 2025; 17(3):412. https://doi.org/10.3390/cancers17030412
Chicago/Turabian StyleHuamani Ortiz, Alvaro De Jesus, Anthony Vladimir Campos Segura, Kevin Jorge Magaño Bocanegra, Mariana Belén Velásquez Sotomayor, Heli Jaime Barrón Pastor, Yesica Llimpe Mitma de Barrón, Ruy Diego Chacón Villanueva, Alexis Germán Murillo Carrasco, and César Alexander Ortiz Rojas. 2025. "Transcriptome-Based Survival Analysis Identifies MAP4K4 as a Prognostic Marker in Gastric Cancer with Microsatellite Instability" Cancers 17, no. 3: 412. https://doi.org/10.3390/cancers17030412
APA StyleHuamani Ortiz, A. D. J., Campos Segura, A. V., Magaño Bocanegra, K. J., Velásquez Sotomayor, M. B., Barrón Pastor, H. J., Llimpe Mitma de Barrón, Y., Chacón Villanueva, R. D., Murillo Carrasco, A. G., & Ortiz Rojas, C. A. (2025). Transcriptome-Based Survival Analysis Identifies MAP4K4 as a Prognostic Marker in Gastric Cancer with Microsatellite Instability. Cancers, 17(3), 412. https://doi.org/10.3390/cancers17030412